1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26/*
27 * This file contains all the routines used when modifying on-disk SPA state.
28 * This includes opening, importing, destroying, exporting a pool, and syncing a
29 * pool.
30 */
31
32#include <sys/zfs_context.h>
33#include <sys/fm/fs/zfs.h>
34#include <sys/spa_impl.h>
35#include <sys/zio.h>
36#include <sys/zio_checksum.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/zap.h>
40#include <sys/zil.h>
41#include <sys/ddt.h>
42#include <sys/vdev_impl.h>
43#include <sys/metaslab.h>
44#include <sys/metaslab_impl.h>
45#include <sys/uberblock_impl.h>
46#include <sys/txg.h>
47#include <sys/avl.h>
48#include <sys/dmu_traverse.h>
49#include <sys/dmu_objset.h>
50#include <sys/unique.h>
51#include <sys/dsl_pool.h>
52#include <sys/dsl_dataset.h>
53#include <sys/dsl_dir.h>
54#include <sys/dsl_prop.h>
55#include <sys/dsl_synctask.h>
56#include <sys/fs/zfs.h>
57#include <sys/arc.h>
58#include <sys/callb.h>
59#include <sys/systeminfo.h>
60#include <sys/spa_boot.h>
61#include <sys/zfs_ioctl.h>
62#include <sys/dsl_scan.h>
63
64#ifdef	_KERNEL
65#include <sys/bootprops.h>
66#include <sys/callb.h>
67#include <sys/cpupart.h>
68#include <sys/pool.h>
69#include <sys/sysdc.h>
70#include <sys/zone.h>
71#endif	/* _KERNEL */
72
73#include "zfs_prop.h"
74#include "zfs_comutil.h"
75
76typedef enum zti_modes {
77	zti_mode_fixed,			/* value is # of threads (min 1) */
78	zti_mode_online_percent,	/* value is % of online CPUs */
79	zti_mode_batch,			/* cpu-intensive; value is ignored */
80	zti_mode_null,			/* don't create a taskq */
81	zti_nmodes
82} zti_modes_t;
83
84#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
85#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
86#define	ZTI_BATCH	{ zti_mode_batch, 0 }
87#define	ZTI_NULL	{ zti_mode_null, 0 }
88
89#define	ZTI_ONE		ZTI_FIX(1)
90
91typedef struct zio_taskq_info {
92	enum zti_modes zti_mode;
93	uint_t zti_value;
94} zio_taskq_info_t;
95
96static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
97	"issue", "issue_high", "intr", "intr_high"
98};
99
100/*
101 * Define the taskq threads for the following I/O types:
102 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
103 */
104const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
105	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
106	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
107	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
108	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
109	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
111	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
112};
113
114static dsl_syncfunc_t spa_sync_props;
115static boolean_t spa_has_active_shared_spare(spa_t *spa);
116static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
117    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
118    char **ereport);
119static void spa_vdev_resilver_done(spa_t *spa);
120
121uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
122id_t		zio_taskq_psrset_bind = PS_NONE;
123boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
124uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
125
126boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
127
128/*
129 * This (illegal) pool name is used when temporarily importing a spa_t in order
130 * to get the vdev stats associated with the imported devices.
131 */
132#define	TRYIMPORT_NAME	"$import"
133
134/*
135 * ==========================================================================
136 * SPA properties routines
137 * ==========================================================================
138 */
139
140/*
141 * Add a (source=src, propname=propval) list to an nvlist.
142 */
143static void
144spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
145    uint64_t intval, zprop_source_t src)
146{
147	const char *propname = zpool_prop_to_name(prop);
148	nvlist_t *propval;
149
150	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
151	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
152
153	if (strval != NULL)
154		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
155	else
156		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
157
158	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
159	nvlist_free(propval);
160}
161
162/*
163 * Get property values from the spa configuration.
164 */
165static void
166spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
167{
168	uint64_t size;
169	uint64_t alloc;
170	uint64_t cap, version;
171	zprop_source_t src = ZPROP_SRC_NONE;
172	spa_config_dirent_t *dp;
173
174	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
175
176	if (spa->spa_root_vdev != NULL) {
177		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
178		size = metaslab_class_get_space(spa_normal_class(spa));
179		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
180		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
181		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
182		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
183		    size - alloc, src);
184		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
185		    (spa_mode(spa) == FREAD), src);
186
187		cap = (size == 0) ? 0 : (alloc * 100 / size);
188		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
189
190		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
191		    ddt_get_pool_dedup_ratio(spa), src);
192
193		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
194		    spa->spa_root_vdev->vdev_state, src);
195
196		version = spa_version(spa);
197		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
198			src = ZPROP_SRC_DEFAULT;
199		else
200			src = ZPROP_SRC_LOCAL;
201		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
202	}
203
204	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
205
206	if (spa->spa_root != NULL)
207		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
208		    0, ZPROP_SRC_LOCAL);
209
210	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
211		if (dp->scd_path == NULL) {
212			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
213			    "none", 0, ZPROP_SRC_LOCAL);
214		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
215			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
216			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
217		}
218	}
219}
220
221/*
222 * Get zpool property values.
223 */
224int
225spa_prop_get(spa_t *spa, nvlist_t **nvp)
226{
227	objset_t *mos = spa->spa_meta_objset;
228	zap_cursor_t zc;
229	zap_attribute_t za;
230	int err;
231
232	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
233
234	mutex_enter(&spa->spa_props_lock);
235
236	/*
237	 * Get properties from the spa config.
238	 */
239	spa_prop_get_config(spa, nvp);
240
241	/* If no pool property object, no more prop to get. */
242	if (mos == NULL || spa->spa_pool_props_object == 0) {
243		mutex_exit(&spa->spa_props_lock);
244		return (0);
245	}
246
247	/*
248	 * Get properties from the MOS pool property object.
249	 */
250	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
251	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
252	    zap_cursor_advance(&zc)) {
253		uint64_t intval = 0;
254		char *strval = NULL;
255		zprop_source_t src = ZPROP_SRC_DEFAULT;
256		zpool_prop_t prop;
257
258		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
259			continue;
260
261		switch (za.za_integer_length) {
262		case 8:
263			/* integer property */
264			if (za.za_first_integer !=
265			    zpool_prop_default_numeric(prop))
266				src = ZPROP_SRC_LOCAL;
267
268			if (prop == ZPOOL_PROP_BOOTFS) {
269				dsl_pool_t *dp;
270				dsl_dataset_t *ds = NULL;
271
272				dp = spa_get_dsl(spa);
273				rw_enter(&dp->dp_config_rwlock, RW_READER);
274				if (err = dsl_dataset_hold_obj(dp,
275				    za.za_first_integer, FTAG, &ds)) {
276					rw_exit(&dp->dp_config_rwlock);
277					break;
278				}
279
280				strval = kmem_alloc(
281				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
282				    KM_SLEEP);
283				dsl_dataset_name(ds, strval);
284				dsl_dataset_rele(ds, FTAG);
285				rw_exit(&dp->dp_config_rwlock);
286			} else {
287				strval = NULL;
288				intval = za.za_first_integer;
289			}
290
291			spa_prop_add_list(*nvp, prop, strval, intval, src);
292
293			if (strval != NULL)
294				kmem_free(strval,
295				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
296
297			break;
298
299		case 1:
300			/* string property */
301			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
302			err = zap_lookup(mos, spa->spa_pool_props_object,
303			    za.za_name, 1, za.za_num_integers, strval);
304			if (err) {
305				kmem_free(strval, za.za_num_integers);
306				break;
307			}
308			spa_prop_add_list(*nvp, prop, strval, 0, src);
309			kmem_free(strval, za.za_num_integers);
310			break;
311
312		default:
313			break;
314		}
315	}
316	zap_cursor_fini(&zc);
317	mutex_exit(&spa->spa_props_lock);
318out:
319	if (err && err != ENOENT) {
320		nvlist_free(*nvp);
321		*nvp = NULL;
322		return (err);
323	}
324
325	return (0);
326}
327
328/*
329 * Validate the given pool properties nvlist and modify the list
330 * for the property values to be set.
331 */
332static int
333spa_prop_validate(spa_t *spa, nvlist_t *props)
334{
335	nvpair_t *elem;
336	int error = 0, reset_bootfs = 0;
337	uint64_t objnum;
338
339	elem = NULL;
340	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
341		zpool_prop_t prop;
342		char *propname, *strval;
343		uint64_t intval;
344		objset_t *os;
345		char *slash;
346
347		propname = nvpair_name(elem);
348
349		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
350			return (EINVAL);
351
352		switch (prop) {
353		case ZPOOL_PROP_VERSION:
354			error = nvpair_value_uint64(elem, &intval);
355			if (!error &&
356			    (intval < spa_version(spa) || intval > SPA_VERSION))
357				error = EINVAL;
358			break;
359
360		case ZPOOL_PROP_DELEGATION:
361		case ZPOOL_PROP_AUTOREPLACE:
362		case ZPOOL_PROP_LISTSNAPS:
363		case ZPOOL_PROP_AUTOEXPAND:
364			error = nvpair_value_uint64(elem, &intval);
365			if (!error && intval > 1)
366				error = EINVAL;
367			break;
368
369		case ZPOOL_PROP_BOOTFS:
370			/*
371			 * If the pool version is less than SPA_VERSION_BOOTFS,
372			 * or the pool is still being created (version == 0),
373			 * the bootfs property cannot be set.
374			 */
375			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
376				error = ENOTSUP;
377				break;
378			}
379
380			/*
381			 * Make sure the vdev config is bootable
382			 */
383			if (!vdev_is_bootable(spa->spa_root_vdev)) {
384				error = ENOTSUP;
385				break;
386			}
387
388			reset_bootfs = 1;
389
390			error = nvpair_value_string(elem, &strval);
391
392			if (!error) {
393				uint64_t compress;
394
395				if (strval == NULL || strval[0] == '\0') {
396					objnum = zpool_prop_default_numeric(
397					    ZPOOL_PROP_BOOTFS);
398					break;
399				}
400
401				if (error = dmu_objset_hold(strval, FTAG, &os))
402					break;
403
404				/* Must be ZPL and not gzip compressed. */
405
406				if (dmu_objset_type(os) != DMU_OST_ZFS) {
407					error = ENOTSUP;
408				} else if ((error = dsl_prop_get_integer(strval,
409				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
410				    &compress, NULL)) == 0 &&
411				    !BOOTFS_COMPRESS_VALID(compress)) {
412					error = ENOTSUP;
413				} else {
414					objnum = dmu_objset_id(os);
415				}
416				dmu_objset_rele(os, FTAG);
417			}
418			break;
419
420		case ZPOOL_PROP_FAILUREMODE:
421			error = nvpair_value_uint64(elem, &intval);
422			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
423			    intval > ZIO_FAILURE_MODE_PANIC))
424				error = EINVAL;
425
426			/*
427			 * This is a special case which only occurs when
428			 * the pool has completely failed. This allows
429			 * the user to change the in-core failmode property
430			 * without syncing it out to disk (I/Os might
431			 * currently be blocked). We do this by returning
432			 * EIO to the caller (spa_prop_set) to trick it
433			 * into thinking we encountered a property validation
434			 * error.
435			 */
436			if (!error && spa_suspended(spa)) {
437				spa->spa_failmode = intval;
438				error = EIO;
439			}
440			break;
441
442		case ZPOOL_PROP_CACHEFILE:
443			if ((error = nvpair_value_string(elem, &strval)) != 0)
444				break;
445
446			if (strval[0] == '\0')
447				break;
448
449			if (strcmp(strval, "none") == 0)
450				break;
451
452			if (strval[0] != '/') {
453				error = EINVAL;
454				break;
455			}
456
457			slash = strrchr(strval, '/');
458			ASSERT(slash != NULL);
459
460			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
461			    strcmp(slash, "/..") == 0)
462				error = EINVAL;
463			break;
464
465		case ZPOOL_PROP_DEDUPDITTO:
466			if (spa_version(spa) < SPA_VERSION_DEDUP)
467				error = ENOTSUP;
468			else
469				error = nvpair_value_uint64(elem, &intval);
470			if (error == 0 &&
471			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
472				error = EINVAL;
473			break;
474		}
475
476		if (error)
477			break;
478	}
479
480	if (!error && reset_bootfs) {
481		error = nvlist_remove(props,
482		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
483
484		if (!error) {
485			error = nvlist_add_uint64(props,
486			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
487		}
488	}
489
490	return (error);
491}
492
493void
494spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
495{
496	char *cachefile;
497	spa_config_dirent_t *dp;
498
499	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
500	    &cachefile) != 0)
501		return;
502
503	dp = kmem_alloc(sizeof (spa_config_dirent_t),
504	    KM_SLEEP);
505
506	if (cachefile[0] == '\0')
507		dp->scd_path = spa_strdup(spa_config_path);
508	else if (strcmp(cachefile, "none") == 0)
509		dp->scd_path = NULL;
510	else
511		dp->scd_path = spa_strdup(cachefile);
512
513	list_insert_head(&spa->spa_config_list, dp);
514	if (need_sync)
515		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
516}
517
518int
519spa_prop_set(spa_t *spa, nvlist_t *nvp)
520{
521	int error;
522	nvpair_t *elem;
523	boolean_t need_sync = B_FALSE;
524	zpool_prop_t prop;
525
526	if ((error = spa_prop_validate(spa, nvp)) != 0)
527		return (error);
528
529	elem = NULL;
530	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
531		if ((prop = zpool_name_to_prop(
532		    nvpair_name(elem))) == ZPROP_INVAL)
533			return (EINVAL);
534
535		if (prop == ZPOOL_PROP_CACHEFILE ||
536		    prop == ZPOOL_PROP_ALTROOT ||
537		    prop == ZPOOL_PROP_READONLY)
538			continue;
539
540		need_sync = B_TRUE;
541		break;
542	}
543
544	if (need_sync)
545		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
546		    spa, nvp, 3));
547	else
548		return (0);
549}
550
551/*
552 * If the bootfs property value is dsobj, clear it.
553 */
554void
555spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
556{
557	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
558		VERIFY(zap_remove(spa->spa_meta_objset,
559		    spa->spa_pool_props_object,
560		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
561		spa->spa_bootfs = 0;
562	}
563}
564
565/*
566 * ==========================================================================
567 * SPA state manipulation (open/create/destroy/import/export)
568 * ==========================================================================
569 */
570
571static int
572spa_error_entry_compare(const void *a, const void *b)
573{
574	spa_error_entry_t *sa = (spa_error_entry_t *)a;
575	spa_error_entry_t *sb = (spa_error_entry_t *)b;
576	int ret;
577
578	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
579	    sizeof (zbookmark_t));
580
581	if (ret < 0)
582		return (-1);
583	else if (ret > 0)
584		return (1);
585	else
586		return (0);
587}
588
589/*
590 * Utility function which retrieves copies of the current logs and
591 * re-initializes them in the process.
