vdev.c revision 10921:8aac17999e4d
1193323Sed/*
2193323Sed * CDDL HEADER START
3193323Sed *
4193323Sed * The contents of this file are subject to the terms of the
5193323Sed * Common Development and Distribution License (the "License").
6193323Sed * You may not use this file except in compliance with the License.
7193323Sed *
8193323Sed * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9193323Sed * or http://www.opensolaris.org/os/licensing.
10193323Sed * See the License for the specific language governing permissions
11193323Sed * and limitations under the License.
12193323Sed *
13193323Sed * When distributing Covered Code, include this CDDL HEADER in each
14193323Sed * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15193323Sed * If applicable, add the following below this CDDL HEADER, with the
16193323Sed * fields enclosed by brackets "[]" replaced with your own identifying
17193323Sed * information: Portions Copyright [yyyy] [name of copyright owner]
18193323Sed *
19193323Sed * CDDL HEADER END
20193323Sed */
21193323Sed
22193323Sed/*
23193323Sed * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24223017Sdim * Use is subject to license terms.
25221345Sdim */
26218893Sdim
27193323Sed#include <sys/zfs_context.h>
28193323Sed#include <sys/fm/fs/zfs.h>
29193323Sed#include <sys/spa.h>
30193323Sed#include <sys/spa_impl.h>
31193323Sed#include <sys/dmu.h>
32193323Sed#include <sys/dmu_tx.h>
33193323Sed#include <sys/vdev_impl.h>
34218893Sdim#include <sys/uberblock_impl.h>
35218893Sdim#include <sys/metaslab.h>
36218893Sdim#include <sys/metaslab_impl.h>
37218893Sdim#include <sys/space_map.h>
38218893Sdim#include <sys/zio.h>
39218893Sdim#include <sys/zap.h>
40218893Sdim#include <sys/fs/zfs.h>
41193323Sed#include <sys/arc.h>
42223017Sdim#include <sys/zil.h>
43223017Sdim
44223017Sdim/*
45223017Sdim * Virtual device management.
46223017Sdim */
47223017Sdim
48223017Sdimstatic vdev_ops_t *vdev_ops_table[] = {
49223017Sdim	&vdev_root_ops,
50223017Sdim	&vdev_raidz_ops,
51193323Sed	&vdev_mirror_ops,
52193323Sed	&vdev_replacing_ops,
53193323Sed	&vdev_spare_ops,
54193323Sed	&vdev_disk_ops,
55207618Srdivacky	&vdev_file_ops,
56207618Srdivacky	&vdev_missing_ops,
57207618Srdivacky	&vdev_hole_ops,
58212904Sdim	NULL
59212904Sdim};
60207618Srdivacky
61207618Srdivacky/* maximum scrub/resilver I/O queue per leaf vdev */
62207618Srdivackyint zfs_scrub_limit = 10;
63207618Srdivacky
64207618Srdivacky/*
65212904Sdim * Given a vdev type, return the appropriate ops vector.
66212904Sdim */
67212904Sdimstatic vdev_ops_t *
68212904Sdimvdev_getops(const char *type)
69212904Sdim{
70193323Sed	vdev_ops_t *ops, **opspp;
71193323Sed
72212904Sdim	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73207618Srdivacky		if (strcmp(ops->vdev_op_type, type) == 0)
74212904Sdim			break;
75207618Srdivacky
76207618Srdivacky	return (ops);
77212904Sdim}
78212904Sdim
79212904Sdim/*
80212904Sdim * Default asize function: return the MAX of psize with the asize of
81212904Sdim * all children.  This is what's used by anything other than RAID-Z.
82212904Sdim */
83193323Seduint64_t
84193323Sedvdev_default_asize(vdev_t *vd, uint64_t psize)
85207618Srdivacky{
86207618Srdivacky	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87193323Sed	uint64_t csize;
88193323Sed
89193323Sed	for (int c = 0; c < vd->vdev_children; c++) {
90193323Sed		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91193323Sed		asize = MAX(asize, csize);
92223017Sdim	}
93193323Sed
94193323Sed	return (asize);
95193323Sed}
96193323Sed
97221345Sdim/*
98221345Sdim * Get the minimum allocatable size. We define the allocatable size as
99221345Sdim * the vdev's asize rounded to the nearest metaslab. This allows us to
100221345Sdim * replace or attach devices which don't have the same physical size but
101193323Sed * can still satisfy the same number of allocations.
102193323Sed */
103223017Sdimuint64_t
104223017Sdimvdev_get_min_asize(vdev_t *vd)
105223017Sdim{
106223017Sdim	vdev_t *pvd = vd->vdev_parent;
107223017Sdim
108193323Sed	/*
109193323Sed	 * The our parent is NULL (inactive spare or cache) or is the root,
110193323Sed	 * just return our own asize.
111193323Sed	 */
112198090Srdivacky	if (pvd == NULL)
113193323Sed		return (vd->vdev_asize);
114207618Srdivacky
115207618Srdivacky	/*
116212904Sdim	 * The top-level vdev just returns the allocatable size rounded
117199511Srdivacky	 * to the nearest metaslab.
118199511Srdivacky	 */
119193323Sed	if (vd == vd->vdev_top)
120193323Sed		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121193323Sed
122193323Sed	/*
123193323Sed	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124193323Sed	 * so each child must provide at least 1/Nth of its asize.
125193323Sed	 */
126193323Sed	if (pvd->vdev_ops == &vdev_raidz_ops)
127193323Sed		return (pvd->vdev_min_asize / pvd->vdev_children);
128193323Sed
129193323Sed	return (pvd->vdev_min_asize);
130193323Sed}
131193323Sed
132193323Sedvoid
133204642Srdivackyvdev_set_min_asize(vdev_t *vd)
134193323Sed{
135193323Sed	vd->vdev_min_asize = vdev_get_min_asize(vd);
136193323Sed
137193323Sed	for (int c = 0; c < vd->vdev_children; c++)
138193323Sed		vdev_set_min_asize(vd->vdev_child[c]);
139223017Sdim}
140201360Srdivacky
141198090Srdivackyvdev_t *
142193323Sedvdev_lookup_top(spa_t *spa, uint64_t vdev)
143193323Sed{
144193323Sed	vdev_t *rvd = spa->spa_root_vdev;
145223017Sdim
146201360Srdivacky	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147198090Srdivacky
148193323Sed	if (vdev < rvd->vdev_children) {
149193323Sed		ASSERT(rvd->vdev_child[vdev] != NULL);
150193323Sed		return (rvd->vdev_child[vdev]);
151193323Sed	}
152207618Srdivacky
153223017Sdim	return (NULL);
154207618Srdivacky}
155223017Sdim
156223017Sdimvdev_t *
157223017Sdimvdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158207618Srdivacky{
159207618Srdivacky	vdev_t *mvd;
160207618Srdivacky
161207618Srdivacky	if (vd->vdev_guid == guid)
162207618Srdivacky		return (vd);
163193323Sed
164193323Sed	for (int c = 0; c < vd->vdev_children; c++)
165193323Sed		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166193323Sed		    NULL)
167193323Sed			return (mvd);
168223017Sdim
169223017Sdim	return (NULL);
170203954Srdivacky}
171199481Srdivacky
172199481Srdivackyvoid
173193323Sedvdev_add_child(vdev_t *pvd, vdev_t *cvd)
174218893Sdim{
175218893Sdim	size_t oldsize, newsize;
176193323Sed	uint64_t id = cvd->vdev_id;
177193323Sed	vdev_t **newchild;
178193323Sed
179193323Sed	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180193323Sed	ASSERT(cvd->vdev_parent == NULL);
181193323Sed
182193323Sed	cvd->vdev_parent = pvd;
183193323Sed
184193323Sed	if (pvd == NULL)
185193323Sed		return;
186193323Sed
187193323Sed	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188193323Sed
189193323Sed	oldsize = pvd->vdev_children * sizeof (vdev_t *);
190193323Sed	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191221345Sdim	newsize = pvd->vdev_children * sizeof (vdev_t *);
192193323Sed
193193323Sed	newchild = kmem_zalloc(newsize, KM_SLEEP);
194193323Sed	if (pvd->vdev_child != NULL) {
195193323Sed		bcopy(pvd->vdev_child, newchild, oldsize);
196193323Sed		kmem_free(pvd->vdev_child, oldsize);
197223017Sdim	}
198193323Sed
199193323Sed	pvd->vdev_child = newchild;
200193323Sed	pvd->vdev_child[id] = cvd;
201193323Sed
202193323Sed	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203193323Sed	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204193323Sed
205193323Sed	/*
206193323Sed	 * Walk up all ancestors to update guid sum.
207193323Sed	 */
208193323Sed	for (; pvd != NULL; pvd = pvd->vdev_parent)
209193323Sed		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210193323Sed
211203954Srdivacky	if (cvd->vdev_ops->vdev_op_leaf)
212203954Srdivacky		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
213203954Srdivacky}
214203954Srdivacky
215207618Srdivackyvoid
216207618Srdivackyvdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217207618Srdivacky{
218207618Srdivacky	int c;
219207618Srdivacky	uint_t id = cvd->vdev_id;
220207618Srdivacky
221207618Srdivacky	ASSERT(cvd->vdev_parent == pvd);
222207618Srdivacky
223203954Srdivacky	if (pvd == NULL)
224212904Sdim		return;
225203954Srdivacky
226193323Sed	ASSERT(id < pvd->vdev_children);
227193323Sed	ASSERT(pvd->vdev_child[id] == cvd);
228193323Sed
229193323Sed	pvd->vdev_child[id] = NULL;
230201360Srdivacky	cvd->vdev_parent = NULL;
231193323Sed
232193323Sed	for (c = 0; c < pvd->vdev_children; c++)
233193323Sed		if (pvd->vdev_child[c])
234201360Srdivacky			break;
235200581Srdivacky
236193323Sed	if (c == pvd->vdev_children) {
237193323Sed		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238207618Srdivacky		pvd->vdev_child = NULL;
239207618Srdivacky		pvd->vdev_children = 0;
240207618Srdivacky	}
241207618Srdivacky
242207618Srdivacky	/*
243207618Srdivacky	 * Walk up all ancestors to update guid sum.
244207618Srdivacky	 */
245207618Srdivacky	for (; pvd != NULL; pvd = pvd->vdev_parent)
246207618Srdivacky		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247207618Srdivacky
248207618Srdivacky	if (cvd->vdev_ops->vdev_op_leaf)
249207618Srdivacky		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
250207618Srdivacky}
251207618Srdivacky
252207618Srdivacky/*
253207618Srdivacky * Remove any holes in the child array.
254207618Srdivacky */
255207618Srdivackyvoid
256207618Srdivackyvdev_compact_children(vdev_t *pvd)
257207618Srdivacky{
258207618Srdivacky	vdev_t **newchild, *cvd;
259207618Srdivacky	int oldc = pvd->vdev_children;
260207618Srdivacky	int newc;
261207618Srdivacky
262207618Srdivacky	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263207618Srdivacky
264207618Srdivacky	for (int c = newc = 0; c < oldc; c++)
265207618Srdivacky		if (pvd->vdev_child[c])
266207618Srdivacky			newc++;
267207618Srdivacky
268207618Srdivacky	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
269207618Srdivacky
270207618Srdivacky	for (int c = newc = 0; c < oldc; c++) {
271207618Srdivacky		if ((cvd = pvd->vdev_child[c]) != NULL) {
272207618Srdivacky			newchild[newc] = cvd;
273207618Srdivacky			cvd->vdev_id = newc++;
274207618Srdivacky		}
275207618Srdivacky	}
276207618Srdivacky
277207618Srdivacky	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278207618Srdivacky	pvd->vdev_child = newchild;
279207618Srdivacky	pvd->vdev_children = newc;
280207618Srdivacky}
281193323Sed
282193323Sed/*
283203954Srdivacky * Allocate and minimally initialize a vdev_t.