592 */
593void
594spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
595{
596	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
597
598	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
599	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
600
601	avl_create(&spa->spa_errlist_scrub,
602	    spa_error_entry_compare, sizeof (spa_error_entry_t),
603	    offsetof(spa_error_entry_t, se_avl));
604	avl_create(&spa->spa_errlist_last,
605	    spa_error_entry_compare, sizeof (spa_error_entry_t),
606	    offsetof(spa_error_entry_t, se_avl));
607}
608
609static taskq_t *
610spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
611    uint_t value)
612{
613	uint_t flags = TASKQ_PREPOPULATE;
614	boolean_t batch = B_FALSE;
615
616	switch (mode) {
617	case zti_mode_null:
618		return (NULL);		/* no taskq needed */
619
620	case zti_mode_fixed:
621		ASSERT3U(value, >=, 1);
622		value = MAX(value, 1);
623		break;
624
625	case zti_mode_batch:
626		batch = B_TRUE;
627		flags |= TASKQ_THREADS_CPU_PCT;
628		value = zio_taskq_batch_pct;
629		break;
630
631	case zti_mode_online_percent:
632		flags |= TASKQ_THREADS_CPU_PCT;
633		break;
634
635	default:
636		panic("unrecognized mode for %s taskq (%u:%u) in "
637		    "spa_activate()",
638		    name, mode, value);
639		break;
640	}
641
642	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
643		if (batch)
644			flags |= TASKQ_DC_BATCH;
645
646		return (taskq_create_sysdc(name, value, 50, INT_MAX,
647		    spa->spa_proc, zio_taskq_basedc, flags));
648	}
649	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
650	    spa->spa_proc, flags));
651}
652
653static void
654spa_create_zio_taskqs(spa_t *spa)
655{
656	for (int t = 0; t < ZIO_TYPES; t++) {
657		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
658			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
659			enum zti_modes mode = ztip->zti_mode;
660			uint_t value = ztip->zti_value;
661			char name[32];
662
663			(void) snprintf(name, sizeof (name),
664			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
665
666			spa->spa_zio_taskq[t][q] =
667			    spa_taskq_create(spa, name, mode, value);
668		}
669	}
670}
671
672#ifdef _KERNEL
673static void
674spa_thread(void *arg)
675{
676	callb_cpr_t cprinfo;
677
678	spa_t *spa = arg;
679	user_t *pu = PTOU(curproc);
680
681	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
682	    spa->spa_name);
683
684	ASSERT(curproc != &p0);
685	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
686	    "zpool-%s", spa->spa_name);
687	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
688
689	/* bind this thread to the requested psrset */
690	if (zio_taskq_psrset_bind != PS_NONE) {
691		pool_lock();
692		mutex_enter(&cpu_lock);
693		mutex_enter(&pidlock);
694		mutex_enter(&curproc->p_lock);
695
696		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
697		    0, NULL, NULL) == 0)  {
698			curthread->t_bind_pset = zio_taskq_psrset_bind;
699		} else {
700			cmn_err(CE_WARN,
701			    "Couldn't bind process for zfs pool \"%s\" to "
702			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
703		}
704
705		mutex_exit(&curproc->p_lock);
706		mutex_exit(&pidlock);
707		mutex_exit(&cpu_lock);
708		pool_unlock();
709	}
710
711	if (zio_taskq_sysdc) {
712		sysdc_thread_enter(curthread, 100, 0);
713	}
714
715	spa->spa_proc = curproc;
716	spa->spa_did = curthread->t_did;
717
718	spa_create_zio_taskqs(spa);
719
720	mutex_enter(&spa->spa_proc_lock);
721	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
722
723	spa->spa_proc_state = SPA_PROC_ACTIVE;
724	cv_broadcast(&spa->spa_proc_cv);
725
726	CALLB_CPR_SAFE_BEGIN(&cprinfo);
727	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
728		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
729	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
730
731	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
732	spa->spa_proc_state = SPA_PROC_GONE;
733	spa->spa_proc = &p0;
734	cv_broadcast(&spa->spa_proc_cv);
735	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
736
737	mutex_enter(&curproc->p_lock);
738	lwp_exit();
739}
740#endif
741
742/*
743 * Activate an uninitialized pool.
744 */
745static void
746spa_activate(spa_t *spa, int mode)
747{
748	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
749
750	spa->spa_state = POOL_STATE_ACTIVE;
751	spa->spa_mode = mode;
752
753	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
754	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
755
756	/* Try to create a covering process */
757	mutex_enter(&spa->spa_proc_lock);
758	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
759	ASSERT(spa->spa_proc == &p0);
760	spa->spa_did = 0;
761
762	/* Only create a process if we're going to be around a while. */
763	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
764		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
765		    NULL, 0) == 0) {
766			spa->spa_proc_state = SPA_PROC_CREATED;
767			while (spa->spa_proc_state == SPA_PROC_CREATED) {
768				cv_wait(&spa->spa_proc_cv,
769				    &spa->spa_proc_lock);
770			}
771			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
772			ASSERT(spa->spa_proc != &p0);
773			ASSERT(spa->spa_did != 0);
774		} else {
775#ifdef _KERNEL
776			cmn_err(CE_WARN,
777			    "Couldn't create process for zfs pool \"%s\"\n",
778			    spa->spa_name);
779#endif
780		}
781	}
782	mutex_exit(&spa->spa_proc_lock);
783
784	/* If we didn't create a process, we need to create our taskqs. */
785	if (spa->spa_proc == &p0) {
786		spa_create_zio_taskqs(spa);
787	}
788
789	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
790	    offsetof(vdev_t, vdev_config_dirty_node));
791	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
792	    offsetof(vdev_t, vdev_state_dirty_node));
793
794	txg_list_create(&spa->spa_vdev_txg_list,
795	    offsetof(struct vdev, vdev_txg_node));
796
797	avl_create(&spa->spa_errlist_scrub,
798	    spa_error_entry_compare, sizeof (spa_error_entry_t),
799	    offsetof(spa_error_entry_t, se_avl));
800	avl_create(&spa->spa_errlist_last,
801	    spa_error_entry_compare, sizeof (spa_error_entry_t),
802	    offsetof(spa_error_entry_t, se_avl));
803}
804
805/*
806 * Opposite of spa_activate().
807 */
808static void
809spa_deactivate(spa_t *spa)
810{
811	ASSERT(spa->spa_sync_on == B_FALSE);
812	ASSERT(spa->spa_dsl_pool == NULL);
813	ASSERT(spa->spa_root_vdev == NULL);
814	ASSERT(spa->spa_async_zio_root == NULL);
815	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
816
817	txg_list_destroy(&spa->spa_vdev_txg_list);
818
819	list_destroy(&spa->spa_config_dirty_list);
820	list_destroy(&spa->spa_state_dirty_list);
821
822	for (int t = 0; t < ZIO_TYPES; t++) {
823		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
824			if (spa->spa_zio_taskq[t][q] != NULL)
825				taskq_destroy(spa->spa_zio_taskq[t][q]);
826			spa->spa_zio_taskq[t][q] = NULL;
827		}
828	}
829
830	metaslab_class_destroy(spa->spa_normal_class);
831	spa->spa_normal_class = NULL;
832
833	metaslab_class_destroy(spa->spa_log_class);
834	spa->spa_log_class = NULL;
835
836	/*
837	 * If this was part of an import or the open otherwise failed, we may
838	 * still have errors left in the queues.  Empty them just in case.
839	 */
840	spa_errlog_drain(spa);
841
842	avl_destroy(&spa->spa_errlist_scrub);
843	avl_destroy(&spa->spa_errlist_last);
844
845	spa->spa_state = POOL_STATE_UNINITIALIZED;
846
847	mutex_enter(&spa->spa_proc_lock);
848	if (spa->spa_proc_state != SPA_PROC_NONE) {
849		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
850		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
851		cv_broadcast(&spa->spa_proc_cv);
852		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
853			ASSERT(spa->spa_proc != &p0);
854			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
855		}
856		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
857		spa->spa_proc_state = SPA_PROC_NONE;
858	}
859	ASSERT(spa->spa_proc == &p0);
860	mutex_exit(&spa->spa_proc_lock);
861
862	/*
863	 * We want to make sure spa_thread() has actually exited the ZFS
864	 * module, so that the module can't be unloaded out from underneath
865	 * it.
866	 */
867	if (spa->spa_did != 0) {
868		thread_join(spa->spa_did);
869		spa->spa_did = 0;
870	}
871}
872
873/*
874 * Verify a pool configuration, and construct the vdev tree appropriately.  This
875 * will create all the necessary vdevs in the appropriate layout, with each vdev
876 * in the CLOSED state.  This will prep the pool before open/creation/import.
877 * All vdev validation is done by the vdev_alloc() routine.
878 */
879static int
880spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
881    uint_t id, int atype)
882{
883	nvlist_t **child;
884	uint_t children;
885	int error;
886
887	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
888		return (error);
889
890	if ((*vdp)->vdev_ops->vdev_op_leaf)
891		return (0);
892
893	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
894	    &child, &children);
895
896	if (error == ENOENT)
897		return (0);
898
899	if (error) {
900		vdev_free(*vdp);
901		*vdp = NULL;
902		return (EINVAL);
903	}
904
905	for (int c = 0; c < children; c++) {
906		vdev_t *vd;
907		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
908		    atype)) != 0) {
909			vdev_free(*vdp);
910			*vdp = NULL;
911			return (error);
912		}
913	}
914
915	ASSERT(*vdp != NULL);
916
917	return (0);
918}
919
920/*
921 * Opposite of spa_load().
922 */
923static void
924spa_unload(spa_t *spa)
925{
926	int i;
927
928	ASSERT(MUTEX_HELD(&spa_namespace_lock));
929
930	/*
931	 * Stop async tasks.
932	 */
933	spa_async_suspend(spa);
934
935	/*
936	 * Stop syncing.
937	 */
938	if (spa->spa_sync_on) {
939		txg_sync_stop(spa->spa_dsl_pool);
940		spa->spa_sync_on = B_FALSE;
941	}
942
943	/*
944	 * Wait for any outstanding async I/O to complete.
945	 */
946	if (spa->spa_async_zio_root != NULL) {
947		(void) zio_wait(spa->spa_async_zio_root);
948		spa->spa_async_zio_root = NULL;
949	}
950
951	bpobj_close(&spa->spa_deferred_bpobj);
952
953	/*
954	 * Close the dsl pool.
955	 */
956	if (spa->spa_dsl_pool) {
957		dsl_pool_close(spa->spa_dsl_pool);
958		spa->spa_dsl_pool = NULL;
959		spa->spa_meta_objset = NULL;
960	}
961
962	ddt_unload(spa);
963
964	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
965
966	/*
967	 * Drop and purge level 2 cache
968	 */
969	spa_l2cache_drop(spa);
970
971	/*
972	 * Close all vdevs.
973	 */
974	if (spa->spa_root_vdev)
975		vdev_free(spa->spa_root_vdev);
976	ASSERT(spa->spa_root_vdev == NULL);
977
978	for (i = 0; i < spa->spa_spares.sav_count; i++)
979		vdev_free(spa->spa_spares.sav_vdevs[i]);
980	if (spa->spa_spares.sav_vdevs) {
981		kmem_free(spa->spa_spares.sav_vdevs,
982		    spa->spa_spares.sav_count * sizeof (void *));
983		spa->spa_spares.sav_vdevs = NULL;
984	}
985	if (spa->spa_spares.sav_config) {
986		nvlist_free(spa->spa_spares.sav_config);
987		spa->spa_spares.sav_config = NULL;
988	}
989	spa->spa_spares.sav_count = 0;
990
991	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
992		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
993	if (spa->spa_l2cache.sav_vdevs) {
994		kmem_free(spa->spa_l2cache.sav_vdevs,
995		    spa->spa_l2cache.sav_count * sizeof (void *));
996		spa->spa_l2cache.sav_vdevs = NULL;
997	}
998	if (spa->spa_l2cache.sav_config) {
999		nvlist_free(spa->spa_l2cache.sav_config);
1000		spa->spa_l2cache.sav_config = NULL;
1001	}
1002	spa->spa_l2cache.sav_count = 0;
1003
1004	spa->spa_async_suspended = 0;
1005
1006	spa_config_exit(spa, SCL_ALL, FTAG);
1007}
1008
1009/*
1010 * Load (or re-load) the current list of vdevs describing the active spares for
1011 * this pool.  When this is called, we have some form of basic information in
1012 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1013 * then re-generate a more complete list including status information.
1014 */
1015static void
1016spa_load_spares(spa_t *spa)
1017{
1018	nvlist_t **spares;
1019	uint_t nspares;
1020	int i;
1021	vdev_t *vd, *tvd;
1022
1023	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1024
1025	/*
1026	 * First, close and free any existing spare vdevs.
1027	 */
1028	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1029		vd = spa->spa_spares.sav_vdevs[i];
1030
1031		/* Undo the call to spa_activate() below */
1032		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1033		    B_FALSE)) != NULL && tvd->vdev_isspare)
1034			spa_spare_remove(tvd);
1035		vdev_close(vd);
1036		vdev_free(vd);
1037	}
1038
1039	if (spa->spa_spares.sav_vdevs)
1040		kmem_free(spa->spa_spares.sav_vdevs,
1041		    spa->spa_spares.sav_count * sizeof (void *));
1042
1043	if (spa->spa_spares.sav_config == NULL)
1044		nspares = 0;
1045	else
1046		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1047		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1048
1049	spa->spa_spares.sav_count = (int)nspares;
1050	spa->spa_spares.sav_vdevs = NULL;
1051
1052	if (nspares == 0)
1053		return;
1054
1055	/*
1056	 * Construct the array of vdevs, opening them to get status in the
1057	 * process.   For each spare, there is potentially two different vdev_t
1058	 * structures associated with it: one in the list of spares (used only
1059	 * for basic validation purposes) and one in the active vdev
1060	 * configuration (if it's spared in).  During this phase we open and
1061	 * validate each vdev on the spare list.  If the vdev also exists in the
1062	 * active configuration, then we also mark this vdev as an active spare.
1063	 */
1064	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1065	    KM_SLEEP);
1066	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1067		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1068		    VDEV_ALLOC_SPARE) == 0);
1069		ASSERT(vd != NULL);
1070
1071		spa->spa_spares.sav_vdevs[i] = vd;
1072
1073		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1074		    B_FALSE)) != NULL) {
1075			if (!tvd->vdev_isspare)
1076				spa_spare_add(tvd);
1077
1078			/*
1079			 * We only mark the spare active if we were successfully
1080			 * able to load the vdev.  Otherwise, importing a pool
1081			 * with a bad active spare would result in strange
1082			 * behavior, because multiple pool would think the spare
1083			 * is actively in use.
1084			 *
1085			 * There is a vulnerability here to an equally bizarre
1086			 * circumstance, where a dead active spare is later
1087			 * brought back to life (onlined or otherwise).  Given
1088			 * the rarity of this scenario, and the extra complexity
1089			 * it adds, we ignore the possibility.
1090			 */
1091			if (!vdev_is_dead(tvd))
1092				spa_spare_activate(tvd);
1093		}
1094
1095		vd->vdev_top = vd;
1096		vd->vdev_aux = &spa->spa_spares;
1097
1098		if (vdev_open(vd) != 0)
1099			continue;
1100
1101		if (vdev_validate_aux(vd) == 0)
1102			spa_spare_add(vd);
1103	}
1104
1105	/*
1106	 * Recompute the stashed list of spares, with status information
1107	 * this time.
1108	 */
1109	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1110	    DATA_TYPE_NVLIST_ARRAY) == 0);
1111
1112	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1113	    KM_SLEEP);
1114	for (i = 0; i < spa->spa_spares.sav_count; i++)
1115		spares[i] = vdev_config_generate(spa,
1116		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1117	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1118	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1119	for (i = 0; i < spa->spa_spares.sav_count; i++)
1120		nvlist_free(spares[i]);
1121	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1122}
1123
1124/*
1125 * Load (or re-load) the current list of vdevs describing the active l2cache for
1126 * this pool.  When this is called, we have some form of basic information in
1127 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1128 * then re-generate a more complete list including status information.
1129 * Devices which are already active have their details maintained, and are
1130 * not re-opened.
1131 */
1132static void
1133spa_load_l2cache(spa_t *spa)
1134{
1135	nvlist_t **l2cache;
1136	uint_t nl2cache;
1137	int i, j, oldnvdevs;
1138	uint64_t guid;
1139	vdev_t *vd, **oldvdevs, **newvdevs;
1140	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1141
1142	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1143
1144	if (sav->sav_config != NULL) {
1145		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1146		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1147		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1148	} else {
1149		nl2cache = 0;
1150	}
1151
1152	oldvdevs = sav->sav_vdevs;
1153	oldnvdevs = sav->sav_count;
1154	sav->sav_vdevs = NULL;
1155	sav->sav_count = 0;
1156
1157	/*
1158	 * Process new nvlist of vdevs.
1159	 */
1160	for (i = 0; i < nl2cache; i++) {
1161		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1162		    &guid) == 0);
1163
1164		newvdevs[i] = NULL;
1165		for (j = 0; j < oldnvdevs; j++) {
1166			vd = oldvdevs[j];
1167			if (vd != NULL && guid == vd->vdev_guid) {
1168				/*
1169				 * Retain previous vdev for add/remove ops.
1170				 */
1171				newvdevs[i] = vd;
1172				oldvdevs[j] = NULL;
1173				break;
1174			}
1175		}
1176
1177		if (newvdevs[i] == NULL) {
1178			/*
1179			 * Create new vdev
1180			 */
1181			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1182			    VDEV_ALLOC_L2CACHE) == 0);
1183			ASSERT(vd != NULL);
1184			newvdevs[i] = vd;
1185
1186			/*
1187			 * Commit this vdev as an l2cache device,
1188			 * even if it fails to open.