284193323Sed */
285193323Sedvdev_t *
286vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287{
288	vdev_t *vd;
289
290	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
291
292	if (spa->spa_root_vdev == NULL) {
293		ASSERT(ops == &vdev_root_ops);
294		spa->spa_root_vdev = vd;
295	}
296
297	if (guid == 0 && ops != &vdev_hole_ops) {
298		if (spa->spa_root_vdev == vd) {
299			/*
300			 * The root vdev's guid will also be the pool guid,
301			 * which must be unique among all pools.
302			 */
303			while (guid == 0 || spa_guid_exists(guid, 0))
304				guid = spa_get_random(-1ULL);
305		} else {
306			/*
307			 * Any other vdev's guid must be unique within the pool.
308			 */
309			while (guid == 0 ||
310			    spa_guid_exists(spa_guid(spa), guid))
311				guid = spa_get_random(-1ULL);
312		}
313		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
314	}
315
316	vd->vdev_spa = spa;
317	vd->vdev_id = id;
318	vd->vdev_guid = guid;
319	vd->vdev_guid_sum = guid;
320	vd->vdev_ops = ops;
321	vd->vdev_state = VDEV_STATE_CLOSED;
322	vd->vdev_ishole = (ops == &vdev_hole_ops);
323
324	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
325	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
326	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
327	for (int t = 0; t < DTL_TYPES; t++) {
328		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
329		    &vd->vdev_dtl_lock);
330	}
331	txg_list_create(&vd->vdev_ms_list,
332	    offsetof(struct metaslab, ms_txg_node));
333	txg_list_create(&vd->vdev_dtl_list,
334	    offsetof(struct vdev, vdev_dtl_node));
335	vd->vdev_stat.vs_timestamp = gethrtime();
336	vdev_queue_init(vd);
337	vdev_cache_init(vd);
338
339	return (vd);
340}
341
342/*
343 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
344 * creating a new vdev or loading an existing one - the behavior is slightly
345 * different for each case.
346 */
347int
348vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
349    int alloctype)
350{
351	vdev_ops_t *ops;
352	char *type;
353	uint64_t guid = 0, islog, nparity;
354	vdev_t *vd;
355
356	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
357
358	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
359		return (EINVAL);
360
361	if ((ops = vdev_getops(type)) == NULL)
362		return (EINVAL);
363
364	/*
365	 * If this is a load, get the vdev guid from the nvlist.
366	 * Otherwise, vdev_alloc_common() will generate one for us.
367	 */
368	if (alloctype == VDEV_ALLOC_LOAD) {
369		uint64_t label_id;
370
371		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
372		    label_id != id)
373			return (EINVAL);
374
375		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376			return (EINVAL);
377	} else if (alloctype == VDEV_ALLOC_SPARE) {
378		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379			return (EINVAL);
380	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
381		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382			return (EINVAL);
383	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
384		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385			return (EINVAL);
386	}
387
388	/*
389	 * The first allocated vdev must be of type 'root'.
390	 */
391	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
392		return (EINVAL);
393
394	/*
395	 * Determine whether we're a log vdev.
396	 */
397	islog = 0;
398	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
399	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
400		return (ENOTSUP);
401
402	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
403		return (ENOTSUP);
404
405	/*
406	 * Set the nparity property for RAID-Z vdevs.
407	 */
408	nparity = -1ULL;
409	if (ops == &vdev_raidz_ops) {
410		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
411		    &nparity) == 0) {
412			/*
413			 * Currently, we can only support 3 parity devices.
414			 */
415			if (nparity == 0 || nparity > 3)
416				return (EINVAL);
417			/*
418			 * Previous versions could only support 1 or 2 parity
419			 * device.
420			 */
421			if (nparity > 1 &&
422			    spa_version(spa) < SPA_VERSION_RAIDZ2)
423				return (ENOTSUP);
424			if (nparity > 2 &&
425			    spa_version(spa) < SPA_VERSION_RAIDZ3)
426				return (ENOTSUP);
427		} else {
428			/*
429			 * We require the parity to be specified for SPAs that
430			 * support multiple parity levels.
431			 */
432			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
433				return (EINVAL);
434			/*
435			 * Otherwise, we default to 1 parity device for RAID-Z.
436			 */
437			nparity = 1;
438		}
439	} else {
440		nparity = 0;
441	}
442	ASSERT(nparity != -1ULL);
443
444	vd = vdev_alloc_common(spa, id, guid, ops);
445
446	vd->vdev_islog = islog;
447	vd->vdev_nparity = nparity;
448
449	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
450		vd->vdev_path = spa_strdup(vd->vdev_path);
451	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
452		vd->vdev_devid = spa_strdup(vd->vdev_devid);
453	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
454	    &vd->vdev_physpath) == 0)
455		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
456	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
457		vd->vdev_fru = spa_strdup(vd->vdev_fru);
458
459	/*
460	 * Set the whole_disk property.  If it's not specified, leave the value
461	 * as -1.
462	 */
463	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
464	    &vd->vdev_wholedisk) != 0)
465		vd->vdev_wholedisk = -1ULL;
466
467	/*
468	 * Look for the 'not present' flag.  This will only be set if the device
469	 * was not present at the time of import.
470	 */
471	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
472	    &vd->vdev_not_present);
473
474	/*
475	 * Get the alignment requirement.
476	 */
477	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
478
479	/*
480	 * Retrieve the vdev creation time.
481	 */
482	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
483	    &vd->vdev_crtxg);
484
485	/*
486	 * If we're a top-level vdev, try to load the allocation parameters.
487	 */
488	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
489		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
490		    &vd->vdev_ms_array);
491		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
492		    &vd->vdev_ms_shift);
493		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
494		    &vd->vdev_asize);
495	}
496
497	/*
498	 * If we're a leaf vdev, try to load the DTL object and other state.
499	 */
500	if (vd->vdev_ops->vdev_op_leaf &&
501	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
502	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
503		if (alloctype == VDEV_ALLOC_LOAD) {
504			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
505			    &vd->vdev_dtl_smo.smo_object);
506			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
507			    &vd->vdev_unspare);
508		}
509
510		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
511			uint64_t spare = 0;
512
513			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
514			    &spare) == 0 && spare)
515				spa_spare_add(vd);
516		}
517
518		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
519		    &vd->vdev_offline);
520
521		/*
522		 * When importing a pool, we want to ignore the persistent fault
523		 * state, as the diagnosis made on another system may not be
524		 * valid in the current context.  Local vdevs will
525		 * remain in the faulted state.
526		 */
527		if (spa->spa_load_state == SPA_LOAD_OPEN) {
528			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
529			    &vd->vdev_faulted);
530			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
531			    &vd->vdev_degraded);
532			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
533			    &vd->vdev_removed);
534
535			if (vd->vdev_faulted || vd->vdev_degraded) {
536				char *aux;
537
538				vd->vdev_label_aux =
539				    VDEV_AUX_ERR_EXCEEDED;
540				if (nvlist_lookup_string(nv,
541				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
542				    strcmp(aux, "external") == 0)
543					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
544			}
545		}
546	}
547
548	/*
549	 * Add ourselves to the parent's list of children.
550	 */
551	vdev_add_child(parent, vd);
552
553	*vdp = vd;
554
555	return (0);
556}
557
558void
559vdev_free(vdev_t *vd)
560{
561	spa_t *spa = vd->vdev_spa;
562
563	/*
564	 * vdev_free() implies closing the vdev first.  This is simpler than
565	 * trying to ensure complicated semantics for all callers.
566	 */
567	vdev_close(vd);
568
569	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
570
571	/*
572	 * Free all children.
573	 */
574	for (int c = 0; c < vd->vdev_children; c++)
575		vdev_free(vd->vdev_child[c]);
576
577	ASSERT(vd->vdev_child == NULL);
578	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
579
580	/*
581	 * Discard allocation state.
582	 */
583	if (vd == vd->vdev_top)
584		vdev_metaslab_fini(vd);
585
586	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
587	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
588	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
589
590	/*
591	 * Remove this vdev from its parent's child list.
592	 */
593	vdev_remove_child(vd->vdev_parent, vd);
594
595	ASSERT(vd->vdev_parent == NULL);
596
597	/*
598	 * Clean up vdev structure.
599	 */
600	vdev_queue_fini(vd);
601	vdev_cache_fini(vd);
602
603	if (vd->vdev_path)
604		spa_strfree(vd->vdev_path);
605	if (vd->vdev_devid)
606		spa_strfree(vd->vdev_devid);
607	if (vd->vdev_physpath)
608		spa_strfree(vd->vdev_physpath);
609	if (vd->vdev_fru)
610		spa_strfree(vd->vdev_fru);
611
612	if (vd->vdev_isspare)
613		spa_spare_remove(vd);
614	if (vd->vdev_isl2cache)
615		spa_l2cache_remove(vd);
616
617	txg_list_destroy(&vd->vdev_ms_list);
618	txg_list_destroy(&vd->vdev_dtl_list);
619
620	mutex_enter(&vd->vdev_dtl_lock);
621	for (int t = 0; t < DTL_TYPES; t++) {
622		space_map_unload(&vd->vdev_dtl[t]);
623		space_map_destroy(&vd->vdev_dtl[t]);
624	}
625	mutex_exit(&vd->vdev_dtl_lock);
626
627	mutex_destroy(&vd->vdev_dtl_lock);
628	mutex_destroy(&vd->vdev_stat_lock);
629	mutex_destroy(&vd->vdev_probe_lock);
630
631	if (vd == spa->spa_root_vdev)
632		spa->spa_root_vdev = NULL;
633
634	kmem_free(vd, sizeof (vdev_t));
635}
636
637/*
638 * Transfer top-level vdev state from svd to tvd.
639 */
640static void
641vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
642{
643	spa_t *spa = svd->vdev_spa;
644	metaslab_t *msp;
645	vdev_t *vd;
646	int t;
647
648	ASSERT(tvd == tvd->vdev_top);
649
650	tvd->vdev_ms_array = svd->vdev_ms_array;
651	tvd->vdev_ms_shift = svd->vdev_ms_shift;
652	tvd->vdev_ms_count = svd->vdev_ms_count;
653
654	svd->vdev_ms_array = 0;
655	svd->vdev_ms_shift = 0;
656	svd->vdev_ms_count = 0;
657
658	tvd->vdev_mg = svd->vdev_mg;
659	tvd->vdev_ms = svd->vdev_ms;
660
661	svd->vdev_mg = NULL;
662	svd->vdev_ms = NULL;
663
664	if (tvd->vdev_mg != NULL)
665		tvd->vdev_mg->mg_vd = tvd;
666
667	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
668	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
669	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
670
671	svd->vdev_stat.vs_alloc = 0;
672	svd->vdev_stat.vs_space = 0;
673	svd->vdev_stat.vs_dspace = 0;
674
675	for (t = 0; t < TXG_SIZE; t++) {
676		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
677			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
678		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
679			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
680		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
681			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
682	}
683
684	if (list_link_active(&svd->vdev_config_dirty_node)) {
685		vdev_config_clean(svd);
686		vdev_config_dirty(tvd);
687	}
688
689	if (list_link_active(&svd->vdev_state_dirty_node)) {
690		vdev_state_clean(svd);
691		vdev_state_dirty(tvd);
692	}
693
694	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
695	svd->vdev_deflate_ratio = 0;
696
697	tvd->vdev_islog = svd->vdev_islog;
698	svd->vdev_islog = 0;
699}
700
701static void
702vdev_top_update(vdev_t *tvd, vdev_t *vd)
703{
704	if (vd == NULL)
705		return;
706
707	vd->vdev_top = tvd;
708
709	for (int c = 0; c < vd->vdev_children; c++)
710		vdev_top_update(tvd, vd->vdev_child[c]);
711}
712
713/*
714 * Add a mirror/replacing vdev above an existing vdev.
715 */
716vdev_t *
717vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
718{
719	spa_t *spa = cvd->vdev_spa;
720	vdev_t *pvd = cvd->vdev_parent;
721	vdev_t *mvd;
722
723	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
724
725	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
726
727	mvd->vdev_asize = cvd->vdev_asize;
728	mvd->vdev_min_asize = cvd->vdev_min_asize;
729	mvd->vdev_ashift = cvd->vdev_ashift;
730	mvd->vdev_state = cvd->vdev_state;
731	mvd->vdev_crtxg = cvd->vdev_crtxg;
732
733	vdev_remove_child(pvd, cvd);
734	vdev_add_child(pvd, mvd);
735	cvd->vdev_id = mvd->vdev_children;
736	vdev_add_child(mvd, cvd);
737	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
738
739	if (mvd == mvd->vdev_top)
740		vdev_top_transfer(cvd, mvd);
741
742	return (mvd);
743}
744
745/*
746 * Remove a 1-way mirror/replacing vdev from the tree.
747 */
748void
749vdev_remove_parent(vdev_t *cvd)
750{
751	vdev_t *mvd = cvd->vdev_parent;
752	vdev_t *pvd = mvd->vdev_parent;
753
754	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
755
756	ASSERT(mvd->vdev_children == 1);
757	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
758	    mvd->vdev_ops == &vdev_replacing_ops ||
759	    mvd->vdev_ops == &vdev_spare_ops);
760	cvd->vdev_ashift = mvd->vdev_ashift;
761
762	vdev_remove_child(mvd, cvd);
763	vdev_remove_child(pvd, mvd);
764
765	/*
766	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
767	 * Otherwise, we could have detached an offline device, and when we
768	 * go to import the pool we'll think we have two top-level vdevs,
769	 * instead of a different version of the same top-level vdev.
770	 */
771	if (mvd->vdev_top == mvd) {
772		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
773		cvd->vdev_guid += guid_delta;
774		cvd->vdev_guid_sum += guid_delta;
775	}
776	cvd->vdev_id = mvd->vdev_id;
777	vdev_add_child(pvd, cvd);
778	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
779
780	if (cvd == cvd->vdev_top)
781		vdev_top_transfer(mvd, cvd);
782
783	ASSERT(mvd->vdev_children == 0);
784	vdev_free(mvd);
785}
786
787int
788vdev_metaslab_init(vdev_t *vd, uint64_t txg)
789{
790	spa_t *spa = vd->vdev_spa;
791	objset_t *mos = spa->spa_meta_objset;
792	metaslab_class_t *mc;
793	uint64_t m;
794	uint64_t oldc = vd->vdev_ms_count;
795	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
796	metaslab_t **mspp;
797	int error;
798
799	/*
800	 * This vdev is not being allocated from yet or is a hole.
801	 */
802	if (vd->vdev_ms_shift == 0)
803		return (0);
804
805	ASSERT(!vd->vdev_ishole);
806
807	/*
808	 * Compute the raidz-deflation ratio.  Note, we hard-code
809	 * in 128k (1 << 17) because it is the current "typical" blocksize.
810	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
811	 * or we will inconsistently account for existing bp's.
812	 */
813	vd->vdev_deflate_ratio = (1 << 17) /
814	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
815
816	ASSERT(oldc <= newc);
817
818	if (vd->vdev_islog)
819		mc = spa->spa_log_class;
820	else
821		mc = spa->spa_normal_class;
822
823	if (vd->vdev_mg == NULL)
824		vd->vdev_mg = metaslab_group_create(mc, vd);
825
826	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
827
828	if (oldc != 0) {
829		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
830		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
831	}
832
833	vd->vdev_ms = mspp;
834	vd->vdev_ms_count = newc;
835
836	for (m = oldc; m < newc; m++) {
837		space_map_obj_t smo = { 0, 0, 0 };
838		if (txg == 0) {
839			uint64_t object = 0;
840			error = dmu_read(mos, vd->vdev_ms_array,
841			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
842			    DMU_READ_PREFETCH);
843			if (error)
844				return (error);
845			if (object != 0) {
846				dmu_buf_t *db;
847				error = dmu_bonus_hold(mos, object, FTAG, &db);
848				if (error)
849					return (error);
850				ASSERT3U(db->db_size, >=, sizeof (smo));
851				bcopy(db->db_data, &smo, sizeof (smo));
852				ASSERT3U(smo.smo_object, ==, object);
853				dmu_buf_rele(db, FTAG);
854			}
855		}
856		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
857		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
858	}
859
860	return (0);
861}
862
863void
864vdev_metaslab_fini(vdev_t *vd)
865{
866	uint64_t m;
867	uint64_t count = vd->vdev_ms_count;
868
869	if (vd->vdev_ms != NULL) {
870		for (m = 0; m < count; m++)
871			if (vd->vdev_ms[m] != NULL)
872				metaslab_fini(vd->vdev_ms[m]);
873		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
874		vd->vdev_ms = NULL;
875	}
876}
877
878typedef struct vdev_probe_stats {
879	boolean_t	vps_readable;
880	boolean_t	vps_writeable;
881	int		vps_flags;
882} vdev_probe_stats_t;
883
884static void
885vdev_probe_done(zio_t *zio)
886{
887	spa_t *spa = zio->io_spa;
888	vdev_t *vd = zio->io_vd;
889	vdev_probe_stats_t *vps = zio->io_private;
890
891	ASSERT(vd->vdev_probe_zio != NULL);
892
893	if (zio->io_type == ZIO_TYPE_READ) {
894		if (zio->io_error == 0)
895			vps->vps_readable = 1;
896		if (zio->io_error == 0 && spa_writeable(spa)) {
897			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
898			    zio->io_offset, zio->io_size, zio->io_data,
899			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
900			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
901		} else {
902			zio_buf_free(zio->io_data, zio->io_size);
903		}
904	} else if (zio->io_type == ZIO_TYPE_WRITE) {
905		if (zio->io_error == 0)
906			vps->vps_writeable = 1;
907		zio_buf_free(zio->io_data, zio->io_size);
908	} else if (zio->io_type == ZIO_TYPE_NULL) {
909		zio_t *pio;
910
911		vd->vdev_cant_read |= !vps->vps_readable;
912		vd->vdev_cant_write |= !vps->vps_writeable;
913
914		if (vdev_readable(vd) &&
915		    (vdev_writeable(vd) || !spa_writeable(spa))) {
916			zio->io_error = 0;
917		} else {
918			ASSERT(zio->io_error != 0);
919			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
920			    spa, vd, NULL, 0, 0);
921			zio->io_error = ENXIO;
922		}
923
924		mutex_enter(&vd->vdev_probe_lock);
925		ASSERT(vd->vdev_probe_zio == zio);
926		vd->vdev_probe_zio = NULL;
927		mutex_exit(&vd->vdev_probe_lock);
928
929		while ((pio = zio_walk_parents(zio)) != NULL)
930			if (!vdev_accessible(vd, pio))
931				pio->io_error = ENXIO;
932
933		kmem_free(vps, sizeof (*vps));
934	}
935}
936
937/*
938 * Determine whether this device is accessible by reading and writing
939 * to several known locations: the pad regions of each vdev label
940 * but the first (which we leave alone in case it contains a VTOC).
941 */
942zio_t *
943vdev_probe(vdev_t *vd, zio_t *zio)
944{
945	spa_t *spa = vd->vdev_spa;
946	vdev_probe_stats_t *vps = NULL;
947	zio_t *pio;
948
949	ASSERT(vd->vdev_ops->vdev_op_leaf);
950
951	/*
952	 * Don't probe the probe.
953	 */
954	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
955		return (NULL);
956
957	/*
958	 * To prevent 'probe storms' when a device fails, we create
959	 * just one probe i/o at a time.  All zios that want to probe
960	 * this vdev will become parents of the probe io.
961	 */
962	mutex_enter(&vd->vdev_probe_lock);
963
964	if ((pio = vd->vdev_probe_zio) == NULL) {
965		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
966
967		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
968		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
969		    ZIO_FLAG_TRYHARD;
970
971		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
972			/*
973			 * vdev_cant_read and vdev_cant_write can only
974			 * transition from TRUE to FALSE when we have the
975			 * SCL_ZIO lock as writer; otherwise they can only
976			 * transition from FALSE to TRUE.  This ensures that
977			 * any zio looking at these values can assume that
978			 * failures persist for the life of the I/O.  That's
979			 * important because when a device has intermittent
980			 * connectivity problems, we want to ensure that
981			 * they're ascribed to the device (ENXIO) and not
982			 * the zio (EIO).
983			 *
984			 * Since we hold SCL_ZIO as writer here, clear both
985			 * values so the probe can reevaluate from first
986			 * principles.
987			 */
988			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
989			vd->vdev_cant_read = B_FALSE;
990			vd->vdev_cant_write = B_FALSE;
991		}
992
993		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
994		    vdev_probe_done, vps,
995		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
996
997		if (zio != NULL) {
998			vd->vdev_probe_wanted = B_TRUE;
999			spa_async_request(spa, SPA_ASYNC_PROBE);
1000		}
1001	}
1002
1003	if (zio != NULL)
1004		zio_add_child(zio, pio);
1005
1006	mutex_exit(&vd->vdev_probe_lock);
1007
1008	if (vps == NULL) {
1009		ASSERT(zio != NULL);
1010		return (NULL);
1011	}
1012
1013	for (int l = 1; l < VDEV_LABELS; l++) {
1014		zio_nowait(zio_read_phys(pio, vd,
1015		    vdev_label_offset(vd->vdev_psize, l,
1016		    offsetof(vdev_label_t, vl_pad2)),
1017		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1018		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1019		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1020	}
1021
1022	if (zio == NULL)
1023		return (pio);
1024
1025	zio_nowait(pio);
1026	return (NULL);
1027}
1028
1029static void
1030vdev_open_child(void *arg)
1031{
1032	vdev_t *vd = arg;
1033
1034	vd->vdev_open_thread = curthread;
1035	vd->vdev_open_error = vdev_open(vd);
1036	vd->vdev_open_thread = NULL;
1037}
1038
1039boolean_t
1040vdev_uses_zvols(vdev_t *vd)
1041{
1042	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1043	    strlen(ZVOL_DIR)) == 0)
1044		return (B_TRUE);
1045	for (int c = 0; c < vd->vdev_children; c++)
1046		if (vdev_uses_zvols(vd->vdev_child[c]))
1047			return (B_TRUE);
1048	return (B_FALSE);
1049}
1050
1051void
1052vdev_open_children(vdev_t *vd)
1053{
1054	taskq_t *tq;
1055	int children = vd->vdev_children;
1056
1057	/*
1058	 * in order to handle pools on top of zvols, do the opens
1059	 * in a single thread so that the same thread holds the
1060	 * spa_namespace_lock
1061	 */
1062	if (vdev_uses_zvols(vd)) {
1063		for (int c = 0; c < children; c++)
1064			vd->vdev_child[c]->vdev_open_error =
1065			    vdev_open(vd->vdev_child[c]);
1066		return;
1067	}
1068	tq = taskq_create("vdev_open", children, minclsyspri,
1069	    children, children, TASKQ_PREPOPULATE);
1070
1071	for (int c = 0; c < children; c++)
1072		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1073		    TQ_SLEEP) != NULL);
1074
1075	taskq_destroy(tq);
1076}
1077
1078/*
1079 * Prepare a virtual device for access.