1189			 */
1190			spa_l2cache_add(vd);
1191
1192			vd->vdev_top = vd;
1193			vd->vdev_aux = sav;
1194
1195			spa_l2cache_activate(vd);
1196
1197			if (vdev_open(vd) != 0)
1198				continue;
1199
1200			(void) vdev_validate_aux(vd);
1201
1202			if (!vdev_is_dead(vd))
1203				l2arc_add_vdev(spa, vd);
1204		}
1205	}
1206
1207	/*
1208	 * Purge vdevs that were dropped
1209	 */
1210	for (i = 0; i < oldnvdevs; i++) {
1211		uint64_t pool;
1212
1213		vd = oldvdevs[i];
1214		if (vd != NULL) {
1215			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1216			    pool != 0ULL && l2arc_vdev_present(vd))
1217				l2arc_remove_vdev(vd);
1218			(void) vdev_close(vd);
1219			spa_l2cache_remove(vd);
1220		}
1221	}
1222
1223	if (oldvdevs)
1224		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1225
1226	if (sav->sav_config == NULL)
1227		goto out;
1228
1229	sav->sav_vdevs = newvdevs;
1230	sav->sav_count = (int)nl2cache;
1231
1232	/*
1233	 * Recompute the stashed list of l2cache devices, with status
1234	 * information this time.
1235	 */
1236	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1237	    DATA_TYPE_NVLIST_ARRAY) == 0);
1238
1239	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1240	for (i = 0; i < sav->sav_count; i++)
1241		l2cache[i] = vdev_config_generate(spa,
1242		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1243	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1244	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1245out:
1246	for (i = 0; i < sav->sav_count; i++)
1247		nvlist_free(l2cache[i]);
1248	if (sav->sav_count)
1249		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1250}
1251
1252static int
1253load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1254{
1255	dmu_buf_t *db;
1256	char *packed = NULL;
1257	size_t nvsize = 0;
1258	int error;
1259	*value = NULL;
1260
1261	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1262	nvsize = *(uint64_t *)db->db_data;
1263	dmu_buf_rele(db, FTAG);
1264
1265	packed = kmem_alloc(nvsize, KM_SLEEP);
1266	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1267	    DMU_READ_PREFETCH);
1268	if (error == 0)
1269		error = nvlist_unpack(packed, nvsize, value, 0);
1270	kmem_free(packed, nvsize);
1271
1272	return (error);
1273}
1274
1275/*
1276 * Checks to see if the given vdev could not be opened, in which case we post a
1277 * sysevent to notify the autoreplace code that the device has been removed.
1278 */
1279static void
1280spa_check_removed(vdev_t *vd)
1281{
1282	for (int c = 0; c < vd->vdev_children; c++)
1283		spa_check_removed(vd->vdev_child[c]);
1284
1285	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1286		zfs_post_autoreplace(vd->vdev_spa, vd);
1287		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1288	}
1289}
1290
1291/*
1292 * Validate the current config against the MOS config
1293 */
1294static boolean_t
1295spa_config_valid(spa_t *spa, nvlist_t *config)
1296{
1297	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1298	nvlist_t *nv;
1299
1300	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1301
1302	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1303	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1304
1305	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1306
1307	/*
1308	 * If we're doing a normal import, then build up any additional
1309	 * diagnostic information about missing devices in this config.
1310	 * We'll pass this up to the user for further processing.
1311	 */
1312	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1313		nvlist_t **child, *nv;
1314		uint64_t idx = 0;
1315
1316		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1317		    KM_SLEEP);
1318		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1319
1320		for (int c = 0; c < rvd->vdev_children; c++) {
1321			vdev_t *tvd = rvd->vdev_child[c];
1322			vdev_t *mtvd  = mrvd->vdev_child[c];
1323
1324			if (tvd->vdev_ops == &vdev_missing_ops &&
1325			    mtvd->vdev_ops != &vdev_missing_ops &&
1326			    mtvd->vdev_islog)
1327				child[idx++] = vdev_config_generate(spa, mtvd,
1328				    B_FALSE, 0);
1329		}
1330
1331		if (idx) {
1332			VERIFY(nvlist_add_nvlist_array(nv,
1333			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1334			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1335			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1336
1337			for (int i = 0; i < idx; i++)
1338				nvlist_free(child[i]);
1339		}
1340		nvlist_free(nv);
1341		kmem_free(child, rvd->vdev_children * sizeof (char **));
1342	}
1343
1344	/*
1345	 * Compare the root vdev tree with the information we have
1346	 * from the MOS config (mrvd). Check each top-level vdev
1347	 * with the corresponding MOS config top-level (mtvd).
1348	 */
1349	for (int c = 0; c < rvd->vdev_children; c++) {
1350		vdev_t *tvd = rvd->vdev_child[c];
1351		vdev_t *mtvd  = mrvd->vdev_child[c];
1352
1353		/*
1354		 * Resolve any "missing" vdevs in the current configuration.
1355		 * If we find that the MOS config has more accurate information
1356		 * about the top-level vdev then use that vdev instead.
1357		 */
1358		if (tvd->vdev_ops == &vdev_missing_ops &&
1359		    mtvd->vdev_ops != &vdev_missing_ops) {
1360
1361			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1362				continue;
1363
1364			/*
1365			 * Device specific actions.
1366			 */
1367			if (mtvd->vdev_islog) {
1368				spa_set_log_state(spa, SPA_LOG_CLEAR);
1369			} else {
1370				/*
1371				 * XXX - once we have 'readonly' pool
1372				 * support we should be able to handle
1373				 * missing data devices by transitioning
1374				 * the pool to readonly.
1375				 */
1376				continue;
1377			}
1378
1379			/*
1380			 * Swap the missing vdev with the data we were
1381			 * able to obtain from the MOS config.
1382			 */
1383			vdev_remove_child(rvd, tvd);
1384			vdev_remove_child(mrvd, mtvd);
1385
1386			vdev_add_child(rvd, mtvd);
1387			vdev_add_child(mrvd, tvd);
1388
1389			spa_config_exit(spa, SCL_ALL, FTAG);
1390			vdev_load(mtvd);
1391			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1392
1393			vdev_reopen(rvd);
1394		} else if (mtvd->vdev_islog) {
1395			/*
1396			 * Load the slog device's state from the MOS config
1397			 * since it's possible that the label does not
1398			 * contain the most up-to-date information.
1399			 */
1400			vdev_load_log_state(tvd, mtvd);
1401			vdev_reopen(tvd);
1402		}
1403	}
1404	vdev_free(mrvd);
1405	spa_config_exit(spa, SCL_ALL, FTAG);
1406
1407	/*
1408	 * Ensure we were able to validate the config.
1409	 */
1410	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1411}
1412
1413/*
1414 * Check for missing log devices
1415 */
1416static int
1417spa_check_logs(spa_t *spa)
1418{
1419	switch (spa->spa_log_state) {
1420	case SPA_LOG_MISSING:
1421		/* need to recheck in case slog has been restored */
1422	case SPA_LOG_UNKNOWN:
1423		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1424		    DS_FIND_CHILDREN)) {
1425			spa_set_log_state(spa, SPA_LOG_MISSING);
1426			return (1);
1427		}
1428		break;
1429	}
1430	return (0);
1431}
1432
1433static boolean_t
1434spa_passivate_log(spa_t *spa)
1435{
1436	vdev_t *rvd = spa->spa_root_vdev;
1437	boolean_t slog_found = B_FALSE;
1438
1439	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1440
1441	if (!spa_has_slogs(spa))
1442		return (B_FALSE);
1443
1444	for (int c = 0; c < rvd->vdev_children; c++) {
1445		vdev_t *tvd = rvd->vdev_child[c];
1446		metaslab_group_t *mg = tvd->vdev_mg;
1447
1448		if (tvd->vdev_islog) {
1449			metaslab_group_passivate(mg);
1450			slog_found = B_TRUE;
1451		}
1452	}
1453
1454	return (slog_found);
1455}
1456
1457static void
1458spa_activate_log(spa_t *spa)
1459{
1460	vdev_t *rvd = spa->spa_root_vdev;
1461
1462	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1463
1464	for (int c = 0; c < rvd->vdev_children; c++) {
1465		vdev_t *tvd = rvd->vdev_child[c];
1466		metaslab_group_t *mg = tvd->vdev_mg;
1467
1468		if (tvd->vdev_islog)
1469			metaslab_group_activate(mg);
1470	}
1471}
1472
1473int
1474spa_offline_log(spa_t *spa)
1475{
1476	int error = 0;
1477
1478	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1479	    NULL, DS_FIND_CHILDREN)) == 0) {
1480
1481		/*
1482		 * We successfully offlined the log device, sync out the
1483		 * current txg so that the "stubby" block can be removed
1484		 * by zil_sync().
1485		 */
1486		txg_wait_synced(spa->spa_dsl_pool, 0);
1487	}
1488	return (error);
1489}
1490
1491static void
1492spa_aux_check_removed(spa_aux_vdev_t *sav)
1493{
1494	for (int i = 0; i < sav->sav_count; i++)
1495		spa_check_removed(sav->sav_vdevs[i]);
1496}
1497
1498void
1499spa_claim_notify(zio_t *zio)
1500{
1501	spa_t *spa = zio->io_spa;
1502
1503	if (zio->io_error)
1504		return;
1505
1506	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1507	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1508		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1509	mutex_exit(&spa->spa_props_lock);
1510}
1511
1512typedef struct spa_load_error {
1513	uint64_t	sle_meta_count;
1514	uint64_t	sle_data_count;
1515} spa_load_error_t;
1516
1517static void
1518spa_load_verify_done(zio_t *zio)
1519{
1520	blkptr_t *bp = zio->io_bp;
1521	spa_load_error_t *sle = zio->io_private;
1522	dmu_object_type_t type = BP_GET_TYPE(bp);
1523	int error = zio->io_error;
1524
1525	if (error) {
1526		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1527		    type != DMU_OT_INTENT_LOG)
1528			atomic_add_64(&sle->sle_meta_count, 1);
1529		else
1530			atomic_add_64(&sle->sle_data_count, 1);
1531	}
1532	zio_data_buf_free(zio->io_data, zio->io_size);
1533}
1534
1535/*ARGSUSED*/
1536static int
1537spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1538    arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1539{
1540	if (bp != NULL) {
1541		zio_t *rio = arg;
1542		size_t size = BP_GET_PSIZE(bp);
1543		void *data = zio_data_buf_alloc(size);
1544
1545		zio_nowait(zio_read(rio, spa, bp, data, size,
1546		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1547		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1548		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1549	}
1550	return (0);
1551}
1552
1553static int
1554spa_load_verify(spa_t *spa)
1555{
1556	zio_t *rio;
1557	spa_load_error_t sle = { 0 };
1558	zpool_rewind_policy_t policy;
1559	boolean_t verify_ok = B_FALSE;
1560	int error;
1561
1562	zpool_get_rewind_policy(spa->spa_config, &policy);
1563
1564	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1565		return (0);
1566
1567	rio = zio_root(spa, NULL, &sle,
1568	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1569
1570	error = traverse_pool(spa, spa->spa_verify_min_txg,
1571	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1572
1573	(void) zio_wait(rio);
1574
1575	spa->spa_load_meta_errors = sle.sle_meta_count;
1576	spa->spa_load_data_errors = sle.sle_data_count;
1577
1578	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1579	    sle.sle_data_count <= policy.zrp_maxdata) {
1580		int64_t loss = 0;
1581
1582		verify_ok = B_TRUE;
1583		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1584		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1585
1586		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1587		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1588		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1589		VERIFY(nvlist_add_int64(spa->spa_load_info,
1590		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1591		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1592		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1593	} else {
1594		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1595	}
1596
1597	if (error) {
1598		if (error != ENXIO && error != EIO)
1599			error = EIO;
1600		return (error);
1601	}
1602
1603	return (verify_ok ? 0 : EIO);
1604}
1605
1606/*
1607 * Find a value in the pool props object.
1608 */
1609static void
1610spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1611{
1612	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1613	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1614}
1615
1616/*
1617 * Find a value in the pool directory object.
1618 */
1619static int
1620spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1621{
1622	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1623	    name, sizeof (uint64_t), 1, val));
1624}
1625
1626static int
1627spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1628{
1629	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1630	return (err);
1631}
1632
1633/*
1634 * Fix up config after a partly-completed split.  This is done with the
1635 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1636 * pool have that entry in their config, but only the splitting one contains
1637 * a list of all the guids of the vdevs that are being split off.
1638 *
1639 * This function determines what to do with that list: either rejoin
1640 * all the disks to the pool, or complete the splitting process.  To attempt
1641 * the rejoin, each disk that is offlined is marked online again, and
1642 * we do a reopen() call.  If the vdev label for every disk that was
1643 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1644 * then we call vdev_split() on each disk, and complete the split.
1645 *
1646 * Otherwise we leave the config alone, with all the vdevs in place in
1647 * the original pool.
1648 */
1649static void
1650spa_try_repair(spa_t *spa, nvlist_t *config)
1651{
1652	uint_t extracted;
1653	uint64_t *glist;
1654	uint_t i, gcount;
1655	nvlist_t *nvl;
1656	vdev_t **vd;
1657	boolean_t attempt_reopen;
1658
1659	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1660		return;
1661
1662	/* check that the config is complete */
1663	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1664	    &glist, &gcount) != 0)
1665		return;
1666
1667	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1668
1669	/* attempt to online all the vdevs & validate */
1670	attempt_reopen = B_TRUE;
1671	for (i = 0; i < gcount; i++) {
1672		if (glist[i] == 0)	/* vdev is hole */
1673			continue;
1674
1675		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1676		if (vd[i] == NULL) {
1677			/*
1678			 * Don't bother attempting to reopen the disks;
1679			 * just do the split.
1680			 */
1681			attempt_reopen = B_FALSE;
1682		} else {
1683			/* attempt to re-online it */
1684			vd[i]->vdev_offline = B_FALSE;
1685		}
1686	}
1687
1688	if (attempt_reopen) {
1689		vdev_reopen(spa->spa_root_vdev);
1690
1691		/* check each device to see what state it's in */
1692		for (extracted = 0, i = 0; i < gcount; i++) {
1693			if (vd[i] != NULL &&
1694			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1695				break;
1696			++extracted;
1697		}
1698	}
1699
1700	/*
1701	 * If every disk has been moved to the new pool, or if we never
1702	 * even attempted to look at them, then we split them off for
1703	 * good.
1704	 */
1705	if (!attempt_reopen || gcount == extracted) {
1706		for (i = 0; i < gcount; i++)
1707			if (vd[i] != NULL)
1708				vdev_split(vd[i]);
1709		vdev_reopen(spa->spa_root_vdev);
1710	}
1711
1712	kmem_free(vd, gcount * sizeof (vdev_t *));
1713}
1714
1715static int
1716spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1717    boolean_t mosconfig)
1718{
1719	nvlist_t *config = spa->spa_config;
1720	char *ereport = FM_EREPORT_ZFS_POOL;
1721	int error;
1722	uint64_t pool_guid;
1723	nvlist_t *nvl;
1724
1725	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1726		return (EINVAL);
1727
1728	/*
1729	 * Versioning wasn't explicitly added to the label until later, so if
1730	 * it's not present treat it as the initial version.
1731	 */
1732	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1733	    &spa->spa_ubsync.ub_version) != 0)
1734		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1735
1736	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1737	    &spa->spa_config_txg);
1738
1739	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1740	    spa_guid_exists(pool_guid, 0)) {
1741		error = EEXIST;
1742	} else {
1743		spa->spa_load_guid = pool_guid;
1744
1745		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1746		    &nvl) == 0) {
1747			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1748			    KM_SLEEP) == 0);
1749		}
1750
1751		gethrestime(&spa->spa_loaded_ts);
1752		error = spa_load_impl(spa, pool_guid, config, state, type,
1753		    mosconfig, &ereport);
1754	}
1755
1756	spa->spa_minref = refcount_count(&spa->spa_refcount);
1757	if (error) {
1758		if (error != EEXIST) {
1759			spa->spa_loaded_ts.tv_sec = 0;
1760			spa->spa_loaded_ts.tv_nsec = 0;
1761		}
1762		if (error != EBADF) {
1763			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1764		}
1765	}
1766	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1767	spa->spa_ena = 0;
1768
1769	return (error);
1770}
1771
1772/*
1773 * Load an existing storage pool, using the pool's builtin spa_config as a
1774 * source of configuration information.
1775 */
1776static int
1777spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1778    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1779    char **ereport)
1780{
1781	int error = 0;
1782	nvlist_t *nvroot = NULL;
1783	vdev_t *rvd;
1784	uberblock_t *ub = &spa->spa_uberblock;
1785	uint64_t children, config_cache_txg = spa->spa_config_txg;
1786	int orig_mode = spa->spa_mode;
1787	int parse;
1788	uint64_t obj;
1789
1790	/*
1791	 * If this is an untrusted config, access the pool in read-only mode.
1792	 * This prevents things like resilvering recently removed devices.
1793	 */
1794	if (!mosconfig)
1795		spa->spa_mode = FREAD;
1796
1797	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1798
1799	spa->spa_load_state = state;
1800
1801	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1802		return (EINVAL);
1803
1804	parse = (type == SPA_IMPORT_EXISTING ?
1805	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1806
1807	/*
1808	 * Create "The Godfather" zio to hold all async IOs
1809	 */
1810	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1811	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1812
1813	/*
1814	 * Parse the configuration into a vdev tree.  We explicitly set the
1815	 * value that will be returned by spa_version() since parsing the
1816	 * configuration requires knowing the version number.
1817	 */
1818	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1819	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1820	spa_config_exit(spa, SCL_ALL, FTAG);
1821
1822	if (error != 0)
1823		return (error);
1824
1825	ASSERT(spa->spa_root_vdev == rvd);
1826
1827	if (type != SPA_IMPORT_ASSEMBLE) {
1828		ASSERT(spa_guid(spa) == pool_guid);
1829	}
1830
1831	/*
1832	 * Try to open all vdevs, loading each label in the process.
1833	 */
1834	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1835	error = vdev_open(rvd);
1836	spa_config_exit(spa, SCL_ALL, FTAG);
1837	if (error != 0)
1838		return (error);
1839
1840	/*
1841	 * We need to validate the vdev labels against the configuration that
1842	 * we have in hand, which is dependent on the setting of mosconfig. If
1843	 * mosconfig is true then we're validating the vdev labels based on
1844	 * that config.  Otherwise, we're validating against the cached config
1845	 * (zpool.cache) that was read when we loaded the zfs module, and then
1846	 * later we will recursively call spa_load() and validate against
1847	 * the vdev config.
1848	 *
1849	 * If we're assembling a new pool that's been split off from an
1850	 * existing pool, the labels haven't yet been updated so we skip
1851	 * validation for now.
1852	 */
1853	if (type != SPA_IMPORT_ASSEMBLE) {
1854		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1855		error = vdev_validate(rvd);
1856		spa_config_exit(spa, SCL_ALL, FTAG);
1857
1858		if (error != 0)
1859			return (error);
1860
1861		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1862			return (ENXIO);
1863	}
1864
1865	/*
1866	 * Find the best uberblock.
1867	 */
1868	vdev_uberblock_load(NULL, rvd, ub);
1869
1870	/*
1871	 * If we weren't able to find a single valid uberblock, return failure.
1872	 */
1873	if (ub->ub_txg == 0)
1874		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1875
1876	/*
1877	 * If the pool is newer than the code, we can't open it.
1878	 */
1879	if (ub->ub_version > SPA_VERSION)
1880		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1881
1882	/*
1883	 * If the vdev guid sum doesn't match the uberblock, we have an
1884	 * incomplete configuration.  We first check to see if the pool
1885	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1886	 * If it is, defer the vdev_guid_sum check till later so we
1887	 * can handle missing vdevs.
1888	 */
1889	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1890	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1891	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1892		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1893
1894	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1895		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1896		spa_try_repair(spa, config);
1897		spa_config_exit(spa, SCL_ALL, FTAG);
1898		nvlist_free(spa->spa_config_splitting);
1899		spa->spa_config_splitting = NULL;
1900	}
1901
1902	/*
1903	 * Initialize internal SPA structures.
1904	 */
1905	spa->spa_state = POOL_STATE_ACTIVE;
1906	spa->spa_ubsync = spa->spa_uberblock;
1907	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1908	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1909	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1910	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1911	spa->spa_claim_max_txg = spa->spa_first_txg;
1912	spa->spa_prev_software_version = ub->ub_software_version;
1913
1914	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1915	if (error)
1916		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1917	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1918
1919	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1920		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1921
1922	if (!mosconfig) {
1923		uint64_t hostid;
1924		nvlist_t *policy = NULL, *nvconfig;
1925
1926		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1927			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1928
1929		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1930		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1931			char *hostname;
1932			unsigned long myhostid = 0;
1933
1934			VERIFY(nvlist_lookup_string(nvconfig,
1935			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1936
1937#ifdef	_KERNEL
1938			myhostid = zone_get_hostid(NULL);
1939#else	/* _KERNEL */
1940			/*
1941			 * We're emulating the system's hostid in userland, so
1942			 * we can't use zone_get_hostid().
1943			 */
1944			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1945#endif	/* _KERNEL */
1946			if (hostid != 0 && myhostid != 0 &&
1947			    hostid != myhostid) {
1948				nvlist_free(nvconfig);
1949				cmn_err(CE_WARN, "pool '%s' could not be "
1950				    "loaded as it was last accessed by "
1951				    "another system (host: %s hostid: 0x%lx). "
1952				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1953				    spa_name(spa), hostname,
1954				    (unsigned long)hostid);
1955				return (EBADF);
1956			}
1957		}
1958		if (nvlist_lookup_nvlist(spa->spa_config,
1959		    ZPOOL_REWIND_POLICY, &policy) == 0)
1960			VERIFY(nvlist_add_nvlist(nvconfig,
1961			    ZPOOL_REWIND_POLICY, policy) == 0);
1962
1963		spa_config_set(spa, nvconfig);
1964		spa_unload(spa);
1965		spa_deactivate(spa);
1966		spa_activate(spa, orig_mode);
1967
1968		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
1969	}
1970
1971	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
1972		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1973	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
1974	if (error != 0)
1975		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1976
1977	/*
1978	 * Load the bit that tells us to use the new accounting function
1979	 * (raid-z deflation).  If we have an older pool, this will not
1980	 * be present.
1981	 */
1982	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
1983	if (error != 0 && error != ENOENT)
1984		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1985
1986	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
1987	    &spa->spa_creation_version);
1988	if (error != 0 && error != ENOENT)
1989		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1990
1991	/*
1992	 * Load the persistent error log.  If we have an older pool, this will
1993	 * not be present.
1994	 */
1995	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
1996	if (error != 0 && error != ENOENT)
1997		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1998
1999	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2000	    &spa->spa_errlog_scrub);
2001	if (error != 0 && error != ENOENT)
2002		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2003
2004	/*
2005	 * Load the history object.  If we have an older pool, this
2006	 * will not be present.
2007	 */
2008	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2009	if (error != 0 && error != ENOENT)
2010		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2011
2012	/*
2013	 * If we're assembling the pool from the split-off vdevs of
2014	 * an existing pool, we don't want to attach the spares & cache
2015	 * devices.
2016	 */
2017
2018	/*
2019	 * Load any hot spares for this pool.
2020	 */
2021	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2022	if (error != 0 && error != ENOENT)
2023		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2024	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2025		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2026		if (load_nvlist(spa, spa->spa_spares.sav_object,
2027		    &spa->spa_spares.sav_config) != 0)
2028			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2029
2030		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2031		spa_load_spares(spa);
2032		spa_config_exit(spa, SCL_ALL, FTAG);
2033	} else if (error == 0) {
2034		spa->spa_spares.sav_sync = B_TRUE;
2035	}
2036
2037	/*
2038	 * Load any level 2 ARC devices for this pool.
2039	 */
2040	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2041	    &spa->spa_l2cache.sav_object);
2042	if (error != 0 && error != ENOENT)
2043		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2044	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2045		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2046		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2047		    &spa->spa_l2cache.sav_config) != 0)
2048			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2049
2050		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2051		spa_load_l2cache(spa);
2052		spa_config_exit(spa, SCL_ALL, FTAG);
2053	} else if (error == 0) {
2054		spa->spa_l2cache.sav_sync = B_TRUE;
2055	}
2056
2057	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2058
2059	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2060	if (error && error != ENOENT)
2061		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2062
2063	if (error == 0) {
2064		uint64_t autoreplace;
2065
2066		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2067		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2068		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2069		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2070		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2071		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2072		    &spa->spa_dedup_ditto);
2073
2074		spa->spa_autoreplace = (autoreplace != 0);
2075	}
2076
2077	/*
2078	 * If the 'autoreplace' property is set, then post a resource notifying
2079	 * the ZFS DE that it should not issue any faults for unopenable
2080	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2081	 * unopenable vdevs so that the normal autoreplace handler can take
2082	 * over.
2083	 */
2084	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2085		spa_check_removed(spa->spa_root_vdev);
2086		/*
2087		 * For the import case, this is done in spa_import(), because
2088		 * at this point we're using the spare definitions from
2089		 * the MOS config, not necessarily from the userland config.
2090		 */
2091		if (state != SPA_LOAD_IMPORT) {
2092			spa_aux_check_removed(&spa->spa_spares);
2093			spa_aux_check_removed(&spa->spa_l2cache);
2094		}
2095	}
2096
2097	/*
2098	 * Load the vdev state for all toplevel vdevs.
2099	 */
2100	vdev_load(rvd);
2101
2102	/*
2103	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2104	 */
2105	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2106	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2107	spa_config_exit(spa, SCL_ALL, FTAG);
2108
2109	/*
2110	 * Load the DDTs (dedup tables).
2111	 */
2112	error = ddt_load(spa);
2113	if (error != 0)
2114		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2115
2116	spa_update_dspace(spa);
2117
2118	/*
2119	 * Validate the config, using the MOS config to fill in any
2120	 * information which might be missing.  If we fail to validate
2121	 * the config then declare the pool unfit for use. If we're
2122	 * assembling a pool from a split, the log is not transferred
2123	 * over.
2124	 */
2125	if (type != SPA_IMPORT_ASSEMBLE) {
2126		nvlist_t *nvconfig;
2127
2128		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2129			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2130
2131		if (!spa_config_valid(spa, nvconfig)) {
2132			nvlist_free(nvconfig);
2133			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2134			    ENXIO));
2135		}
2136		nvlist_free(nvconfig);
2137
2138		/*
2139		 * Now that we've validate the config, check the state of the
2140		 * root vdev.  If it can't be opened, it indicates one or
2141		 * more toplevel vdevs are faulted.
2142		 */
2143		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2144			return (ENXIO);
2145
2146		if (spa_check_logs(spa)) {
2147			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2148			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2149		}
2150	}
2151
2152	/*
2153	 * We've successfully opened the pool, verify that we're ready
2154	 * to start pushing transactions.
2155	 */
2156	if (state != SPA_LOAD_TRYIMPORT) {
2157		if (error = spa_load_verify(spa))
2158			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2159			    error));
2160	}
2161
2162	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2163	    spa->spa_load_max_txg == UINT64_MAX)) {
2164		dmu_tx_t *tx;
2165		int need_update = B_FALSE;
2166
2167		ASSERT(state != SPA_LOAD_TRYIMPORT);
2168
2169		/*
2170		 * Claim log blocks that haven't been committed yet.
2171		 * This must all happen in a single txg.
2172		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2173		 * invoked from zil_claim_log_block()'s i/o done callback.
2174		 * Price of rollback is that we abandon the log.
2175		 */
2176		spa->spa_claiming = B_TRUE;
2177
2178		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2179		    spa_first_txg(spa));
2180		(void) dmu_objset_find(spa_name(spa),
2181		    zil_claim, tx, DS_FIND_CHILDREN);
2182		dmu_tx_commit(tx);
2183
2184		spa->spa_claiming = B_FALSE;
2185
2186		spa_set_log_state(spa, SPA_LOG_GOOD);
2187		spa->spa_sync_on = B_TRUE;
2188		txg_sync_start(spa->spa_dsl_pool);
2189
2190		/*
2191		 * Wait for all claims to sync.  We sync up to the highest
2192		 * claimed log block birth time so that claimed log blocks
2193		 * don't appear to be from the future.  spa_claim_max_txg
2194		 * will have been set for us by either zil_check_log_chain()
2195		 * (invoked from spa_check_logs()) or zil_claim() above.
2196		 */
2197		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2198
2199		/*
2200		 * If the config cache is stale, or we have uninitialized
2201		 * metaslabs (see spa_vdev_add()), then update the config.
2202		 *
2203		 * If this is a verbatim import, trust the current
2204		 * in-core spa_config and update the disk labels.
2205		 */
2206		if (config_cache_txg != spa->spa_config_txg ||
2207		    state == SPA_LOAD_IMPORT ||
2208		    state == SPA_LOAD_RECOVER ||
2209		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2210			need_update = B_TRUE;
2211
2212		for (int c = 0; c < rvd->vdev_children; c++)
2213			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2214				need_update = B_TRUE;
2215
2216		/*
2217		 * Update the config cache asychronously in case we're the
2218		 * root pool, in which case the config cache isn't writable yet.
2219		 */
2220		if (need_update)
2221			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2222
2223		/*
2224		 * Check all DTLs to see if anything needs resilvering.
2225		 */
2226		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2227		    vdev_resilver_needed(rvd, NULL, NULL))
2228			spa_async_request(spa, SPA_ASYNC_RESILVER);
2229
2230		/*
2231		 * Delete any inconsistent datasets.
2232		 */
2233		(void) dmu_objset_find(spa_name(spa),
2234		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2235
2236		/*
2237		 * Clean up any stale temporary dataset userrefs.
2238		 */
2239		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2240	}
2241
2242	return (0);
2243}
2244
2245static int
2246spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2247{
2248	int mode = spa->spa_mode;
2249
2250	spa_unload(spa);
2251	spa_deactivate(spa);
2252
2253	spa->spa_load_max_txg--;
2254
2255	spa_activate(spa, mode);
2256	spa_async_suspend(spa);
2257
2258	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2259}
2260
2261static int
2262spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2263    uint64_t max_request, int rewind_flags)
2264{
2265	nvlist_t *config = NULL;
2266	int load_error, rewind_error;
2267	uint64_t safe_rewind_txg;
2268	uint64_t min_txg;
2269
2270	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2271		spa->spa_load_max_txg = spa->spa_load_txg;
2272		spa_set_log_state(spa, SPA_LOG_CLEAR);
2273	} else {
2274		spa->spa_load_max_txg = max_request;
2275	}
2276
2277	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2278	    mosconfig);
2279	if (load_error == 0)
2280		return (0);
2281
2282	if (spa->spa_root_vdev != NULL)
2283		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2284
2285	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2286	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2287
2288	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2289		nvlist_free(config);
2290		return (load_error);
2291	}
2292
2293	/* Price of rolling back is discarding txgs, including log */
2294	if (state == SPA_LOAD_RECOVER)
2295		spa_set_log_state(spa, SPA_LOG_CLEAR);
2296
2297	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2298	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2299	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2300	    TXG_INITIAL : safe_rewind_txg;
2301
2302	/*
2303	 * Continue as long as we're finding errors, we're still within
2304	 * the acceptable rewind range, and we're still finding uberblocks
2305	 */
2306	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2307	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2308		if (spa->spa_load_max_txg < safe_rewind_txg)
2309			spa->spa_extreme_rewind = B_TRUE;
2310		rewind_error = spa_load_retry(spa, state, mosconfig);
2311	}
2312
2313	spa->spa_extreme_rewind = B_FALSE;
2314	spa->spa_load_max_txg = UINT64_MAX;
2315
2316	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2317		spa_config_set(spa, config);
2318
2319	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2320}
2321
2322/*
2323 * Pool Open/Import
2324 *
2325 * The import case is identical to an open except that the configuration is sent
2326 * down from userland, instead of grabbed from the configuration cache.  For the
2327 * case of an open, the pool configuration will exist in the
2328 * POOL_STATE_UNINITIALIZED state.