1080 */
1081int
1082vdev_open(vdev_t *vd)
1083{
1084	spa_t *spa = vd->vdev_spa;
1085	int error;
1086	uint64_t osize = 0;
1087	uint64_t asize, psize;
1088	uint64_t ashift = 0;
1089
1090	ASSERT(vd->vdev_open_thread == curthread ||
1091	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1092	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1093	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1094	    vd->vdev_state == VDEV_STATE_OFFLINE);
1095
1096	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1097	vd->vdev_cant_read = B_FALSE;
1098	vd->vdev_cant_write = B_FALSE;
1099	vd->vdev_min_asize = vdev_get_min_asize(vd);
1100
1101	/*
1102	 * If this vdev is not removed, check its fault status.  If it's
1103	 * faulted, bail out of the open.
1104	 */
1105	if (!vd->vdev_removed && vd->vdev_faulted) {
1106		ASSERT(vd->vdev_children == 0);
1107		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1108		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1109		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1110		    vd->vdev_label_aux);
1111		return (ENXIO);
1112	} else if (vd->vdev_offline) {
1113		ASSERT(vd->vdev_children == 0);
1114		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1115		return (ENXIO);
1116	}
1117
1118	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1119
1120	/*
1121	 * Reset the vdev_reopening flag so that we actually close
1122	 * the vdev on error.
1123	 */
1124	vd->vdev_reopening = B_FALSE;
1125	if (zio_injection_enabled && error == 0)
1126		error = zio_handle_device_injection(vd, NULL, ENXIO);
1127
1128	if (error) {
1129		if (vd->vdev_removed &&
1130		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1131			vd->vdev_removed = B_FALSE;
1132
1133		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1134		    vd->vdev_stat.vs_aux);
1135		return (error);
1136	}
1137
1138	vd->vdev_removed = B_FALSE;
1139
1140	/*
1141	 * Recheck the faulted flag now that we have confirmed that
1142	 * the vdev is accessible.  If we're faulted, bail.
1143	 */
1144	if (vd->vdev_faulted) {
1145		ASSERT(vd->vdev_children == 0);
1146		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1147		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1148		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1149		    vd->vdev_label_aux);
1150		return (ENXIO);
1151	}
1152
1153	if (vd->vdev_degraded) {
1154		ASSERT(vd->vdev_children == 0);
1155		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1156		    VDEV_AUX_ERR_EXCEEDED);
1157	} else {
1158		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1159	}
1160
1161	/*
1162	 * For hole or missing vdevs we just return success.
1163	 */
1164	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1165		return (0);
1166
1167	for (int c = 0; c < vd->vdev_children; c++) {
1168		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1169			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1170			    VDEV_AUX_NONE);
1171			break;
1172		}
1173	}
1174
1175	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1176
1177	if (vd->vdev_children == 0) {
1178		if (osize < SPA_MINDEVSIZE) {
1179			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1180			    VDEV_AUX_TOO_SMALL);
1181			return (EOVERFLOW);
1182		}
1183		psize = osize;
1184		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1185	} else {
1186		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1187		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1188			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1189			    VDEV_AUX_TOO_SMALL);
1190			return (EOVERFLOW);
1191		}
1192		psize = 0;
1193		asize = osize;
1194	}
1195
1196	vd->vdev_psize = psize;
1197
1198	/*
1199	 * Make sure the allocatable size hasn't shrunk.
1200	 */
1201	if (asize < vd->vdev_min_asize) {
1202		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1203		    VDEV_AUX_BAD_LABEL);
1204		return (EINVAL);
1205	}
1206
1207	if (vd->vdev_asize == 0) {
1208		/*
1209		 * This is the first-ever open, so use the computed values.
1210		 * For testing purposes, a higher ashift can be requested.
1211		 */
1212		vd->vdev_asize = asize;
1213		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1214	} else {
1215		/*
1216		 * Make sure the alignment requirement hasn't increased.
1217		 */
1218		if (ashift > vd->vdev_top->vdev_ashift) {
1219			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1220			    VDEV_AUX_BAD_LABEL);
1221			return (EINVAL);
1222		}
1223	}
1224
1225	/*
1226	 * If all children are healthy and the asize has increased,
1227	 * then we've experienced dynamic LUN growth.  If automatic
1228	 * expansion is enabled then use the additional space.
1229	 */
1230	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1231	    (vd->vdev_expanding || spa->spa_autoexpand))
1232		vd->vdev_asize = asize;
1233
1234	vdev_set_min_asize(vd);
1235
1236	/*
1237	 * Ensure we can issue some IO before declaring the
1238	 * vdev open for business.
1239	 */
1240	if (vd->vdev_ops->vdev_op_leaf &&
1241	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1242		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1243		    VDEV_AUX_IO_FAILURE);
1244		return (error);
1245	}
1246
1247	/*
1248	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1249	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1250	 * since this would just restart the scrub we are already doing.
1251	 */
1252	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1253	    vdev_resilver_needed(vd, NULL, NULL))
1254		spa_async_request(spa, SPA_ASYNC_RESILVER);
1255
1256	return (0);
1257}
1258
1259/*
1260 * Called once the vdevs are all opened, this routine validates the label
1261 * contents.  This needs to be done before vdev_load() so that we don't
1262 * inadvertently do repair I/Os to the wrong device.
1263 *
1264 * This function will only return failure if one of the vdevs indicates that it
1265 * has since been destroyed or exported.  This is only possible if
1266 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1267 * will be updated but the function will return 0.
1268 */
1269int
1270vdev_validate(vdev_t *vd)
1271{
1272	spa_t *spa = vd->vdev_spa;
1273	nvlist_t *label;
1274	uint64_t guid, top_guid;
1275	uint64_t state;
1276
1277	for (int c = 0; c < vd->vdev_children; c++)
1278		if (vdev_validate(vd->vdev_child[c]) != 0)
1279			return (EBADF);
1280
1281	/*
1282	 * If the device has already failed, or was marked offline, don't do
1283	 * any further validation.  Otherwise, label I/O will fail and we will
1284	 * overwrite the previous state.
1285	 */
1286	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1287
1288		if ((label = vdev_label_read_config(vd)) == NULL) {
1289			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1290			    VDEV_AUX_BAD_LABEL);
1291			return (0);
1292		}
1293
1294		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1295		    &guid) != 0 || guid != spa_guid(spa)) {
1296			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1297			    VDEV_AUX_CORRUPT_DATA);
1298			nvlist_free(label);
1299			return (0);
1300		}
1301
1302		/*
1303		 * If this vdev just became a top-level vdev because its
1304		 * sibling was detached, it will have adopted the parent's
1305		 * vdev guid -- but the label may or may not be on disk yet.
1306		 * Fortunately, either version of the label will have the
1307		 * same top guid, so if we're a top-level vdev, we can
1308		 * safely compare to that instead.
1309		 */
1310		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1311		    &guid) != 0 ||
1312		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1313		    &top_guid) != 0 ||
1314		    (vd->vdev_guid != guid &&
1315		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1316			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1317			    VDEV_AUX_CORRUPT_DATA);
1318			nvlist_free(label);
1319			return (0);
1320		}
1321
1322		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1323		    &state) != 0) {
1324			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1325			    VDEV_AUX_CORRUPT_DATA);
1326			nvlist_free(label);
1327			return (0);
1328		}
1329
1330		nvlist_free(label);
1331
1332		/*
1333		 * If spa->spa_load_verbatim is true, no need to check the
1334		 * state of the pool.
1335		 */
1336		if (!spa->spa_load_verbatim &&
1337		    spa->spa_load_state == SPA_LOAD_OPEN &&
1338		    state != POOL_STATE_ACTIVE)
1339			return (EBADF);
1340
1341		/*
1342		 * If we were able to open and validate a vdev that was
1343		 * previously marked permanently unavailable, clear that state
1344		 * now.
1345		 */
1346		if (vd->vdev_not_present)
1347			vd->vdev_not_present = 0;
1348	}
1349
1350	return (0);
1351}
1352
1353/*
1354 * Close a virtual device.
1355 */
1356void
1357vdev_close(vdev_t *vd)
1358{
1359	spa_t *spa = vd->vdev_spa;
1360	vdev_t *pvd = vd->vdev_parent;
1361
1362	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1363
1364	if (pvd != NULL && pvd->vdev_reopening)
1365		vd->vdev_reopening = pvd->vdev_reopening;
1366
1367	vd->vdev_ops->vdev_op_close(vd);
1368
1369	vdev_cache_purge(vd);
1370
1371	/*
1372	 * We record the previous state before we close it, so that if we are
1373	 * doing a reopen(), we don't generate FMA ereports if we notice that
1374	 * it's still faulted.
1375	 */
1376	vd->vdev_prevstate = vd->vdev_state;
1377
1378	if (vd->vdev_offline)
1379		vd->vdev_state = VDEV_STATE_OFFLINE;
1380	else
1381		vd->vdev_state = VDEV_STATE_CLOSED;
1382	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1383}
1384
1385/*
1386 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1387 * reopen leaf vdevs which had previously been opened as they might deadlock
1388 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1389 * If the leaf has never been opened then open it, as usual.
1390 */
1391void
1392vdev_reopen(vdev_t *vd)
1393{
1394	spa_t *spa = vd->vdev_spa;
1395
1396	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1397
1398	vd->vdev_reopening = B_TRUE;
1399	vdev_close(vd);
1400	(void) vdev_open(vd);
1401
1402	/*
1403	 * Call vdev_validate() here to make sure we have the same device.
1404	 * Otherwise, a device with an invalid label could be successfully
1405	 * opened in response to vdev_reopen().
1406	 */
1407	if (vd->vdev_aux) {
1408		(void) vdev_validate_aux(vd);
1409		if (vdev_readable(vd) && vdev_writeable(vd) &&
1410		    vd->vdev_aux == &spa->spa_l2cache &&
1411		    !l2arc_vdev_present(vd))
1412			l2arc_add_vdev(spa, vd);
1413	} else {
1414		(void) vdev_validate(vd);
1415	}
1416
1417	/*
1418	 * Reassess parent vdev's health.
1419	 */
1420	vdev_propagate_state(vd);
1421}
1422
1423int
1424vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1425{
1426	int error;
1427
1428	/*
1429	 * Normally, partial opens (e.g. of a mirror) are allowed.
1430	 * For a create, however, we want to fail the request if
1431	 * there are any components we can't open.
1432	 */
1433	error = vdev_open(vd);
1434
1435	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1436		vdev_close(vd);
1437		return (error ? error : ENXIO);
1438	}
1439
1440	/*
1441	 * Recursively initialize all labels.
1442	 */
1443	if ((error = vdev_label_init(vd, txg, isreplacing ?
1444	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1445		vdev_close(vd);
1446		return (error);
1447	}
1448
1449	return (0);
1450}
1451
1452void
1453vdev_metaslab_set_size(vdev_t *vd)
1454{
1455	/*
1456	 * Aim for roughly 200 metaslabs per vdev.
1457	 */
1458	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1459	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1460}
1461
1462void
1463vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1464{
1465	ASSERT(vd == vd->vdev_top);
1466	ASSERT(!vd->vdev_ishole);
1467	ASSERT(ISP2(flags));
1468
1469	if (flags & VDD_METASLAB)
1470		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1471
1472	if (flags & VDD_DTL)
1473		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1474
1475	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1476}
1477
1478/*
1479 * DTLs.
1480 *
1481 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1482 * the vdev has less than perfect replication.  There are three kinds of DTL:
1483 *
1484 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1485 *
1486 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1487 *
1488 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1489 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1490 *	txgs that was scrubbed.