2329 *
2330 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2331 * the same time open the pool, without having to keep around the spa_t in some
2332 * ambiguous state.
2333 */
2334static int
2335spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2336    nvlist_t **config)
2337{
2338	spa_t *spa;
2339	spa_load_state_t state = SPA_LOAD_OPEN;
2340	int error;
2341	int locked = B_FALSE;
2342
2343	*spapp = NULL;
2344
2345	/*
2346	 * As disgusting as this is, we need to support recursive calls to this
2347	 * function because dsl_dir_open() is called during spa_load(), and ends
2348	 * up calling spa_open() again.  The real fix is to figure out how to
2349	 * avoid dsl_dir_open() calling this in the first place.
2350	 */
2351	if (mutex_owner(&spa_namespace_lock) != curthread) {
2352		mutex_enter(&spa_namespace_lock);
2353		locked = B_TRUE;
2354	}
2355
2356	if ((spa = spa_lookup(pool)) == NULL) {
2357		if (locked)
2358			mutex_exit(&spa_namespace_lock);
2359		return (ENOENT);
2360	}
2361
2362	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2363		zpool_rewind_policy_t policy;
2364
2365		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2366		    &policy);
2367		if (policy.zrp_request & ZPOOL_DO_REWIND)
2368			state = SPA_LOAD_RECOVER;
2369
2370		spa_activate(spa, spa_mode_global);
2371
2372		if (state != SPA_LOAD_RECOVER)
2373			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2374
2375		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2376		    policy.zrp_request);
2377
2378		if (error == EBADF) {
2379			/*
2380			 * If vdev_validate() returns failure (indicated by
2381			 * EBADF), it indicates that one of the vdevs indicates
2382			 * that the pool has been exported or destroyed.  If
2383			 * this is the case, the config cache is out of sync and
2384			 * we should remove the pool from the namespace.
2385			 */
2386			spa_unload(spa);
2387			spa_deactivate(spa);
2388			spa_config_sync(spa, B_TRUE, B_TRUE);
2389			spa_remove(spa);
2390			if (locked)
2391				mutex_exit(&spa_namespace_lock);
2392			return (ENOENT);
2393		}
2394
2395		if (error) {
2396			/*
2397			 * We can't open the pool, but we still have useful
2398			 * information: the state of each vdev after the
2399			 * attempted vdev_open().  Return this to the user.
2400			 */
2401			if (config != NULL && spa->spa_config) {
2402				VERIFY(nvlist_dup(spa->spa_config, config,
2403				    KM_SLEEP) == 0);
2404				VERIFY(nvlist_add_nvlist(*config,
2405				    ZPOOL_CONFIG_LOAD_INFO,
2406				    spa->spa_load_info) == 0);
2407			}
2408			spa_unload(spa);
2409			spa_deactivate(spa);
2410			spa->spa_last_open_failed = error;
2411			if (locked)
2412				mutex_exit(&spa_namespace_lock);
2413			*spapp = NULL;
2414			return (error);
2415		}
2416	}
2417
2418	spa_open_ref(spa, tag);
2419
2420	if (config != NULL)
2421		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2422
2423	/*
2424	 * If we've recovered the pool, pass back any information we
2425	 * gathered while doing the load.
2426	 */
2427	if (state == SPA_LOAD_RECOVER) {
2428		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2429		    spa->spa_load_info) == 0);
2430	}
2431
2432	if (locked) {
2433		spa->spa_last_open_failed = 0;
2434		spa->spa_last_ubsync_txg = 0;
2435		spa->spa_load_txg = 0;
2436		mutex_exit(&spa_namespace_lock);
2437	}
2438
2439	*spapp = spa;
2440
2441	return (0);
2442}
2443
2444int
2445spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2446    nvlist_t **config)
2447{
2448	return (spa_open_common(name, spapp, tag, policy, config));
2449}
2450
2451int
2452spa_open(const char *name, spa_t **spapp, void *tag)
2453{
2454	return (spa_open_common(name, spapp, tag, NULL, NULL));
2455}
2456
2457/*
2458 * Lookup the given spa_t, incrementing the inject count in the process,
2459 * preventing it from being exported or destroyed.
2460 */
2461spa_t *
2462spa_inject_addref(char *name)
2463{
2464	spa_t *spa;
2465
2466	mutex_enter(&spa_namespace_lock);
2467	if ((spa = spa_lookup(name)) == NULL) {
2468		mutex_exit(&spa_namespace_lock);
2469		return (NULL);
2470	}
2471	spa->spa_inject_ref++;
2472	mutex_exit(&spa_namespace_lock);
2473
2474	return (spa);
2475}
2476
2477void
2478spa_inject_delref(spa_t *spa)
2479{
2480	mutex_enter(&spa_namespace_lock);
2481	spa->spa_inject_ref--;
2482	mutex_exit(&spa_namespace_lock);
2483}
2484
2485/*
2486 * Add spares device information to the nvlist.
2487 */
2488static void
2489spa_add_spares(spa_t *spa, nvlist_t *config)
2490{
2491	nvlist_t **spares;
2492	uint_t i, nspares;
2493	nvlist_t *nvroot;
2494	uint64_t guid;
2495	vdev_stat_t *vs;
2496	uint_t vsc;
2497	uint64_t pool;
2498
2499	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2500
2501	if (spa->spa_spares.sav_count == 0)
2502		return;
2503
2504	VERIFY(nvlist_lookup_nvlist(config,
2505	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2506	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2507	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2508	if (nspares != 0) {
2509		VERIFY(nvlist_add_nvlist_array(nvroot,
2510		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2511		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2512		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2513
2514		/*
2515		 * Go through and find any spares which have since been
2516		 * repurposed as an active spare.  If this is the case, update
2517		 * their status appropriately.
2518		 */
2519		for (i = 0; i < nspares; i++) {
2520			VERIFY(nvlist_lookup_uint64(spares[i],
2521			    ZPOOL_CONFIG_GUID, &guid) == 0);
2522			if (spa_spare_exists(guid, &pool, NULL) &&
2523			    pool != 0ULL) {
2524				VERIFY(nvlist_lookup_uint64_array(
2525				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2526				    (uint64_t **)&vs, &vsc) == 0);
2527				vs->vs_state = VDEV_STATE_CANT_OPEN;
2528				vs->vs_aux = VDEV_AUX_SPARED;
2529			}
2530		}
2531	}
2532}
2533
2534/*
2535 * Add l2cache device information to the nvlist, including vdev stats.
2536 */
2537static void
2538spa_add_l2cache(spa_t *spa, nvlist_t *config)
2539{
2540	nvlist_t **l2cache;
2541	uint_t i, j, nl2cache;
2542	nvlist_t *nvroot;
2543	uint64_t guid;
2544	vdev_t *vd;
2545	vdev_stat_t *vs;
2546	uint_t vsc;
2547
2548	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2549
2550	if (spa->spa_l2cache.sav_count == 0)
2551		return;
2552
2553	VERIFY(nvlist_lookup_nvlist(config,
2554	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2555	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2556	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2557	if (nl2cache != 0) {
2558		VERIFY(nvlist_add_nvlist_array(nvroot,
2559		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2560		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2561		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2562
2563		/*
2564		 * Update level 2 cache device stats.
2565		 */
2566
2567		for (i = 0; i < nl2cache; i++) {
2568			VERIFY(nvlist_lookup_uint64(l2cache[i],
2569			    ZPOOL_CONFIG_GUID, &guid) == 0);
2570
2571			vd = NULL;
2572			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2573				if (guid ==
2574				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2575					vd = spa->spa_l2cache.sav_vdevs[j];
2576					break;
2577				}
2578			}
2579			ASSERT(vd != NULL);
2580
2581			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2582			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2583			    == 0);
2584			vdev_get_stats(vd, vs);
2585		}
2586	}
2587}
2588
2589int
2590spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2591{
2592	int error;
2593	spa_t *spa;
2594
2595	*config = NULL;
2596	error = spa_open_common(name, &spa, FTAG, NULL, config);
2597
2598	if (spa != NULL) {
2599		/*
2600		 * This still leaves a window of inconsistency where the spares
2601		 * or l2cache devices could change and the config would be
2602		 * self-inconsistent.
2603		 */
2604		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2605
2606		if (*config != NULL) {
2607			uint64_t loadtimes[2];
2608
2609			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2610			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2611			VERIFY(nvlist_add_uint64_array(*config,
2612			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2613
2614			VERIFY(nvlist_add_uint64(*config,
2615			    ZPOOL_CONFIG_ERRCOUNT,
2616			    spa_get_errlog_size(spa)) == 0);
2617
2618			if (spa_suspended(spa))
2619				VERIFY(nvlist_add_uint64(*config,
2620				    ZPOOL_CONFIG_SUSPENDED,
2621				    spa->spa_failmode) == 0);
2622
2623			spa_add_spares(spa, *config);
2624			spa_add_l2cache(spa, *config);
2625		}
2626	}
2627
2628	/*
2629	 * We want to get the alternate root even for faulted pools, so we cheat
2630	 * and call spa_lookup() directly.
2631	 */
2632	if (altroot) {
2633		if (spa == NULL) {
2634			mutex_enter(&spa_namespace_lock);
2635			spa = spa_lookup(name);
2636			if (spa)
2637				spa_altroot(spa, altroot, buflen);
2638			else
2639				altroot[0] = '\0';
2640			spa = NULL;
2641			mutex_exit(&spa_namespace_lock);
2642		} else {
2643			spa_altroot(spa, altroot, buflen);
2644		}
2645	}
2646
2647	if (spa != NULL) {
2648		spa_config_exit(spa, SCL_CONFIG, FTAG);
2649		spa_close(spa, FTAG);
2650	}
2651
2652	return (error);
2653}
2654
2655/*
2656 * Validate that the auxiliary device array is well formed.  We must have an
2657 * array of nvlists, each which describes a valid leaf vdev.  If this is an
2658 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2659 * specified, as long as they are well-formed.
2660 */
2661static int
2662spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2663    spa_aux_vdev_t *sav, const char *config, uint64_t version,
2664    vdev_labeltype_t label)
2665{
2666	nvlist_t **dev;
2667	uint_t i, ndev;
2668	vdev_t *vd;
2669	int error;
2670
2671	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2672
2673	/*
2674	 * It's acceptable to have no devs specified.
2675	 */
2676	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2677		return (0);
2678
2679	if (ndev == 0)
2680		return (EINVAL);
2681
2682	/*
2683	 * Make sure the pool is formatted with a version that supports this
2684	 * device type.
2685	 */
2686	if (spa_version(spa) < version)
2687		return (ENOTSUP);
2688
2689	/*
2690	 * Set the pending device list so we correctly handle device in-use
2691	 * checking.
2692	 */
2693	sav->sav_pending = dev;
2694	sav->sav_npending = ndev;
2695
2696	for (i = 0; i < ndev; i++) {
2697		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2698		    mode)) != 0)
2699			goto out;
2700
2701		if (!vd->vdev_ops->vdev_op_leaf) {
2702			vdev_free(vd);
2703			error = EINVAL;
2704			goto out;
2705		}
2706
2707		/*
2708		 * The L2ARC currently only supports disk devices in
2709		 * kernel context.  For user-level testing, we allow it.
2710		 */
2711#ifdef _KERNEL
2712		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2713		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2714			error = ENOTBLK;
2715			goto out;
2716		}
2717#endif
2718		vd->vdev_top = vd;
2719
2720		if ((error = vdev_open(vd)) == 0 &&
2721		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2722			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2723			    vd->vdev_guid) == 0);
2724		}
2725
2726		vdev_free(vd);
2727
2728		if (error &&
2729		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2730			goto out;
2731		else
2732			error = 0;
2733	}
2734
2735out:
2736	sav->sav_pending = NULL;
2737	sav->sav_npending = 0;
2738	return (error);
2739}
2740
2741static int
2742spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2743{
2744	int error;
2745
2746	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2747
2748	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2749	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2750	    VDEV_LABEL_SPARE)) != 0) {
2751		return (error);
2752	}
2753
2754	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2755	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2756	    VDEV_LABEL_L2CACHE));
2757}
2758
2759static void
2760spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2761    const char *config)
2762{
2763	int i;
2764
2765	if (sav->sav_config != NULL) {
2766		nvlist_t **olddevs;
2767		uint_t oldndevs;
2768		nvlist_t **newdevs;
2769
2770		/*
2771		 * Generate new dev list by concatentating with the
2772		 * current dev list.
2773		 */
2774		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2775		    &olddevs, &oldndevs) == 0);
2776
2777		newdevs = kmem_alloc(sizeof (void *) *
2778		    (ndevs + oldndevs), KM_SLEEP);
2779		for (i = 0; i < oldndevs; i++)
2780			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2781			    KM_SLEEP) == 0);
2782		for (i = 0; i < ndevs; i++)
2783			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2784			    KM_SLEEP) == 0);
2785
2786		VERIFY(nvlist_remove(sav->sav_config, config,
2787		    DATA_TYPE_NVLIST_ARRAY) == 0);
2788
2789		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2790		    config, newdevs, ndevs + oldndevs) == 0);
2791		for (i = 0; i < oldndevs + ndevs; i++)
2792			nvlist_free(newdevs[i]);
2793		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2794	} else {
2795		/*
2796		 * Generate a new dev list.
2797		 */
2798		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2799		    KM_SLEEP) == 0);
2800		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2801		    devs, ndevs) == 0);
2802	}
2803}
2804
2805/*
2806 * Stop and drop level 2 ARC devices
2807 */
2808void
2809spa_l2cache_drop(spa_t *spa)
2810{
2811	vdev_t *vd;
2812	int i;
2813	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2814
2815	for (i = 0; i < sav->sav_count; i++) {
2816		uint64_t pool;
2817
2818		vd = sav->sav_vdevs[i];
2819		ASSERT(vd != NULL);
2820
2821		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2822		    pool != 0ULL && l2arc_vdev_present(vd))
2823			l2arc_remove_vdev(vd);
2824		if (vd->vdev_isl2cache)
2825			spa_l2cache_remove(vd);
2826		vdev_clear_stats(vd);
2827		(void) vdev_close(vd);
2828	}
2829}
2830
2831/*
2832 * Pool Creation
2833 */
2834int
2835spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2836    const char *history_str, nvlist_t *zplprops)
2837{
2838	spa_t *spa;
2839	char *altroot = NULL;
2840	vdev_t *rvd;
2841	dsl_pool_t *dp;
2842	dmu_tx_t *tx;
2843	int error = 0;
2844	uint64_t txg = TXG_INITIAL;
2845	nvlist_t **spares, **l2cache;
2846	uint_t nspares, nl2cache;
2847	uint64_t version, obj;
2848
2849	/*
2850	 * If this pool already exists, return failure.
2851	 */
2852	mutex_enter(&spa_namespace_lock);
2853	if (spa_lookup(pool) != NULL) {
2854		mutex_exit(&spa_namespace_lock);
2855		return (EEXIST);
2856	}
2857
2858	/*
2859	 * Allocate a new spa_t structure.
2860	 */
2861	(void) nvlist_lookup_string(props,
2862	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2863	spa = spa_add(pool, NULL, altroot);
2864	spa_activate(spa, spa_mode_global);
2865
2866	if (props && (error = spa_prop_validate(spa, props))) {
2867		spa_deactivate(spa);
2868		spa_remove(spa);
2869		mutex_exit(&spa_namespace_lock);
2870		return (error);
2871	}
2872
2873	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2874	    &version) != 0)
2875		version = SPA_VERSION;
2876	ASSERT(version <= SPA_VERSION);
2877
2878	spa->spa_first_txg = txg;
2879	spa->spa_uberblock.ub_txg = txg - 1;
2880	spa->spa_uberblock.ub_version = version;
2881	spa->spa_ubsync = spa->spa_uberblock;
2882
2883	/*
2884	 * Create "The Godfather" zio to hold all async IOs
2885	 */
2886	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2887	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2888
2889	/*
2890	 * Create the root vdev.