1491 *
1492 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1493 *	persistent errors or just some device being offline.
1494 *	Unlike the other three, the DTL_OUTAGE map is not generally
1495 *	maintained; it's only computed when needed, typically to
1496 *	determine whether a device can be detached.
1497 *
1498 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1499 * either has the data or it doesn't.
1500 *
1501 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1502 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1503 * if any child is less than fully replicated, then so is its parent.
1504 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1505 * comprising only those txgs which appear in 'maxfaults' or more children;
1506 * those are the txgs we don't have enough replication to read.  For example,
1507 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1508 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1509 * two child DTL_MISSING maps.
1510 *
1511 * It should be clear from the above that to compute the DTLs and outage maps
1512 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1513 * Therefore, that is all we keep on disk.  When loading the pool, or after
1514 * a configuration change, we generate all other DTLs from first principles.
1515 */
1516void
1517vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1518{
1519	space_map_t *sm = &vd->vdev_dtl[t];
1520
1521	ASSERT(t < DTL_TYPES);
1522	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1523
1524	mutex_enter(sm->sm_lock);
1525	if (!space_map_contains(sm, txg, size))
1526		space_map_add(sm, txg, size);
1527	mutex_exit(sm->sm_lock);
1528}
1529
1530boolean_t
1531vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1532{
1533	space_map_t *sm = &vd->vdev_dtl[t];
1534	boolean_t dirty = B_FALSE;
1535
1536	ASSERT(t < DTL_TYPES);
1537	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1538
1539	mutex_enter(sm->sm_lock);
1540	if (sm->sm_space != 0)
1541		dirty = space_map_contains(sm, txg, size);
1542	mutex_exit(sm->sm_lock);
1543
1544	return (dirty);
1545}
1546
1547boolean_t
1548vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1549{
1550	space_map_t *sm = &vd->vdev_dtl[t];
1551	boolean_t empty;
1552
1553	mutex_enter(sm->sm_lock);
1554	empty = (sm->sm_space == 0);
1555	mutex_exit(sm->sm_lock);
1556
1557	return (empty);
1558}
1559
1560/*
1561 * Reassess DTLs after a config change or scrub completion.
1562 */
1563void
1564vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1565{
1566	spa_t *spa = vd->vdev_spa;
1567	avl_tree_t reftree;
1568	int minref;
1569
1570	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1571
1572	for (int c = 0; c < vd->vdev_children; c++)
1573		vdev_dtl_reassess(vd->vdev_child[c], txg,
1574		    scrub_txg, scrub_done);
1575
1576	if (vd == spa->spa_root_vdev || vd->vdev_ishole)
1577		return;
1578
1579	if (vd->vdev_ops->vdev_op_leaf) {
1580		mutex_enter(&vd->vdev_dtl_lock);
1581		if (scrub_txg != 0 &&
1582		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1583			/* XXX should check scrub_done? */
1584			/*
1585			 * We completed a scrub up to scrub_txg.  If we
1586			 * did it without rebooting, then the scrub dtl
1587			 * will be valid, so excise the old region and
1588			 * fold in the scrub dtl.  Otherwise, leave the
1589			 * dtl as-is if there was an error.
1590			 *
1591			 * There's little trick here: to excise the beginning
1592			 * of the DTL_MISSING map, we put it into a reference
1593			 * tree and then add a segment with refcnt -1 that
1594			 * covers the range [0, scrub_txg).  This means
1595			 * that each txg in that range has refcnt -1 or 0.
1596			 * We then add DTL_SCRUB with a refcnt of 2, so that
1597			 * entries in the range [0, scrub_txg) will have a
1598			 * positive refcnt -- either 1 or 2.  We then convert
1599			 * the reference tree into the new DTL_MISSING map.
1600			 */
1601			space_map_ref_create(&reftree);
1602			space_map_ref_add_map(&reftree,
1603			    &vd->vdev_dtl[DTL_MISSING], 1);
1604			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1605			space_map_ref_add_map(&reftree,
1606			    &vd->vdev_dtl[DTL_SCRUB], 2);
1607			space_map_ref_generate_map(&reftree,
1608			    &vd->vdev_dtl[DTL_MISSING], 1);
1609			space_map_ref_destroy(&reftree);
1610		}
1611		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1612		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1613		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1614		if (scrub_done)
1615			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1616		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1617		if (!vdev_readable(vd))
1618			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1619		else
1620			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1621			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1622		mutex_exit(&vd->vdev_dtl_lock);
1623
1624		if (txg != 0)
1625			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1626		return;
1627	}
1628
1629	mutex_enter(&vd->vdev_dtl_lock);
1630	for (int t = 0; t < DTL_TYPES; t++) {
1631		/* account for child's outage in parent's missing map */
1632		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1633		if (t == DTL_SCRUB)
1634			continue;			/* leaf vdevs only */
1635		if (t == DTL_PARTIAL)
1636			minref = 1;			/* i.e. non-zero */
1637		else if (vd->vdev_nparity != 0)
1638			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1639		else
1640			minref = vd->vdev_children;	/* any kind of mirror */
1641		space_map_ref_create(&reftree);
1642		for (int c = 0; c < vd->vdev_children; c++) {
1643			vdev_t *cvd = vd->vdev_child[c];
1644			mutex_enter(&cvd->vdev_dtl_lock);
1645			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1646			mutex_exit(&cvd->vdev_dtl_lock);
1647		}
1648		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1649		space_map_ref_destroy(&reftree);
1650	}
1651	mutex_exit(&vd->vdev_dtl_lock);
1652}
1653
1654static int
1655vdev_dtl_load(vdev_t *vd)
1656{
1657	spa_t *spa = vd->vdev_spa;
1658	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1659	objset_t *mos = spa->spa_meta_objset;
1660	dmu_buf_t *db;
1661	int error;
1662
1663	ASSERT(vd->vdev_children == 0);
1664
1665	if (smo->smo_object == 0)
1666		return (0);
1667
1668	ASSERT(!vd->vdev_ishole);
1669
1670	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1671		return (error);
1672
1673	ASSERT3U(db->db_size, >=, sizeof (*smo));
1674	bcopy(db->db_data, smo, sizeof (*smo));
1675	dmu_buf_rele(db, FTAG);
1676
1677	mutex_enter(&vd->vdev_dtl_lock);
1678	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1679	    NULL, SM_ALLOC, smo, mos);
1680	mutex_exit(&vd->vdev_dtl_lock);
1681
1682	return (error);
1683}
1684
1685void
1686vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1687{
1688	spa_t *spa = vd->vdev_spa;
1689	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1690	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1691	objset_t *mos = spa->spa_meta_objset;
1692	space_map_t smsync;
1693	kmutex_t smlock;
1694	dmu_buf_t *db;
1695	dmu_tx_t *tx;
1696
1697	ASSERT(!vd->vdev_ishole);
1698
1699	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1700
1701	if (vd->vdev_detached) {
1702		if (smo->smo_object != 0) {
1703			int err = dmu_object_free(mos, smo->smo_object, tx);
1704			ASSERT3U(err, ==, 0);
1705			smo->smo_object = 0;
1706		}
1707		dmu_tx_commit(tx);
1708		return;
1709	}
1710
1711	if (smo->smo_object == 0) {
1712		ASSERT(smo->smo_objsize == 0);
1713		ASSERT(smo->smo_alloc == 0);
1714		smo->smo_object = dmu_object_alloc(mos,
1715		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1716		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1717		ASSERT(smo->smo_object != 0);
1718		vdev_config_dirty(vd->vdev_top);
1719	}
1720
1721	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1722
1723	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1724	    &smlock);
1725
1726	mutex_enter(&smlock);
1727
1728	mutex_enter(&vd->vdev_dtl_lock);
1729	space_map_walk(sm, space_map_add, &smsync);
1730	mutex_exit(&vd->vdev_dtl_lock);
1731
1732	space_map_truncate(smo, mos, tx);
1733	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1734
1735	space_map_destroy(&smsync);
1736
1737	mutex_exit(&smlock);
1738	mutex_destroy(&smlock);
1739
1740	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1741	dmu_buf_will_dirty(db, tx);
1742	ASSERT3U(db->db_size, >=, sizeof (*smo));
1743	bcopy(smo, db->db_data, sizeof (*smo));
1744	dmu_buf_rele(db, FTAG);
1745
1746	dmu_tx_commit(tx);
1747}
1748
1749/*
1750 * Determine whether the specified vdev can be offlined/detached/removed
1751 * without losing data.
1752 */
1753boolean_t
1754vdev_dtl_required(vdev_t *vd)
1755{
1756	spa_t *spa = vd->vdev_spa;
1757	vdev_t *tvd = vd->vdev_top;
1758	uint8_t cant_read = vd->vdev_cant_read;
1759	boolean_t required;
1760
1761	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1762
1763	if (vd == spa->spa_root_vdev || vd == tvd)
1764		return (B_TRUE);
1765
1766	/*
1767	 * Temporarily mark the device as unreadable, and then determine
1768	 * whether this results in any DTL outages in the top-level vdev.
1769	 * If not, we can safely offline/detach/remove the device.
1770	 */
1771	vd->vdev_cant_read = B_TRUE;
1772	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1773	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1774	vd->vdev_cant_read = cant_read;
1775	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1776
1777	return (required);
1778}
1779
1780/*
1781 * Determine if resilver is needed, and if so the txg range.
1782 */
1783boolean_t
1784vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1785{
1786	boolean_t needed = B_FALSE;
1787	uint64_t thismin = UINT64_MAX;
1788	uint64_t thismax = 0;
1789
1790	if (vd->vdev_children == 0) {
1791		mutex_enter(&vd->vdev_dtl_lock);
1792		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1793		    vdev_writeable(vd)) {
1794			space_seg_t *ss;
1795
1796			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1797			thismin = ss->ss_start - 1;
1798			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1799			thismax = ss->ss_end;
1800			needed = B_TRUE;
1801		}
1802		mutex_exit(&vd->vdev_dtl_lock);
1803	} else {
1804		for (int c = 0; c < vd->vdev_children; c++) {
1805			vdev_t *cvd = vd->vdev_child[c];
1806			uint64_t cmin, cmax;
1807
1808			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1809				thismin = MIN(thismin, cmin);
1810				thismax = MAX(thismax, cmax);
1811				needed = B_TRUE;
1812			}
1813		}
1814	}
1815
1816	if (needed && minp) {
1817		*minp = thismin;
1818		*maxp = thismax;
1819	}
1820	return (needed);
1821}
1822
1823void
1824vdev_load(vdev_t *vd)
1825{
1826	/*
1827	 * Recursively load all children.
1828	 */
1829	for (int c = 0; c < vd->vdev_children; c++)
1830		vdev_load(vd->vdev_child[c]);
1831
1832	/*
1833	 * If this is a top-level vdev, initialize its metaslabs.
1834	 */
1835	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1836	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1837	    vdev_metaslab_init(vd, 0) != 0))
1838		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1839		    VDEV_AUX_CORRUPT_DATA);
1840
1841	/*
1842	 * If this is a leaf vdev, load its DTL.
1843	 */
1844	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1845		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1846		    VDEV_AUX_CORRUPT_DATA);
1847}
1848
1849/*
1850 * The special vdev case is used for hot spares and l2cache devices.  Its
1851 * sole purpose it to set the vdev state for the associated vdev.  To do this,
1852 * we make sure that we can open the underlying device, then try to read the
1853 * label, and make sure that the label is sane and that it hasn't been
1854 * repurposed to another pool.
1855 */
1856int
1857vdev_validate_aux(vdev_t *vd)
1858{
1859	nvlist_t *label;
1860	uint64_t guid, version;
1861	uint64_t state;
1862
1863	if (!vdev_readable(vd))
1864		return (0);
1865
1866	if ((label = vdev_label_read_config(vd)) == NULL) {
1867		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1868		    VDEV_AUX_CORRUPT_DATA);
1869		return (-1);
1870	}
1871
1872	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1873	    version > SPA_VERSION ||
1874	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1875	    guid != vd->vdev_guid ||
1876	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1877		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1878		    VDEV_AUX_CORRUPT_DATA);
1879		nvlist_free(label);
1880		return (-1);
1881	}
1882
1883	/*
1884	 * We don't actually check the pool state here.  If it's in fact in
1885	 * use by another pool, we update this fact on the fly when requested.
1886	 */
1887	nvlist_free(label);
1888	return (0);
1889}
1890
1891void
1892vdev_remove(vdev_t *vd, uint64_t txg)
1893{
1894	spa_t *spa = vd->vdev_spa;
1895	objset_t *mos = spa->spa_meta_objset;
1896	dmu_tx_t *tx;
1897
1898	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1899
1900	if (vd->vdev_dtl_smo.smo_object) {
1901		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1902		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1903		vd->vdev_dtl_smo.smo_object = 0;
1904	}
1905
1906	if (vd->vdev_ms != NULL) {
1907		for (int m = 0; m < vd->vdev_ms_count; m++) {
1908			metaslab_t *msp = vd->vdev_ms[m];
1909
1910			if (msp == NULL || msp->ms_smo.smo_object == 0)
1911				continue;
1912
1913			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1914			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1915			msp->ms_smo.smo_object = 0;
1916		}
1917	}
1918
1919	if (vd->vdev_ms_array) {
1920		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
1921		vd->vdev_ms_array = 0;
1922		vd->vdev_ms_shift = 0;
1923	}
1924	dmu_tx_commit(tx);
1925}
1926
1927void
1928vdev_sync_done(vdev_t *vd, uint64_t txg)
1929{
1930	metaslab_t *msp;
1931
1932	ASSERT(!vd->vdev_ishole);
1933
1934	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1935		metaslab_sync_done(msp, txg);
1936}
1937
1938void
1939vdev_sync(vdev_t *vd, uint64_t txg)
1940{
1941	spa_t *spa = vd->vdev_spa;
1942	vdev_t *lvd;
1943	metaslab_t *msp;
1944	dmu_tx_t *tx;
1945
1946	ASSERT(!vd->vdev_ishole);
1947
1948	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1949		ASSERT(vd == vd->vdev_top);
1950		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1951		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1952		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1953		ASSERT(vd->vdev_ms_array != 0);
1954		vdev_config_dirty(vd);
1955		dmu_tx_commit(tx);
1956	}
1957
1958	if (vd->vdev_removing)
1959		vdev_remove(vd, txg);
1960
1961	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1962		metaslab_sync(msp, txg);
1963		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1964	}
1965
1966	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1967		vdev_dtl_sync(lvd, txg);
1968
1969	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1970}
1971
1972uint64_t
1973vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1974{
1975	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1976}
1977
1978/*
1979 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1980 * not be opened, and no I/O is attempted.
1981 */
1982int
1983vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
1984{
1985	vdev_t *vd;
1986
1987	spa_vdev_state_enter(spa, SCL_NONE);
1988
1989	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1990		return (spa_vdev_state_exit(spa, NULL, ENODEV));
1991
1992	if (!vd->vdev_ops->vdev_op_leaf)
1993		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1994
1995	/*
1996	 * We don't directly use the aux state here, but if we do a
1997	 * vdev_reopen(), we need this value to be present to remember why we
1998	 * were faulted.
1999	 */
2000	vd->vdev_label_aux = aux;
2001
2002	/*
2003	 * Faulted state takes precedence over degraded.
2004	 */
2005	vd->vdev_faulted = 1ULL;
2006	vd->vdev_degraded = 0ULL;
2007	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2008
2009	/*
2010	 * If marking the vdev as faulted cause the top-level vdev to become
2011	 * unavailable, then back off and simply mark the vdev as degraded
2012	 * instead.
2013	 */
2014	if (vdev_is_dead(vd->vdev_top) && !vd->vdev_islog &&
2015	    vd->vdev_aux == NULL) {
2016		vd->vdev_degraded = 1ULL;
2017		vd->vdev_faulted = 0ULL;
2018
2019		/*
2020		 * If we reopen the device and it's not dead, only then do we
2021		 * mark it degraded.
2022		 */
2023		vdev_reopen(vd);
2024
2025		if (vdev_readable(vd))
2026			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2027	}
2028
2029	return (spa_vdev_state_exit(spa, vd, 0));
2030}
2031
2032/*
2033 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2034 * user that something is wrong.  The vdev continues to operate as normal as far
2035 * as I/O is concerned.
2036 */
2037int
2038vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2039{
2040	vdev_t *vd;
2041
2042	spa_vdev_state_enter(spa, SCL_NONE);
2043
2044	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2045		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2046
2047	if (!vd->vdev_ops->vdev_op_leaf)
2048		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2049
2050	/*
2051	 * If the vdev is already faulted, then don't do anything.
2052	 */
2053	if (vd->vdev_faulted || vd->vdev_degraded)
2054		return (spa_vdev_state_exit(spa, NULL, 0));
2055
2056	vd->vdev_degraded = 1ULL;
2057	if (!vdev_is_dead(vd))
2058		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2059		    aux);
2060
2061	return (spa_vdev_state_exit(spa, vd, 0));
2062}
2063
2064/*
2065 * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2066 * any attached spare device should be detached when the device finishes
2067 * resilvering.  Second, the online should be treated like a 'test' online case,
2068 * so no FMA events are generated if the device fails to open.
2069 */
2070int
2071vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2072{
2073	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2074
2075	spa_vdev_state_enter(spa, SCL_NONE);
2076
2077	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2078		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2079
2080	if (!vd->vdev_ops->vdev_op_leaf)
2081		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2082
2083	tvd = vd->vdev_top;
2084	vd->vdev_offline = B_FALSE;
2085	vd->vdev_tmpoffline = B_FALSE;
2086	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2087	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2088
2089	/* XXX - L2ARC 1.0 does not support expansion */
2090	if (!vd->vdev_aux) {
2091		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2092			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2093	}
2094
2095	vdev_reopen(tvd);
2096	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2097
2098	if (!vd->vdev_aux) {
2099		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2100			pvd->vdev_expanding = B_FALSE;
2101	}
2102
2103	if (newstate)
2104		*newstate = vd->vdev_state;
2105	if ((flags & ZFS_ONLINE_UNSPARE) &&
2106	    !vdev_is_dead(vd) && vd->vdev_parent &&
2107	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2108	    vd->vdev_parent->vdev_child[0] == vd)
2109		vd->vdev_unspare = B_TRUE;
2110
2111	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2112
2113		/* XXX - L2ARC 1.0 does not support expansion */
2114		if (vd->vdev_aux)
2115			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2116		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2117	}
2118	return (spa_vdev_state_exit(spa, vd, 0));
2119}
2120
2121int
2122vdev_offline_log(spa_t *spa)
2123{
2124	int error = 0;
2125
2126	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
2127	    NULL, DS_FIND_CHILDREN)) == 0) {
2128
2129		/*
2130		 * We successfully offlined the log device, sync out the
2131		 * current txg so that the "stubby" block can be removed
2132		 * by zil_sync().
2133		 */
2134		txg_wait_synced(spa->spa_dsl_pool, 0);
2135	}
2136	return (error);
2137}
2138
2139int
2140vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2141{
2142	vdev_t *vd, *tvd;
2143	int error = 0;
2144	uint64_t generation;
2145	metaslab_group_t *mg;
2146
2147top:
2148	spa_vdev_state_enter(spa, SCL_ALLOC);
2149
2150	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2151		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2152
2153	if (!vd->vdev_ops->vdev_op_leaf)
2154		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2155
2156	tvd = vd->vdev_top;
2157	mg = tvd->vdev_mg;
2158	generation = spa->spa_config_generation + 1;
2159
2160	/*
2161	 * If the device isn't already offline, try to offline it.
2162	 */
2163	if (!vd->vdev_offline) {
2164		/*
2165		 * If this device has the only valid copy of some data,
2166		 * don't allow it to be offlined. Log devices are always
2167		 * expendable.
2168		 */
2169		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2170		    vdev_dtl_required(vd))
2171			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2172
2173		/*
2174		 * If the top-level is a slog and it's had allocations
2175		 * then proceed. We check that the vdev's metaslab
2176		 * grop is not NULL since it's possible that we may
2177		 * have just added this vdev and have not yet initialized
2178		 * it's metaslabs.
2179		 */
2180		if (tvd->vdev_islog && mg != NULL) {
2181			/*
2182			 * Prevent any future allocations.
2183			 */
2184			metaslab_class_remove(spa->spa_log_class, mg);
2185			(void) spa_vdev_state_exit(spa, vd, 0);
2186
2187			error = vdev_offline_log(spa);
2188
2189			spa_vdev_state_enter(spa, SCL_ALLOC);
2190
2191			/*
2192			 * Check to see if the config has changed.
2193			 */
2194			if (error || generation != spa->spa_config_generation) {
2195				metaslab_class_add(spa->spa_log_class, mg);
2196				if (error)
2197					return (spa_vdev_state_exit(spa,
2198					    vd, error));
2199				(void) spa_vdev_state_exit(spa, vd, 0);
2200				goto top;
2201			}
2202			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2203		}
2204
2205		/*
2206		 * Offline this device and reopen its top-level vdev.
2207		 * If the top-level vdev is a log device then just offline
2208		 * it. Otherwise, if this action results in the top-level
2209		 * vdev becoming unusable, undo it and fail the request.
2210		 */
2211		vd->vdev_offline = B_TRUE;
2212		vdev_reopen(tvd);
2213
2214		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2215		    vdev_is_dead(tvd)) {
2216			vd->vdev_offline = B_FALSE;
2217			vdev_reopen(tvd);
2218			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2219		}
2220
2221		/*
2222		 * Add the device back into the metaslab rotor so that
2223		 * once we online the device it's open for business.
2224		 */
2225		if (tvd->vdev_islog && mg != NULL)
2226			metaslab_class_add(spa->spa_log_class, mg);
2227	}
2228
2229	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2230
2231	return (spa_vdev_state_exit(spa, vd, 0));
2232}
2233
2234/*
2235 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2236 * vdev_offline(), we assume the spa config is locked.  We also clear all
2237 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2238 */
2239void
2240vdev_clear(spa_t *spa, vdev_t *vd)
2241{
2242	vdev_t *rvd = spa->spa_root_vdev;
2243
2244	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2245
2246	if (vd == NULL)
2247		vd = rvd;
2248
2249	vd->vdev_stat.vs_read_errors = 0;
2250	vd->vdev_stat.vs_write_errors = 0;
2251	vd->vdev_stat.vs_checksum_errors = 0;
2252
2253	for (int c = 0; c < vd->vdev_children; c++)
2254		vdev_clear(spa, vd->vdev_child[c]);
2255
2256	/*
2257	 * If we're in the FAULTED state or have experienced failed I/O, then
2258	 * clear the persistent state and attempt to reopen the device.  We
2259	 * also mark the vdev config dirty, so that the new faulted state is
2260	 * written out to disk.
2261	 */
2262	if (vd->vdev_faulted || vd->vdev_degraded ||
2263	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2264
2265		/*
2266		 * When reopening in reponse to a clear event, it may be due to
2267		 * a fmadm repair request.  In this case, if the device is
2268		 * still broken, we want to still post the ereport again.