2891	 */
2892	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2893
2894	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2895
2896	ASSERT(error != 0 || rvd != NULL);
2897	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2898
2899	if (error == 0 && !zfs_allocatable_devs(nvroot))
2900		error = EINVAL;
2901
2902	if (error == 0 &&
2903	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2904	    (error = spa_validate_aux(spa, nvroot, txg,
2905	    VDEV_ALLOC_ADD)) == 0) {
2906		for (int c = 0; c < rvd->vdev_children; c++) {
2907			vdev_metaslab_set_size(rvd->vdev_child[c]);
2908			vdev_expand(rvd->vdev_child[c], txg);
2909		}
2910	}
2911
2912	spa_config_exit(spa, SCL_ALL, FTAG);
2913
2914	if (error != 0) {
2915		spa_unload(spa);
2916		spa_deactivate(spa);
2917		spa_remove(spa);
2918		mutex_exit(&spa_namespace_lock);
2919		return (error);
2920	}
2921
2922	/*
2923	 * Get the list of spares, if specified.
2924	 */
2925	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2926	    &spares, &nspares) == 0) {
2927		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2928		    KM_SLEEP) == 0);
2929		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2930		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2931		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2932		spa_load_spares(spa);
2933		spa_config_exit(spa, SCL_ALL, FTAG);
2934		spa->spa_spares.sav_sync = B_TRUE;
2935	}
2936
2937	/*
2938	 * Get the list of level 2 cache devices, if specified.
2939	 */
2940	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2941	    &l2cache, &nl2cache) == 0) {
2942		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2943		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2944		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2945		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2946		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2947		spa_load_l2cache(spa);
2948		spa_config_exit(spa, SCL_ALL, FTAG);
2949		spa->spa_l2cache.sav_sync = B_TRUE;
2950	}
2951
2952	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2953	spa->spa_meta_objset = dp->dp_meta_objset;
2954
2955	/*
2956	 * Create DDTs (dedup tables).
2957	 */
2958	ddt_create(spa);
2959
2960	spa_update_dspace(spa);
2961
2962	tx = dmu_tx_create_assigned(dp, txg);
2963
2964	/*
2965	 * Create the pool config object.
2966	 */
2967	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2968	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2969	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2970
2971	if (zap_add(spa->spa_meta_objset,
2972	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2973	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2974		cmn_err(CE_PANIC, "failed to add pool config");
2975	}
2976
2977	if (zap_add(spa->spa_meta_objset,
2978	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
2979	    sizeof (uint64_t), 1, &version, tx) != 0) {
2980		cmn_err(CE_PANIC, "failed to add pool version");
2981	}
2982
2983	/* Newly created pools with the right version are always deflated. */
2984	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2985		spa->spa_deflate = TRUE;
2986		if (zap_add(spa->spa_meta_objset,
2987		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2988		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2989			cmn_err(CE_PANIC, "failed to add deflate");
2990		}
2991	}
2992
2993	/*
2994	 * Create the deferred-free bpobj.  Turn off compression
2995	 * because sync-to-convergence takes longer if the blocksize
2996	 * keeps changing.
2997	 */
2998	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
2999	dmu_object_set_compress(spa->spa_meta_objset, obj,
3000	    ZIO_COMPRESS_OFF, tx);
3001	if (zap_add(spa->spa_meta_objset,
3002	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3003	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3004		cmn_err(CE_PANIC, "failed to add bpobj");
3005	}
3006	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3007	    spa->spa_meta_objset, obj));
3008
3009	/*
3010	 * Create the pool's history object.
3011	 */
3012	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3013		spa_history_create_obj(spa, tx);
3014
3015	/*
3016	 * Set pool properties.
3017	 */
3018	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3019	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3020	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3021	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3022
3023	if (props != NULL) {
3024		spa_configfile_set(spa, props, B_FALSE);
3025		spa_sync_props(spa, props, tx);
3026	}
3027
3028	dmu_tx_commit(tx);
3029
3030	spa->spa_sync_on = B_TRUE;
3031	txg_sync_start(spa->spa_dsl_pool);
3032
3033	/*
3034	 * We explicitly wait for the first transaction to complete so that our
3035	 * bean counters are appropriately updated.
3036	 */
3037	txg_wait_synced(spa->spa_dsl_pool, txg);
3038
3039	spa_config_sync(spa, B_FALSE, B_TRUE);
3040
3041	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3042		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3043	spa_history_log_version(spa, LOG_POOL_CREATE);
3044
3045	spa->spa_minref = refcount_count(&spa->spa_refcount);
3046
3047	mutex_exit(&spa_namespace_lock);
3048
3049	return (0);
3050}
3051
3052#ifdef _KERNEL
3053/*
3054 * Get the root pool information from the root disk, then import the root pool
3055 * during the system boot up time.
3056 */
3057extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3058
3059static nvlist_t *
3060spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3061{
3062	nvlist_t *config;
3063	nvlist_t *nvtop, *nvroot;
3064	uint64_t pgid;
3065
3066	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3067		return (NULL);
3068
3069	/*
3070	 * Add this top-level vdev to the child array.
3071	 */
3072	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3073	    &nvtop) == 0);
3074	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3075	    &pgid) == 0);
3076	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3077
3078	/*
3079	 * Put this pool's top-level vdevs into a root vdev.
3080	 */
3081	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3082	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3083	    VDEV_TYPE_ROOT) == 0);
3084	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3085	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3086	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3087	    &nvtop, 1) == 0);
3088
3089	/*
3090	 * Replace the existing vdev_tree with the new root vdev in
3091	 * this pool's configuration (remove the old, add the new).
3092	 */
3093	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3094	nvlist_free(nvroot);
3095	return (config);
3096}
3097
3098/*
3099 * Walk the vdev tree and see if we can find a device with "better"
3100 * configuration. A configuration is "better" if the label on that
3101 * device has a more recent txg.
3102 */
3103static void
3104spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3105{
3106	for (int c = 0; c < vd->vdev_children; c++)
3107		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3108
3109	if (vd->vdev_ops->vdev_op_leaf) {
3110		nvlist_t *label;
3111		uint64_t label_txg;
3112
3113		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3114		    &label) != 0)
3115			return;
3116
3117		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3118		    &label_txg) == 0);
3119
3120		/*
3121		 * Do we have a better boot device?
3122		 */
3123		if (label_txg > *txg) {
3124			*txg = label_txg;
3125			*avd = vd;
3126		}
3127		nvlist_free(label);
3128	}
3129}
3130
3131/*
3132 * Import a root pool.
3133 *
3134 * For x86. devpath_list will consist of devid and/or physpath name of
3135 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3136 * The GRUB "findroot" command will return the vdev we should boot.
3137 *
3138 * For Sparc, devpath_list consists the physpath name of the booting device
3139 * no matter the rootpool is a single device pool or a mirrored pool.
3140 * e.g.
3141 *	"/pci@1f,0/ide@d/disk@0,0:a"
3142 */
3143int
3144spa_import_rootpool(char *devpath, char *devid)
3145{
3146	spa_t *spa;
3147	vdev_t *rvd, *bvd, *avd = NULL;
3148	nvlist_t *config, *nvtop;
3149	uint64_t guid, txg;
3150	char *pname;
3151	int error;
3152
3153	/*
3154	 * Read the label from the boot device and generate a configuration.
3155	 */
3156	config = spa_generate_rootconf(devpath, devid, &guid);
3157#if defined(_OBP) && defined(_KERNEL)
3158	if (config == NULL) {
3159		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3160			/* iscsi boot */
3161			get_iscsi_bootpath_phy(devpath);
3162			config = spa_generate_rootconf(devpath, devid, &guid);
3163		}
3164	}
3165#endif
3166	if (config == NULL) {
3167		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3168		    devpath);
3169		return (EIO);
3170	}
3171
3172	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3173	    &pname) == 0);
3174	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3175
3176	mutex_enter(&spa_namespace_lock);
3177	if ((spa = spa_lookup(pname)) != NULL) {
3178		/*
3179		 * Remove the existing root pool from the namespace so that we
3180		 * can replace it with the correct config we just read in.
3181		 */
3182		spa_remove(spa);
3183	}
3184
3185	spa = spa_add(pname, config, NULL);
3186	spa->spa_is_root = B_TRUE;
3187	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3188
3189	/*
3190	 * Build up a vdev tree based on the boot device's label config.
3191	 */
3192	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3193	    &nvtop) == 0);
3194	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3195	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3196	    VDEV_ALLOC_ROOTPOOL);
3197	spa_config_exit(spa, SCL_ALL, FTAG);
3198	if (error) {
3199		mutex_exit(&spa_namespace_lock);
3200		nvlist_free(config);
3201		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3202		    pname);
3203		return (error);
3204	}
3205
3206	/*
3207	 * Get the boot vdev.
3208	 */
3209	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3210		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3211		    (u_longlong_t)guid);
3212		error = ENOENT;
3213		goto out;
3214	}
3215
3216	/*
3217	 * Determine if there is a better boot device.
3218	 */
3219	avd = bvd;
3220	spa_alt_rootvdev(rvd, &avd, &txg);
3221	if (avd != bvd) {
3222		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3223		    "try booting from '%s'", avd->vdev_path);
3224		error = EINVAL;
3225		goto out;
3226	}
3227
3228	/*
3229	 * If the boot device is part of a spare vdev then ensure that
3230	 * we're booting off the active spare.
3231	 */
3232	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3233	    !bvd->vdev_isspare) {
3234		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3235		    "try booting from '%s'",
3236		    bvd->vdev_parent->
3237		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3238		error = EINVAL;
3239		goto out;
3240	}
3241
3242	error = 0;
3243	spa_history_log_version(spa, LOG_POOL_IMPORT);
3244out:
3245	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3246	vdev_free(rvd);
3247	spa_config_exit(spa, SCL_ALL, FTAG);
3248	mutex_exit(&spa_namespace_lock);
3249
3250	nvlist_free(config);
3251	return (error);
3252}
3253
3254#endif
3255
3256/*
3257 * Import a non-root pool into the system.
3258 */
3259int
3260spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3261{
3262	spa_t *spa;
3263	char *altroot = NULL;
3264	spa_load_state_t state = SPA_LOAD_IMPORT;
3265	zpool_rewind_policy_t policy;
3266	uint64_t mode = spa_mode_global;
3267	uint64_t readonly = B_FALSE;
3268	int error;
3269	nvlist_t *nvroot;
3270	nvlist_t **spares, **l2cache;
3271	uint_t nspares, nl2cache;
3272
3273	/*
3274	 * If a pool with this name exists, return failure.
3275	 */
3276	mutex_enter(&spa_namespace_lock);
3277	if (spa_lookup(pool) != NULL) {
3278		mutex_exit(&spa_namespace_lock);
3279		return (EEXIST);
3280	}
3281
3282	/*
3283	 * Create and initialize the spa structure.
3284	 */
3285	(void) nvlist_lookup_string(props,
3286	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3287	(void) nvlist_lookup_uint64(props,
3288	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3289	if (readonly)
3290		mode = FREAD;
3291	spa = spa_add(pool, config, altroot);
3292	spa->spa_import_flags = flags;
3293
3294	/*
3295	 * Verbatim import - Take a pool and insert it into the namespace
3296	 * as if it had been loaded at boot.
3297	 */
3298	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3299		if (props != NULL)
3300			spa_configfile_set(spa, props, B_FALSE);
3301
3302		spa_config_sync(spa, B_FALSE, B_TRUE);
3303
3304		mutex_exit(&spa_namespace_lock);
3305		spa_history_log_version(spa, LOG_POOL_IMPORT);
3306
3307		return (0);
3308	}
3309
3310	spa_activate(spa, mode);
3311
3312	/*
3313	 * Don't start async tasks until we know everything is healthy.
3314	 */
3315	spa_async_suspend(spa);
3316
3317	zpool_get_rewind_policy(config, &policy);
3318	if (policy.zrp_request & ZPOOL_DO_REWIND)
3319		state = SPA_LOAD_RECOVER;
3320
3321	/*
3322	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3323	 * because the user-supplied config is actually the one to trust when
3324	 * doing an import.
3325	 */
3326	if (state != SPA_LOAD_RECOVER)
3327		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3328
3329	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3330	    policy.zrp_request);
3331
3332	/*
3333	 * Propagate anything learned while loading the pool and pass it
3334	 * back to caller (i.e. rewind info, missing devices, etc).
3335	 */
3336	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3337	    spa->spa_load_info) == 0);
3338
3339	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3340	/*
3341	 * Toss any existing sparelist, as it doesn't have any validity
3342	 * anymore, and conflicts with spa_has_spare().
3343	 */
3344	if (spa->spa_spares.sav_config) {
3345		nvlist_free(spa->spa_spares.sav_config);
3346		spa->spa_spares.sav_config = NULL;
3347		spa_load_spares(spa);
3348	}
3349	if (spa->spa_l2cache.sav_config) {
3350		nvlist_free(spa->spa_l2cache.sav_config);
3351		spa->spa_l2cache.sav_config = NULL;
3352		spa_load_l2cache(spa);
3353	}
3354
3355	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3356	    &nvroot) == 0);
3357	if (error == 0)
3358		error = spa_validate_aux(spa, nvroot, -1ULL,
3359		    VDEV_ALLOC_SPARE);
3360	if (error == 0)
3361		error = spa_validate_aux(spa, nvroot, -1ULL,
3362		    VDEV_ALLOC_L2CACHE);
3363	spa_config_exit(spa, SCL_ALL, FTAG);
3364
3365	if (props != NULL)
3366		spa_configfile_set(spa, props, B_FALSE);
3367
3368	if (error != 0 || (props && spa_writeable(spa) &&
3369	    (error = spa_prop_set(spa, props)))) {
3370		spa_unload(spa);
3371		spa_deactivate(spa);
3372		spa_remove(spa);
3373		mutex_exit(&spa_namespace_lock);
3374		return (error);
3375	}
3376
3377	spa_async_resume(spa);
3378
3379	/*
3380	 * Override any spares and level 2 cache devices as specified by
3381	 * the user, as these may have correct device names/devids, etc.
3382	 */
3383	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3384	    &spares, &nspares) == 0) {
3385		if (spa->spa_spares.sav_config)
3386			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3387			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3388		else
3389			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3390			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3391		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3392		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3393		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3394		spa_load_spares(spa);
3395		spa_config_exit(spa, SCL_ALL, FTAG);
3396		spa->spa_spares.sav_sync = B_TRUE;
3397	}
3398	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3399	    &l2cache, &nl2cache) == 0) {
3400		if (spa->spa_l2cache.sav_config)
3401			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3402			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3403		else
3404			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3405			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3406		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3407		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3408		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3409		spa_load_l2cache(spa);
3410		spa_config_exit(spa, SCL_ALL, FTAG);
3411		spa->spa_l2cache.sav_sync = B_TRUE;
3412	}
3413
3414	/*
3415	 * Check for any removed devices.
3416	 */
3417	if (spa->spa_autoreplace) {
3418		spa_aux_check_removed(&spa->spa_spares);
3419		spa_aux_check_removed(&spa->spa_l2cache);
3420	}
3421
3422	if (spa_writeable(spa)) {
3423		/*
3424		 * Update the config cache to include the newly-imported pool.
3425		 */
3426		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3427	}
3428
3429	/*
3430	 * It's possible that the pool was expanded while it was exported.
3431	 * We kick off an async task to handle this for us.
3432	 */
3433	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3434
3435	mutex_exit(&spa_namespace_lock);
3436	spa_history_log_version(spa, LOG_POOL_IMPORT);
3437
3438	return (0);
3439}
3440
3441nvlist_t *
3442spa_tryimport(nvlist_t *tryconfig)
3443{
3444	nvlist_t *config = NULL;
3445	char *poolname;
3446	spa_t *spa;
3447	uint64_t state;
3448	int error;
3449
3450	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3451		return (NULL);
3452
3453	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3454		return (NULL);
3455
3456	/*
3457	 * Create and initialize the spa structure.
3458	 */
3459	mutex_enter(&spa_namespace_lock);
3460	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3461	spa_activate(spa, FREAD);
3462
3463	/*
3464	 * Pass off the heavy lifting to spa_load().
3465	 * Pass TRUE for mosconfig because the user-supplied config
3466	 * is actually the one to trust when doing an import.
3467	 */
3468	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3469
3470	/*
3471	 * If 'tryconfig' was at least parsable, return the current config.
3472	 */
3473	if (spa->spa_root_vdev != NULL) {
3474		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3475		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3476		    poolname) == 0);
3477		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3478		    state) == 0);
3479		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3480		    spa->spa_uberblock.ub_timestamp) == 0);
3481
3482		/*
3483		 * If the bootfs property exists on this pool then we
3484		 * copy it out so that external consumers can tell which
3485		 * pools are bootable.
3486		 */
3487		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3488			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3489
3490			/*
3491			 * We have to play games with the name since the
3492			 * pool was opened as TRYIMPORT_NAME.
3493			 */
3494			if (dsl_dsobj_to_dsname(spa_name(spa),
3495			    spa->spa_bootfs, tmpname) == 0) {
3496				char *cp;
3497				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3498
3499				cp = strchr(tmpname, '/');
3500				if (cp == NULL) {
3501					(void) strlcpy(dsname, tmpname,
3502					    MAXPATHLEN);
3503				} else {
3504					(void) snprintf(dsname, MAXPATHLEN,
3505					    "%s/%s", poolname, ++cp);
3506				}
3507				VERIFY(nvlist_add_string(config,
3508				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3509				kmem_free(dsname, MAXPATHLEN);
3510			}
3511			kmem_free(tmpname, MAXPATHLEN);
3512		}
3513
3514		/*
3515		 * Add the list of hot spares and level 2 cache devices.
3516		 */
3517		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3518		spa_add_spares(spa, config);
3519		spa_add_l2cache(spa, config);
3520		spa_config_exit(spa, SCL_CONFIG, FTAG);
3521	}
3522
3523	spa_unload(spa);
3524	spa_deactivate(spa);
3525	spa_remove(spa);
3526	mutex_exit(&spa_namespace_lock);
3527
3528	return (config);
3529}
3530
3531/*
3532 * Pool export/destroy
3533 *
3534 * The act of destroying or exporting a pool is very simple.  We make sure there
3535 * is no more pending I/O and any references to the pool are gone.  Then, we
3536 * update the pool state and sync all the labels to disk, removing the
3537 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3538 * we don't sync the labels or remove the configuration cache.
3539 */
3540static int
3541spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3542    boolean_t force, boolean_t hardforce)
3543{
3544	spa_t *spa;
3545
3546	if (oldconfig)
3547		*oldconfig = NULL;
3548
3549	if (!(spa_mode_global & FWRITE))
3550		return (EROFS);
3551
3552	mutex_enter(&spa_namespace_lock);
3553	if ((spa = spa_lookup(pool)) == NULL) {
3554		mutex_exit(&spa_namespace_lock);
3555		return (ENOENT);
3556	}
3557
3558	/*
3559	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3560	 * reacquire the namespace lock, and see if we can export.
3561	 */
3562	spa_open_ref(spa, FTAG);
3563	mutex_exit(&spa_namespace_lock);
3564	spa_async_suspend(spa);
3565	mutex_enter(&spa_namespace_lock);
3566	spa_close(spa, FTAG);
3567
3568	/*
3569	 * The pool will be in core if it's openable,
3570	 * in which case we can modify its state.
3571	 */
3572	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3573		/*
3574		 * Objsets may be open only because they're dirty, so we
3575		 * have to force it to sync before checking spa_refcnt.
3576		 */
3577		txg_wait_synced(spa->spa_dsl_pool, 0);
3578
3579		/*
3580		 * A pool cannot be exported or destroyed if there are active
3581		 * references.  If we are resetting a pool, allow references by
3582		 * fault injection handlers.
3583		 */
3584		if (!spa_refcount_zero(spa) ||
3585		    (spa->spa_inject_ref != 0 &&
3586		    new_state != POOL_STATE_UNINITIALIZED)) {
3587			spa_async_resume(spa);
3588			mutex_exit(&spa_namespace_lock);
3589			return (EBUSY);
3590		}
3591
3592		/*
3593		 * A pool cannot be exported if it has an active shared spare.
3594		 * This is to prevent other pools stealing the active spare
3595		 * from an exported pool. At user's own will, such pool can
3596		 * be forcedly exported.
3597		 */
3598		if (!force && new_state == POOL_STATE_EXPORTED &&
3599		    spa_has_active_shared_spare(spa)) {
3600			spa_async_resume(spa);
3601			mutex_exit(&spa_namespace_lock);
3602			return (EXDEV);
3603		}
3604
3605		/*
3606		 * We want this to be reflected on every label,
3607		 * so mark them all dirty.  spa_unload() will do the
3608		 * final sync that pushes these changes out.
3609		 */
3610		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3611			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3612			spa->spa_state = new_state;
3613			spa->spa_final_txg = spa_last_synced_txg(spa) +
3614			    TXG_DEFER_SIZE + 1;
3615			vdev_config_dirty(spa->spa_root_vdev);
3616			spa_config_exit(spa, SCL_ALL, FTAG);
3617		}
3618	}
3619
3620	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3621
3622	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3623		spa_unload(spa);
3624		spa_deactivate(spa);
3625	}
3626
3627	if (oldconfig && spa->spa_config)
3628		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3629
3630	if (new_state != POOL_STATE_UNINITIALIZED) {
3631		if (!hardforce)
3632			spa_config_sync(spa, B_TRUE, B_TRUE);
3633		spa_remove(spa);
3634	}
3635	mutex_exit(&spa_namespace_lock);
3636
3637	return (0);
3638}
3639
3640/*
3641 * Destroy a storage pool.
3642 */
3643int
3644spa_destroy(char *pool)
3645{
3646	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3647	    B_FALSE, B_FALSE));
3648}
3649
3650/*
3651 * Export a storage pool.
3652 */
3653int
3654spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3655    boolean_t hardforce)
3656{
3657	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3658	    force, hardforce));
3659}
3660
3661/*
3662 * Similar to spa_export(), this unloads the spa_t without actually removing it
3663 * from the namespace in any way.
3664 */
3665int
3666spa_reset(char *pool)
3667{
3668	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3669	    B_FALSE, B_FALSE));
3670}
3671
3672/*
3673 * ==========================================================================
3674 * Device manipulation
3675 * ==========================================================================
3676 */
3677
3678/*
3679 * Add a device to a storage pool.
3680 */
3681int
3682spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3683{
3684	uint64_t txg, id;
3685	int error;
3686	vdev_t *rvd = spa->spa_root_vdev;
3687	vdev_t *vd, *tvd;
3688	nvlist_t **spares, **l2cache;
3689	uint_t nspares, nl2cache;
3690
3691	ASSERT(spa_writeable(spa));
3692
3693	txg = spa_vdev_enter(spa);
3694
3695	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3696	    VDEV_ALLOC_ADD)) != 0)
3697		return (spa_vdev_exit(spa, NULL, txg, error));
3698
3699	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3700
3701	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3702	    &nspares) != 0)
3703		nspares = 0;
3704
3705	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3706	    &nl2cache) != 0)
3707		nl2cache = 0;
3708
3709	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3710		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3711
3712	if (vd->vdev_children != 0 &&
3713	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3714		return (spa_vdev_exit(spa, vd, txg, error));
3715
3716	/*
3717	 * We must validate the spares and l2cache devices after checking the
3718	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3719	 */
3720	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3721		return (spa_vdev_exit(spa, vd, txg, error));
3722
3723	/*
3724	 * Transfer each new top-level vdev from vd to rvd.
3725	 */
3726	for (int c = 0; c < vd->vdev_children; c++) {
3727
3728		/*
3729		 * Set the vdev id to the first hole, if one exists.
3730		 */
3731		for (id = 0; id < rvd->vdev_children; id++) {
3732			if (rvd->vdev_child[id]->vdev_ishole) {
3733				vdev_free(rvd->vdev_child[id]);
3734				break;
3735			}
3736		}
3737		tvd = vd->vdev_child[c];
3738		vdev_remove_child(vd, tvd);
3739		tvd->vdev_id = id;
3740		vdev_add_child(rvd, tvd);
3741		vdev_config_dirty(tvd);
3742	}
3743
3744	if (nspares != 0) {
3745		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3746		    ZPOOL_CONFIG_SPARES);
3747		spa_load_spares(spa);
3748		spa->spa_spares.sav_sync = B_TRUE;
3749	}
3750
3751	if (nl2cache != 0) {
3752		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3753		    ZPOOL_CONFIG_L2CACHE);
3754		spa_load_l2cache(spa);
3755		spa->spa_l2cache.sav_sync = B_TRUE;
3756	}
3757
3758	/*
3759	 * We have to be careful when adding new vdevs to an existing pool.
3760	 * If other threads start allocating from these vdevs before we
3761	 * sync the config cache, and we lose power, then upon reboot we may
3762	 * fail to open the pool because there are DVAs that the config cache
3763	 * can't translate.  Therefore, we first add the vdevs without
3764	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3765	 * and then let spa_config_update() initialize the new metaslabs.
3766	 *
3767	 * spa_load() checks for added-but-not-initialized vdevs, so that
3768	 * if we lose power at any point in this sequence, the remaining
3769	 * steps will be completed the next time we load the pool.
3770	 */
3771	(void) spa_vdev_exit(spa, vd, txg, 0);
3772
3773	mutex_enter(&spa_namespace_lock);
3774	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3775	mutex_exit(&spa_namespace_lock);
3776
3777	return (0);
3778}
3779
3780/*
3781 * Attach a device to a mirror.  The arguments are the path to any device
3782 * in the mirror, and the nvroot for the new device.  If the path specifies
3783 * a device that is not mirrored, we automatically insert the mirror vdev.
3784 *
3785 * If 'replacing' is specified, the new device is intended to replace the
3786 * existing device; in this case the two devices are made into their own
3787 * mirror using the 'replacing' vdev, which is functionally identical to
3788 * the mirror vdev (it actually reuses all the same ops) but has a few
3789 * extra rules: you can't attach to it after it's been created, and upon
3790 * completion of resilvering, the first disk (the one being replaced)
3791 * is automatically detached.
3792 */
3793int
3794spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3795{
3796	uint64_t txg, dtl_max_txg;
3797	vdev_t *rvd = spa->spa_root_vdev;
3798	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3799	vdev_ops_t *pvops;
3800	char *oldvdpath, *newvdpath;
3801	int newvd_isspare;
3802	int error;
3803
3804	ASSERT(spa_writeable(spa));
3805
3806	txg = spa_vdev_enter(spa);
3807
3808	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3809
3810	if (oldvd == NULL)
3811		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3812
3813	if (!oldvd->vdev_ops->vdev_op_leaf)
3814		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3815
3816	pvd = oldvd->vdev_parent;
3817
3818	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3819	    VDEV_ALLOC_ADD)) != 0)
3820		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3821
3822	if (newrootvd->vdev_children != 1)
3823		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3824
3825	newvd = newrootvd->vdev_child[0];
3826
3827	if (!newvd->vdev_ops->vdev_op_leaf)
3828		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3829
3830	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3831		return (spa_vdev_exit(spa, newrootvd, txg, error));
3832
3833	/*
3834	 * Spares can't replace logs
3835	 */
3836	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3837		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3838
3839	if (!replacing) {
3840		/*
3841		 * For attach, the only allowable parent is a mirror or the root
3842		 * vdev.
3843		 */
3844		if (pvd->vdev_ops != &vdev_mirror_ops &&
3845		    pvd->vdev_ops != &vdev_root_ops)
3846			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3847
3848		pvops = &vdev_mirror_ops;
3849	} else {
3850		/*
3851		 * Active hot spares can only be replaced by inactive hot
3852		 * spares.
3853		 */
3854		if (pvd->vdev_ops == &vdev_spare_ops &&
3855		    oldvd->vdev_isspare &&
3856		    !spa_has_spare(spa, newvd->vdev_guid))
3857			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3858
3859		/*
3860		 * If the source is a hot spare, and the parent isn't already a
3861		 * spare, then we want to create a new hot spare.  Otherwise, we
3862		 * want to create a replacing vdev.  The user is not allowed to
3863		 * attach to a spared vdev child unless the 'isspare' state is
3864		 * the same (spare replaces spare, non-spare replaces
3865		 * non-spare).
3866		 */
3867		if (pvd->vdev_ops == &vdev_replacing_ops &&
3868		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3869			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3870		} else if (pvd->vdev_ops == &vdev_spare_ops &&
3871		    newvd->vdev_isspare != oldvd->vdev_isspare) {
3872			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3873		}
3874
3875		if (newvd->vdev_isspare)
3876			pvops = &vdev_spare_ops;
3877		else
3878			pvops = &vdev_replacing_ops;
3879	}
3880
3881	/*
3882	 * Make sure the new device is big enough.
3883	 */
3884	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3885		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3886
3887	/*
3888	 * The new device cannot have a higher alignment requirement
3889	 * than the top-level vdev.
3890	 */
3891	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3892		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3893
3894	/*
3895	 * If this is an in-place replacement, update oldvd's path and devid
3896	 * to make it distinguishable from newvd, and unopenable from now on.
3897	 */
3898	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3899		spa_strfree(oldvd->vdev_path);
3900		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3901		    KM_SLEEP);
3902		(void) sprintf(oldvd->vdev_path, "%s/%s",
3903		    newvd->vdev_path, "old");
3904		if (oldvd->vdev_devid != NULL) {
3905			spa_strfree(oldvd->vdev_devid);
3906			oldvd->vdev_devid = NULL;
3907		}
3908	}
3909
3910	/* mark the device being resilvered */
3911	newvd->vdev_resilvering = B_TRUE;
3912
3913	/*
3914	 * If the parent is not a mirror, or if we're replacing, insert the new
3915	 * mirror/replacing/spare vdev above oldvd.
3916	 */
3917	if (pvd->vdev_ops != pvops)
3918		pvd = vdev_add_parent(oldvd, pvops);
3919
3920	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3921	ASSERT(pvd->vdev_ops == pvops);
3922	ASSERT(oldvd->vdev_parent == pvd);
3923
3924	/*
3925	 * Extract the new device from its root and add it to pvd.
3926	 */
3927	vdev_remove_child(newrootvd, newvd);
3928	newvd->vdev_id = pvd->vdev_children;
3929	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3930	vdev_add_child(pvd, newvd);
3931
3932	tvd = newvd->vdev_top;
3933	ASSERT(pvd->vdev_top == tvd);
3934	ASSERT(tvd->vdev_parent == rvd);
3935
3936	vdev_config_dirty(tvd);
3937
3938	/*
3939	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
3940	 * for any dmu_sync-ed blocks.  It will propagate upward when
3941	 * spa_vdev_exit() calls vdev_dtl_reassess().
3942	 */
3943	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
3944
3945	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
3946	    dtl_max_txg - TXG_INITIAL);
3947
3948	if (newvd->vdev_isspare) {
3949		spa_spare_activate(newvd);
3950		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3951	}
3952
3953	oldvdpath = spa_strdup(oldvd->vdev_path);
3954	newvdpath = spa_strdup(newvd->vdev_path);
3955	newvd_isspare = newvd->vdev_isspare;
3956
3957	/*
3958	 * Mark newvd's DTL dirty in this txg.
3959	 */
3960	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3961
3962	/*
3963	 * Restart the resilver
3964	 */
3965	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
3966
3967	/*
3968	 * Commit the config
3969	 */
3970	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
3971
3972	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
3973	    "%s vdev=%s %s vdev=%s",
3974	    replacing && newvd_isspare ? "spare in" :
3975	    replacing ? "replace" : "attach", newvdpath,
3976	    replacing ? "for" : "to", oldvdpath);
3977
3978	spa_strfree(oldvdpath);
3979	spa_strfree(newvdpath);
3980
3981	if (spa->spa_bootfs)
3982		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
3983
3984	return (0);
3985}
3986
3987/*
3988 * Detach a device from a mirror or replacing vdev.
3989 * If 'replace_done' is specified, only detach if the parent
3990 * is a replacing vdev.
3991 */
3992int
3993spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3994{
3995	uint64_t txg;
3996	int error;
3997	vdev_t *rvd = spa->spa_root_vdev;
3998	vdev_t *vd, *pvd, *cvd, *tvd;
3999	boolean_t unspare = B_FALSE;
4000	uint64_t unspare_guid;
4001	char *vdpath;
4002
4003	ASSERT(spa_writeable(spa));
4004
4005	txg = spa_vdev_enter(spa);
4006
4007	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4008
4009	if (vd == NULL)
4010		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4011
4012	if (!vd->vdev_ops->vdev_op_leaf)
4013		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4014
4015	pvd = vd->vdev_parent;
4016
4017	/*
4018	 * If the parent/child relationship is not as expected, don't do it.