2269		 */
2270		vd->vdev_forcefault = B_TRUE;
2271
2272		vd->vdev_faulted = vd->vdev_degraded = 0;
2273		vd->vdev_cant_read = B_FALSE;
2274		vd->vdev_cant_write = B_FALSE;
2275
2276		vdev_reopen(vd);
2277
2278		vd->vdev_forcefault = B_FALSE;
2279
2280		if (vd != rvd)
2281			vdev_state_dirty(vd->vdev_top);
2282
2283		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2284			spa_async_request(spa, SPA_ASYNC_RESILVER);
2285
2286		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2287	}
2288
2289	/*
2290	 * When clearing a FMA-diagnosed fault, we always want to
2291	 * unspare the device, as we assume that the original spare was
2292	 * done in response to the FMA fault.
2293	 */
2294	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2295	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2296	    vd->vdev_parent->vdev_child[0] == vd)
2297		vd->vdev_unspare = B_TRUE;
2298}
2299
2300boolean_t
2301vdev_is_dead(vdev_t *vd)
2302{
2303	/*
2304	 * Holes and missing devices are always considered "dead".
2305	 * This simplifies the code since we don't have to check for
2306	 * these types of devices in the various code paths.
2307	 * Instead we rely on the fact that we skip over dead devices
2308	 * before issuing I/O to them.
2309	 */
2310	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2311	    vd->vdev_ops == &vdev_missing_ops);
2312}
2313
2314boolean_t
2315vdev_readable(vdev_t *vd)
2316{
2317	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2318}
2319
2320boolean_t
2321vdev_writeable(vdev_t *vd)
2322{
2323	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2324}
2325
2326boolean_t
2327vdev_allocatable(vdev_t *vd)
2328{
2329	uint64_t state = vd->vdev_state;
2330
2331	/*
2332	 * We currently allow allocations from vdevs which may be in the
2333	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2334	 * fails to reopen then we'll catch it later when we're holding
2335	 * the proper locks.  Note that we have to get the vdev state
2336	 * in a local variable because although it changes atomically,
2337	 * we're asking two separate questions about it.
2338	 */
2339	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2340	    !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing);
2341}
2342
2343boolean_t
2344vdev_accessible(vdev_t *vd, zio_t *zio)
2345{
2346	ASSERT(zio->io_vd == vd);
2347
2348	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2349		return (B_FALSE);
2350
2351	if (zio->io_type == ZIO_TYPE_READ)
2352		return (!vd->vdev_cant_read);
2353
2354	if (zio->io_type == ZIO_TYPE_WRITE)
2355		return (!vd->vdev_cant_write);
2356
2357	return (B_TRUE);
2358}
2359
2360/*
2361 * Get statistics for the given vdev.
2362 */
2363void
2364vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2365{
2366	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2367
2368	mutex_enter(&vd->vdev_stat_lock);
2369	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2370	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2371	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2372	vs->vs_state = vd->vdev_state;
2373	vs->vs_rsize = vdev_get_min_asize(vd);
2374	if (vd->vdev_ops->vdev_op_leaf)
2375		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2376	mutex_exit(&vd->vdev_stat_lock);
2377
2378	/*
2379	 * If we're getting stats on the root vdev, aggregate the I/O counts
2380	 * over all top-level vdevs (i.e. the direct children of the root).
2381	 */
2382	if (vd == rvd) {
2383		for (int c = 0; c < rvd->vdev_children; c++) {
2384			vdev_t *cvd = rvd->vdev_child[c];
2385			vdev_stat_t *cvs = &cvd->vdev_stat;
2386
2387			mutex_enter(&vd->vdev_stat_lock);
2388			for (int t = 0; t < ZIO_TYPES; t++) {
2389				vs->vs_ops[t] += cvs->vs_ops[t];
2390				vs->vs_bytes[t] += cvs->vs_bytes[t];
2391			}
2392			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2393			mutex_exit(&vd->vdev_stat_lock);
2394		}
2395	}
2396}
2397
2398void
2399vdev_clear_stats(vdev_t *vd)
2400{
2401	mutex_enter(&vd->vdev_stat_lock);
2402	vd->vdev_stat.vs_space = 0;
2403	vd->vdev_stat.vs_dspace = 0;
2404	vd->vdev_stat.vs_alloc = 0;
2405	mutex_exit(&vd->vdev_stat_lock);
2406}
2407
2408void
2409vdev_stat_update(zio_t *zio, uint64_t psize)
2410{
2411	spa_t *spa = zio->io_spa;
2412	vdev_t *rvd = spa->spa_root_vdev;
2413	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2414	vdev_t *pvd;
2415	uint64_t txg = zio->io_txg;
2416	vdev_stat_t *vs = &vd->vdev_stat;
2417	zio_type_t type = zio->io_type;
2418	int flags = zio->io_flags;
2419
2420	/*
2421	 * If this i/o is a gang leader, it didn't do any actual work.
2422	 */
2423	if (zio->io_gang_tree)
2424		return;
2425
2426	if (zio->io_error == 0) {
2427		/*
2428		 * If this is a root i/o, don't count it -- we've already
2429		 * counted the top-level vdevs, and vdev_get_stats() will
2430		 * aggregate them when asked.  This reduces contention on
2431		 * the root vdev_stat_lock and implicitly handles blocks
2432		 * that compress away to holes, for which there is no i/o.
2433		 * (Holes never create vdev children, so all the counters
2434		 * remain zero, which is what we want.)
2435		 *
2436		 * Note: this only applies to successful i/o (io_error == 0)
2437		 * because unlike i/o counts, errors are not additive.
2438		 * When reading a ditto block, for example, failure of
2439		 * one top-level vdev does not imply a root-level error.
2440		 */
2441		if (vd == rvd)
2442			return;
2443
2444		ASSERT(vd == zio->io_vd);
2445
2446		if (flags & ZIO_FLAG_IO_BYPASS)
2447			return;
2448
2449		mutex_enter(&vd->vdev_stat_lock);
2450
2451		if (flags & ZIO_FLAG_IO_REPAIR) {
2452			if (flags & ZIO_FLAG_SCRUB_THREAD)
2453				vs->vs_scrub_repaired += psize;
2454			if (flags & ZIO_FLAG_SELF_HEAL)
2455				vs->vs_self_healed += psize;
2456		}
2457
2458		vs->vs_ops[type]++;
2459		vs->vs_bytes[type] += psize;
2460
2461		mutex_exit(&vd->vdev_stat_lock);
2462		return;
2463	}
2464
2465	if (flags & ZIO_FLAG_SPECULATIVE)
2466		return;
2467
2468	/*
2469	 * If this is an I/O error that is going to be retried, then ignore the
2470	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2471	 * hard errors, when in reality they can happen for any number of
2472	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2473	 */
2474	if (zio->io_error == EIO &&
2475	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2476		return;
2477
2478	/*
2479	 * Intent logs writes won't propagate their error to the root
2480	 * I/O so don't mark these types of failures as pool-level
2481	 * errors.
2482	 */
2483	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2484		return;
2485
2486	mutex_enter(&vd->vdev_stat_lock);
2487	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2488		if (zio->io_error == ECKSUM)
2489			vs->vs_checksum_errors++;
2490		else
2491			vs->vs_read_errors++;
2492	}
2493	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2494		vs->vs_write_errors++;
2495	mutex_exit(&vd->vdev_stat_lock);
2496
2497	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2498	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2499	    (flags & ZIO_FLAG_SCRUB_THREAD))) {
2500		/*
2501		 * This is either a normal write (not a repair), or it's a
2502		 * repair induced by the scrub thread.  In the normal case,
2503		 * we commit the DTL change in the same txg as the block
2504		 * was born.  In the scrub-induced repair case, we know that
2505		 * scrubs run in first-pass syncing context, so we commit
2506		 * the DTL change in spa->spa_syncing_txg.
2507		 *
2508		 * We currently do not make DTL entries for failed spontaneous
2509		 * self-healing writes triggered by normal (non-scrubbing)
2510		 * reads, because we have no transactional context in which to
2511		 * do so -- and it's not clear that it'd be desirable anyway.
2512		 */
2513		if (vd->vdev_ops->vdev_op_leaf) {
2514			uint64_t commit_txg = txg;
2515			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2516				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2517				ASSERT(spa_sync_pass(spa) == 1);
2518				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2519				commit_txg = spa->spa_syncing_txg;
2520			}
2521			ASSERT(commit_txg >= spa->spa_syncing_txg);
2522			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2523				return;
2524			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2525				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2526			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2527		}
2528		if (vd != rvd)
2529			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2530	}
2531}
2532
2533void
2534vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2535{
2536	vdev_stat_t *vs = &vd->vdev_stat;
2537
2538	for (int c = 0; c < vd->vdev_children; c++)
2539		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2540
2541	mutex_enter(&vd->vdev_stat_lock);
2542
2543	if (type == POOL_SCRUB_NONE) {
2544		/*
2545		 * Update completion and end time.  Leave everything else alone
2546		 * so we can report what happened during the previous scrub.
2547		 */
2548		vs->vs_scrub_complete = complete;
2549		vs->vs_scrub_end = gethrestime_sec();
2550	} else {
2551		vs->vs_scrub_type = type;
2552		vs->vs_scrub_complete = 0;
2553		vs->vs_scrub_examined = 0;
2554		vs->vs_scrub_repaired = 0;
2555		vs->vs_scrub_start = gethrestime_sec();
2556		vs->vs_scrub_end = 0;
2557	}
2558
2559	mutex_exit(&vd->vdev_stat_lock);
2560}
2561
2562/*
2563 * Update the in-core space usage stats for this vdev and the root vdev.
2564 */
2565void
2566vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2567    int64_t defer_delta, boolean_t update_root)
2568{
2569	int64_t dspace_delta = space_delta;
2570	spa_t *spa = vd->vdev_spa;
2571	vdev_t *rvd = spa->spa_root_vdev;
2572
2573	ASSERT(vd == vd->vdev_top);
2574
2575	/*
2576	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2577	 * factor.  We must calculate this here and not at the root vdev
2578	 * because the root vdev's psize-to-asize is simply the max of its
2579	 * childrens', thus not accurate enough for us.
2580	 */
2581	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2582	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2583	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2584	    vd->vdev_deflate_ratio;
2585
2586	mutex_enter(&vd->vdev_stat_lock);
2587	vd->vdev_stat.vs_space += space_delta;
2588	vd->vdev_stat.vs_alloc += alloc_delta;
2589	vd->vdev_stat.vs_dspace += dspace_delta;
2590	vd->vdev_stat.vs_defer += defer_delta;
2591	mutex_exit(&vd->vdev_stat_lock);
2592
2593	if (update_root) {
2594		ASSERT(rvd == vd->vdev_parent);
2595		ASSERT(vd->vdev_ms_count != 0);
2596
2597		/*
2598		 * Don't count non-normal (e.g. intent log) space as part of
2599		 * the pool's capacity.
2600		 */
2601		if (vd->vdev_islog)
2602			return;
2603
2604		mutex_enter(&rvd->vdev_stat_lock);
2605		rvd->vdev_stat.vs_space += space_delta;
2606		rvd->vdev_stat.vs_alloc += alloc_delta;
2607		rvd->vdev_stat.vs_dspace += dspace_delta;
2608		rvd->vdev_stat.vs_defer += defer_delta;
2609		mutex_exit(&rvd->vdev_stat_lock);
2610	}
2611}
2612
2613/*
2614 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2615 * so that it will be written out next time the vdev configuration is synced.
2616 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2617 */
2618void
2619vdev_config_dirty(vdev_t *vd)
2620{
2621	spa_t *spa = vd->vdev_spa;
2622	vdev_t *rvd = spa->spa_root_vdev;
2623	int c;
2624
2625	/*
2626	 * If this is an aux vdev (as with l2cache and spare devices), then we
2627	 * update the vdev config manually and set the sync flag.
2628	 */
2629	if (vd->vdev_aux != NULL) {
2630		spa_aux_vdev_t *sav = vd->vdev_aux;
2631		nvlist_t **aux;
2632		uint_t naux;
2633
2634		for (c = 0; c < sav->sav_count; c++) {
2635			if (sav->sav_vdevs[c] == vd)
2636				break;
2637		}
2638
2639		if (c == sav->sav_count) {
2640			/*
2641			 * We're being removed.  There's nothing more to do.
2642			 */
2643			ASSERT(sav->sav_sync == B_TRUE);
2644			return;
2645		}
2646
2647		sav->sav_sync = B_TRUE;
2648
2649		if (nvlist_lookup_nvlist_array(sav->sav_config,
2650		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2651			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2652			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2653		}
2654
2655		ASSERT(c < naux);
2656
2657		/*
2658		 * Setting the nvlist in the middle if the array is a little
2659		 * sketchy, but it will work.
2660		 */
2661		nvlist_free(aux[c]);
2662		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2663
2664		return;
2665	}
2666
2667	/*
2668	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2669	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2670	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2671	 * so this is sufficient to ensure mutual exclusion.
2672	 */
2673	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2674	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2675	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2676
2677	if (vd == rvd) {
2678		for (c = 0; c < rvd->vdev_children; c++)
2679			vdev_config_dirty(rvd->vdev_child[c]);
2680	} else {
2681		ASSERT(vd == vd->vdev_top);
2682
2683		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2684		    !vd->vdev_ishole)
2685			list_insert_head(&spa->spa_config_dirty_list, vd);
2686	}
2687}
2688
2689void
2690vdev_config_clean(vdev_t *vd)
2691{
2692	spa_t *spa = vd->vdev_spa;
2693
2694	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2695	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2696	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2697
2698	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2699	list_remove(&spa->spa_config_dirty_list, vd);
2700}
2701
2702/*
2703 * Mark a top-level vdev's state as dirty, so that the next pass of
2704 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2705 * the state changes from larger config changes because they require
2706 * much less locking, and are often needed for administrative actions.
2707 */
2708void
2709vdev_state_dirty(vdev_t *vd)
2710{
2711	spa_t *spa = vd->vdev_spa;
2712
2713	ASSERT(vd == vd->vdev_top);
2714
2715	/*
2716	 * The state list is protected by the SCL_STATE lock.  The caller
2717	 * must either hold SCL_STATE as writer, or must be the sync thread
2718	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2719	 * so this is sufficient to ensure mutual exclusion.
2720	 */
2721	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2722	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2723	    spa_config_held(spa, SCL_STATE, RW_READER)));
2724
2725	if (!list_link_active(&vd->vdev_state_dirty_node))
2726		list_insert_head(&spa->spa_state_dirty_list, vd);
2727}
2728
2729void
2730vdev_state_clean(vdev_t *vd)
2731{
2732	spa_t *spa = vd->vdev_spa;
2733
2734	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2735	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2736	    spa_config_held(spa, SCL_STATE, RW_READER)));
2737
2738	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2739	list_remove(&spa->spa_state_dirty_list, vd);
2740}
2741
2742/*
2743 * Propagate vdev state up from children to parent.
2744 */
2745void
2746vdev_propagate_state(vdev_t *vd)
2747{
2748	spa_t *spa = vd->vdev_spa;
2749	vdev_t *rvd = spa->spa_root_vdev;
2750	int degraded = 0, faulted = 0;
2751	int corrupted = 0;
2752	vdev_t *child;
2753
2754	if (vd->vdev_children > 0) {
2755		for (int c = 0; c < vd->vdev_children; c++) {
2756			child = vd->vdev_child[c];
2757
2758			/*
2759			 * Don't factor holes into the decision.
2760			 */
2761			if (child->vdev_ishole)
2762				continue;
2763
2764			if (!vdev_readable(child) ||
2765			    (!vdev_writeable(child) && spa_writeable(spa))) {
2766				/*
2767				 * Root special: if there is a top-level log
2768				 * device, treat the root vdev as if it were
2769				 * degraded.
2770				 */
2771				if (child->vdev_islog && vd == rvd)
2772					degraded++;
2773				else
2774					faulted++;
2775			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2776				degraded++;
2777			}
2778
2779			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2780				corrupted++;
2781		}
2782
2783		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2784
2785		/*
2786		 * Root special: if there is a top-level vdev that cannot be
2787		 * opened due to corrupted metadata, then propagate the root
2788		 * vdev's aux state as 'corrupt' rather than 'insufficient
2789		 * replicas'.
2790		 */
2791		if (corrupted && vd == rvd &&
2792		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2793			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2794			    VDEV_AUX_CORRUPT_DATA);
2795	}
2796
2797	if (vd->vdev_parent)
2798		vdev_propagate_state(vd->vdev_parent);
2799}
2800
2801/*
2802 * Set a vdev's state.  If this is during an open, we don't update the parent
2803 * state, because we're in the process of opening children depth-first.
2804 * Otherwise, we propagate the change to the parent.
2805 *
2806 * If this routine places a device in a faulted state, an appropriate ereport is
2807 * generated.
2808 */
2809void
2810vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2811{
2812	uint64_t save_state;
2813	spa_t *spa = vd->vdev_spa;
2814
2815	if (state == vd->vdev_state) {
2816		vd->vdev_stat.vs_aux = aux;
2817		return;
2818	}
2819
2820	save_state = vd->vdev_state;
2821
2822	vd->vdev_state = state;
2823	vd->vdev_stat.vs_aux = aux;
2824
2825	/*
2826	 * If we are setting the vdev state to anything but an open state, then
2827	 * always close the underlying device.  Otherwise, we keep accessible
2828	 * but invalid devices open forever.  We don't call vdev_close() itself,
2829	 * because that implies some extra checks (offline, etc) that we don't
2830	 * want here.  This is limited to leaf devices, because otherwise
2831	 * closing the device will affect other children.
2832	 */
2833	if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2834		vd->vdev_ops->vdev_op_close(vd);
2835
2836	/*
2837	 * If we have brought this vdev back into service, we need
2838	 * to notify fmd so that it can gracefully repair any outstanding
2839	 * cases due to a missing device.  We do this in all cases, even those
2840	 * that probably don't correlate to a repaired fault.  This is sure to
2841	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2842	 * this is a transient state it's OK, as the retire agent will
2843	 * double-check the state of the vdev before repairing it.
2844	 */
2845	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2846	    vd->vdev_prevstate != state)
2847		zfs_post_state_change(spa, vd);
2848
2849	if (vd->vdev_removed &&
2850	    state == VDEV_STATE_CANT_OPEN &&
2851	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2852		/*
2853		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2854		 * device was previously marked removed and someone attempted to
2855		 * reopen it.  If this failed due to a nonexistent device, then
2856		 * keep the device in the REMOVED state.  We also let this be if
2857		 * it is one of our special test online cases, which is only
2858		 * attempting to online the device and shouldn't generate an FMA
2859		 * fault.
2860		 */
2861		vd->vdev_state = VDEV_STATE_REMOVED;
2862		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2863	} else if (state == VDEV_STATE_REMOVED) {
2864		vd->vdev_removed = B_TRUE;
2865	} else if (state == VDEV_STATE_CANT_OPEN) {
2866		/*
2867		 * If we fail to open a vdev during an import, we mark it as
2868		 * "not available", which signifies that it was never there to
2869		 * begin with.  Failure to open such a device is not considered
2870		 * an error.
2871		 */
2872		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2873		    vd->vdev_ops->vdev_op_leaf)
2874			vd->vdev_not_present = 1;
2875
2876		/*
2877		 * Post the appropriate ereport.  If the 'prevstate' field is
2878		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2879		 * that this is part of a vdev_reopen().  In this case, we don't
2880		 * want to post the ereport if the device was already in the
2881		 * CANT_OPEN state beforehand.
2882		 *
2883		 * If the 'checkremove' flag is set, then this is an attempt to
2884		 * online the device in response to an insertion event.  If we
2885		 * hit this case, then we have detected an insertion event for a
2886		 * faulted or offline device that wasn't in the removed state.
2887		 * In this scenario, we don't post an ereport because we are
2888		 * about to replace the device, or attempt an online with
2889		 * vdev_forcefault, which will generate the fault for us.
2890		 */
2891		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2892		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2893		    vd != spa->spa_root_vdev) {
2894			const char *class;
2895
2896			switch (aux) {
2897			case VDEV_AUX_OPEN_FAILED:
2898				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2899				break;
2900			case VDEV_AUX_CORRUPT_DATA:
2901				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2902				break;
2903			case VDEV_AUX_NO_REPLICAS:
2904				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2905				break;
2906			case VDEV_AUX_BAD_GUID_SUM:
2907				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2908				break;
2909			case VDEV_AUX_TOO_SMALL:
2910				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2911				break;
2912			case VDEV_AUX_BAD_LABEL:
2913				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2914				break;
2915			case VDEV_AUX_IO_FAILURE:
2916				class = FM_EREPORT_ZFS_IO_FAILURE;
2917				break;
2918			default:
2919				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2920			}
2921
2922			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2923		}
2924
2925		/* Erase any notion of persistent removed state */
2926		vd->vdev_removed = B_FALSE;
2927	} else {
2928		vd->vdev_removed = B_FALSE;
2929	}
2930
2931	if (!isopen && vd->vdev_parent)
2932		vdev_propagate_state(vd->vdev_parent);
2933}
2934
2935/*
2936 * Check the vdev configuration to ensure that it's capable of supporting
2937 * a root pool. Currently, we do not support RAID-Z or partial configuration.
2938 * In addition, only a single top-level vdev is allowed and none of the leaves
2939 * can be wholedisks.
2940 */
2941boolean_t
2942vdev_is_bootable(vdev_t *vd)
2943{
2944	if (!vd->vdev_ops->vdev_op_leaf) {
2945		char *vdev_type = vd->vdev_ops->vdev_op_type;
2946
2947		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2948		    vd->vdev_children > 1) {
2949			return (B_FALSE);
2950		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2951		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2952			return (B_FALSE);
2953		}
2954	} else if (vd->vdev_wholedisk == 1) {
2955		return (B_FALSE);
2956	}
2957
2958	for (int c = 0; c < vd->vdev_children; c++) {
2959		if (!vdev_is_bootable(vd->vdev_child[c]))
2960			return (B_FALSE);
2961	}
2962	return (B_TRUE);
2963}
2964
2965/*
2966 * Load the state from the original vdev tree (ovd) which
2967 * we've retrieved from the MOS config object. If the original
2968 * vdev was offline then we transfer that state to the device
2969 * in the current vdev tree (nvd).
2970 */
2971void
2972vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
2973{
2974	spa_t *spa = nvd->vdev_spa;
2975
2976	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2977	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
2978
2979	for (int c = 0; c < nvd->vdev_children; c++)
2980		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
2981
2982	if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
2983		/*
2984		 * It would be nice to call vdev_offline()
2985		 * directly but the pool isn't fully loaded and
2986		 * the txg threads have not been started yet.
2987		 */
2988		nvd->vdev_offline = ovd->vdev_offline;
2989		vdev_reopen(nvd->vdev_top);
2990	}
2991}
2992
2993/*
2994 * Expand a vdev if possible.
2995 */
2996void
2997vdev_expand(vdev_t *vd, uint64_t txg)
2998{
2999	ASSERT(vd->vdev_top == vd);
3000	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3001
3002	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3003		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3004		vdev_config_dirty(vd);
3005	}
3006}
3007