4019	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4020	 * vdev that's replacing B with C.  The user's intent in replacing
4021	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4022	 * the replace by detaching C, the expected behavior is to end up
4023	 * M(A,B).  But suppose that right after deciding to detach C,
4024	 * the replacement of B completes.  We would have M(A,C), and then
4025	 * ask to detach C, which would leave us with just A -- not what
4026	 * the user wanted.  To prevent this, we make sure that the
4027	 * parent/child relationship hasn't changed -- in this example,
4028	 * that C's parent is still the replacing vdev R.
4029	 */
4030	if (pvd->vdev_guid != pguid && pguid != 0)
4031		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4032
4033	/*
4034	 * Only 'replacing' or 'spare' vdevs can be replaced.
4035	 */
4036	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4037	    pvd->vdev_ops != &vdev_spare_ops)
4038		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4039
4040	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4041	    spa_version(spa) >= SPA_VERSION_SPARES);
4042
4043	/*
4044	 * Only mirror, replacing, and spare vdevs support detach.
4045	 */
4046	if (pvd->vdev_ops != &vdev_replacing_ops &&
4047	    pvd->vdev_ops != &vdev_mirror_ops &&
4048	    pvd->vdev_ops != &vdev_spare_ops)
4049		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4050
4051	/*
4052	 * If this device has the only valid copy of some data,
4053	 * we cannot safely detach it.
4054	 */
4055	if (vdev_dtl_required(vd))
4056		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4057
4058	ASSERT(pvd->vdev_children >= 2);
4059
4060	/*
4061	 * If we are detaching the second disk from a replacing vdev, then
4062	 * check to see if we changed the original vdev's path to have "/old"
4063	 * at the end in spa_vdev_attach().  If so, undo that change now.
4064	 */
4065	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4066	    vd->vdev_path != NULL) {
4067		size_t len = strlen(vd->vdev_path);
4068
4069		for (int c = 0; c < pvd->vdev_children; c++) {
4070			cvd = pvd->vdev_child[c];
4071
4072			if (cvd == vd || cvd->vdev_path == NULL)
4073				continue;
4074
4075			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4076			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4077				spa_strfree(cvd->vdev_path);
4078				cvd->vdev_path = spa_strdup(vd->vdev_path);
4079				break;
4080			}
4081		}
4082	}
4083
4084	/*
4085	 * If we are detaching the original disk from a spare, then it implies
4086	 * that the spare should become a real disk, and be removed from the
4087	 * active spare list for the pool.
4088	 */
4089	if (pvd->vdev_ops == &vdev_spare_ops &&
4090	    vd->vdev_id == 0 &&
4091	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4092		unspare = B_TRUE;
4093
4094	/*
4095	 * Erase the disk labels so the disk can be used for other things.
4096	 * This must be done after all other error cases are handled,
4097	 * but before we disembowel vd (so we can still do I/O to it).
4098	 * But if we can't do it, don't treat the error as fatal --
4099	 * it may be that the unwritability of the disk is the reason
4100	 * it's being detached!
4101	 */
4102	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4103
4104	/*
4105	 * Remove vd from its parent and compact the parent's children.
4106	 */
4107	vdev_remove_child(pvd, vd);
4108	vdev_compact_children(pvd);
4109
4110	/*
4111	 * Remember one of the remaining children so we can get tvd below.
4112	 */
4113	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4114
4115	/*
4116	 * If we need to remove the remaining child from the list of hot spares,
4117	 * do it now, marking the vdev as no longer a spare in the process.
4118	 * We must do this before vdev_remove_parent(), because that can
4119	 * change the GUID if it creates a new toplevel GUID.  For a similar
4120	 * reason, we must remove the spare now, in the same txg as the detach;
4121	 * otherwise someone could attach a new sibling, change the GUID, and
4122	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4123	 */
4124	if (unspare) {
4125		ASSERT(cvd->vdev_isspare);
4126		spa_spare_remove(cvd);
4127		unspare_guid = cvd->vdev_guid;
4128		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4129		cvd->vdev_unspare = B_TRUE;
4130	}
4131
4132	/*
4133	 * If the parent mirror/replacing vdev only has one child,
4134	 * the parent is no longer needed.  Remove it from the tree.
4135	 */
4136	if (pvd->vdev_children == 1) {
4137		if (pvd->vdev_ops == &vdev_spare_ops)
4138			cvd->vdev_unspare = B_FALSE;
4139		vdev_remove_parent(cvd);
4140		cvd->vdev_resilvering = B_FALSE;
4141	}
4142
4143
4144	/*
4145	 * We don't set tvd until now because the parent we just removed
4146	 * may have been the previous top-level vdev.
4147	 */
4148	tvd = cvd->vdev_top;
4149	ASSERT(tvd->vdev_parent == rvd);
4150
4151	/*
4152	 * Reevaluate the parent vdev state.
4153	 */
4154	vdev_propagate_state(cvd);
4155
4156	/*
4157	 * If the 'autoexpand' property is set on the pool then automatically
4158	 * try to expand the size of the pool. For example if the device we
4159	 * just detached was smaller than the others, it may be possible to
4160	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4161	 * first so that we can obtain the updated sizes of the leaf vdevs.
4162	 */
4163	if (spa->spa_autoexpand) {
4164		vdev_reopen(tvd);
4165		vdev_expand(tvd, txg);
4166	}
4167
4168	vdev_config_dirty(tvd);
4169
4170	/*
4171	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4172	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4173	 * But first make sure we're not on any *other* txg's DTL list, to
4174	 * prevent vd from being accessed after it's freed.
4175	 */
4176	vdpath = spa_strdup(vd->vdev_path);
4177	for (int t = 0; t < TXG_SIZE; t++)
4178		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4179	vd->vdev_detached = B_TRUE;
4180	vdev_dirty(tvd, VDD_DTL, vd, txg);
4181
4182	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4183
4184	/* hang on to the spa before we release the lock */
4185	spa_open_ref(spa, FTAG);
4186
4187	error = spa_vdev_exit(spa, vd, txg, 0);
4188
4189	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4190	    "vdev=%s", vdpath);
4191	spa_strfree(vdpath);
4192
4193	/*
4194	 * If this was the removal of the original device in a hot spare vdev,
4195	 * then we want to go through and remove the device from the hot spare
4196	 * list of every other pool.
4197	 */
4198	if (unspare) {
4199		spa_t *altspa = NULL;
4200
4201		mutex_enter(&spa_namespace_lock);
4202		while ((altspa = spa_next(altspa)) != NULL) {
4203			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4204			    altspa == spa)
4205				continue;
4206
4207			spa_open_ref(altspa, FTAG);
4208			mutex_exit(&spa_namespace_lock);
4209			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4210			mutex_enter(&spa_namespace_lock);
4211			spa_close(altspa, FTAG);
4212		}
4213		mutex_exit(&spa_namespace_lock);
4214
4215		/* search the rest of the vdevs for spares to remove */
4216		spa_vdev_resilver_done(spa);
4217	}
4218
4219	/* all done with the spa; OK to release */
4220	mutex_enter(&spa_namespace_lock);
4221	spa_close(spa, FTAG);
4222	mutex_exit(&spa_namespace_lock);
4223
4224	return (error);
4225}
4226
4227/*
4228 * Split a set of devices from their mirrors, and create a new pool from them.
4229 */
4230int
4231spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4232    nvlist_t *props, boolean_t exp)
4233{
4234	int error = 0;
4235	uint64_t txg, *glist;
4236	spa_t *newspa;
4237	uint_t c, children, lastlog;
4238	nvlist_t **child, *nvl, *tmp;
4239	dmu_tx_t *tx;
4240	char *altroot = NULL;
4241	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4242	boolean_t activate_slog;
4243
4244	ASSERT(spa_writeable(spa));
4245
4246	txg = spa_vdev_enter(spa);
4247
4248	/* clear the log and flush everything up to now */
4249	activate_slog = spa_passivate_log(spa);
4250	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4251	error = spa_offline_log(spa);
4252	txg = spa_vdev_config_enter(spa);
4253
4254	if (activate_slog)
4255		spa_activate_log(spa);
4256
4257	if (error != 0)
4258		return (spa_vdev_exit(spa, NULL, txg, error));
4259
4260	/* check new spa name before going any further */
4261	if (spa_lookup(newname) != NULL)
4262		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4263
4264	/*
4265	 * scan through all the children to ensure they're all mirrors
4266	 */
4267	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4268	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4269	    &children) != 0)
4270		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4271
4272	/* first, check to ensure we've got the right child count */
4273	rvd = spa->spa_root_vdev;
4274	lastlog = 0;
4275	for (c = 0; c < rvd->vdev_children; c++) {
4276		vdev_t *vd = rvd->vdev_child[c];
4277
4278		/* don't count the holes & logs as children */
4279		if (vd->vdev_islog || vd->vdev_ishole) {
4280			if (lastlog == 0)
4281				lastlog = c;
4282			continue;
4283		}
4284
4285		lastlog = 0;
4286	}
4287	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4288		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4289
4290	/* next, ensure no spare or cache devices are part of the split */
4291	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4292	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4293		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4294
4295	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4296	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4297
4298	/* then, loop over each vdev and validate it */
4299	for (c = 0; c < children; c++) {
4300		uint64_t is_hole = 0;
4301
4302		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4303		    &is_hole);
4304
4305		if (is_hole != 0) {
4306			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4307			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4308				continue;
4309			} else {
4310				error = EINVAL;
4311				break;
4312			}
4313		}
4314
4315		/* which disk is going to be split? */
4316		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4317		    &glist[c]) != 0) {
4318			error = EINVAL;
4319			break;
4320		}
4321
4322		/* look it up in the spa */
4323		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4324		if (vml[c] == NULL) {
4325			error = ENODEV;
4326			break;
4327		}
4328
4329		/* make sure there's nothing stopping the split */
4330		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4331		    vml[c]->vdev_islog ||
4332		    vml[c]->vdev_ishole ||
4333		    vml[c]->vdev_isspare ||
4334		    vml[c]->vdev_isl2cache ||
4335		    !vdev_writeable(vml[c]) ||
4336		    vml[c]->vdev_children != 0 ||
4337		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4338		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4339			error = EINVAL;
4340			break;
4341		}
4342
4343		if (vdev_dtl_required(vml[c])) {
4344			error = EBUSY;
4345			break;
4346		}
4347
4348		/* we need certain info from the top level */
4349		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4350		    vml[c]->vdev_top->vdev_ms_array) == 0);
4351		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4352		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4353		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4354		    vml[c]->vdev_top->vdev_asize) == 0);
4355		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4356		    vml[c]->vdev_top->vdev_ashift) == 0);
4357	}
4358
4359	if (error != 0) {
4360		kmem_free(vml, children * sizeof (vdev_t *));
4361		kmem_free(glist, children * sizeof (uint64_t));
4362		return (spa_vdev_exit(spa, NULL, txg, error));
4363	}
4364
4365	/* stop writers from using the disks */
4366	for (c = 0; c < children; c++) {
4367		if (vml[c] != NULL)
4368			vml[c]->vdev_offline = B_TRUE;
4369	}
4370	vdev_reopen(spa->spa_root_vdev);
4371
4372	/*
4373	 * Temporarily record the splitting vdevs in the spa config.  This
4374	 * will disappear once the config is regenerated.
4375	 */
4376	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4377	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4378	    glist, children) == 0);
4379	kmem_free(glist, children * sizeof (uint64_t));
4380
4381	mutex_enter(&spa->spa_props_lock);
4382	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4383	    nvl) == 0);
4384	mutex_exit(&spa->spa_props_lock);
4385	spa->spa_config_splitting = nvl;
4386	vdev_config_dirty(spa->spa_root_vdev);
4387
4388	/* configure and create the new pool */
4389	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4390	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4391	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4392	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4393	    spa_version(spa)) == 0);
4394	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4395	    spa->spa_config_txg) == 0);
4396	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4397	    spa_generate_guid(NULL)) == 0);
4398	(void) nvlist_lookup_string(props,
4399	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4400
4401	/* add the new pool to the namespace */
4402	newspa = spa_add(newname, config, altroot);
4403	newspa->spa_config_txg = spa->spa_config_txg;
4404	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4405
4406	/* release the spa config lock, retaining the namespace lock */
4407	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4408
4409	if (zio_injection_enabled)
4410		zio_handle_panic_injection(spa, FTAG, 1);
4411
4412	spa_activate(newspa, spa_mode_global);
4413	spa_async_suspend(newspa);
4414
4415	/* create the new pool from the disks of the original pool */
4416	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4417	if (error)
4418		goto out;
4419
4420	/* if that worked, generate a real config for the new pool */
4421	if (newspa->spa_root_vdev != NULL) {
4422		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4423		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4424		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4425		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4426		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4427		    B_TRUE));
4428	}
4429
4430	/* set the props */
4431	if (props != NULL) {
4432		spa_configfile_set(newspa, props, B_FALSE);
4433		error = spa_prop_set(newspa, props);
4434		if (error)
4435			goto out;
4436	}
4437
4438	/* flush everything */
4439	txg = spa_vdev_config_enter(newspa);
4440	vdev_config_dirty(newspa->spa_root_vdev);
4441	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4442
4443	if (zio_injection_enabled)
4444		zio_handle_panic_injection(spa, FTAG, 2);
4445
4446	spa_async_resume(newspa);
4447
4448	/* finally, update the original pool's config */
4449	txg = spa_vdev_config_enter(spa);
4450	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4451	error = dmu_tx_assign(tx, TXG_WAIT);
4452	if (error != 0)
4453		dmu_tx_abort(tx);
4454	for (c = 0; c < children; c++) {
4455		if (vml[c] != NULL) {
4456			vdev_split(vml[c]);
4457			if (error == 0)
4458				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4459				    spa, tx, "vdev=%s",
4460				    vml[c]->vdev_path);
4461			vdev_free(vml[c]);
4462		}
4463	}
4464	vdev_config_dirty(spa->spa_root_vdev);
4465	spa->spa_config_splitting = NULL;
4466	nvlist_free(nvl);
4467	if (error == 0)
4468		dmu_tx_commit(tx);
4469	(void) spa_vdev_exit(spa, NULL, txg, 0);
4470
4471	if (zio_injection_enabled)
4472		zio_handle_panic_injection(spa, FTAG, 3);
4473
4474	/* split is complete; log a history record */
4475	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4476	    "split new pool %s from pool %s", newname, spa_name(spa));
4477
4478	kmem_free(vml, children * sizeof (vdev_t *));
4479
4480	/* if we're not going to mount the filesystems in userland, export */
4481	if (exp)
4482		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4483		    B_FALSE, B_FALSE);
4484
4485	return (error);
4486
4487out:
4488	spa_unload(newspa);
4489	spa_deactivate(newspa);
4490	spa_remove(newspa);
4491
4492	txg = spa_vdev_config_enter(spa);
4493
4494	/* re-online all offlined disks */
4495	for (c = 0; c < children; c++) {
4496		if (vml[c] != NULL)
4497			vml[c]->vdev_offline = B_FALSE;
4498	}
4499	vdev_reopen(spa->spa_root_vdev);
4500
4501	nvlist_free(spa->spa_config_splitting);
4502	spa->spa_config_splitting = NULL;
4503	(void) spa_vdev_exit(spa, NULL, txg, error);
4504
4505	kmem_free(vml, children * sizeof (vdev_t *));
4506	return (error);
4507}
4508
4509static nvlist_t *
4510spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4511{
4512	for (int i = 0; i < count; i++) {
4513		uint64_t guid;
4514
4515		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4516		    &guid) == 0);
4517
4518		if (guid == target_guid)
4519			return (nvpp[i]);
4520	}
4521
4522	return (NULL);
4523}
4524
4525static void
4526spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4527	nvlist_t *dev_to_remove)
4528{
4529	nvlist_t **newdev = NULL;
4530
4531	if (count > 1)
4532		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4533
4534	for (int i = 0, j = 0; i < count; i++) {
4535		if (dev[i] == dev_to_remove)
4536			continue;
4537		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4538	}
4539
4540	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4541	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4542
4543	for (int i = 0; i < count - 1; i++)
4544		nvlist_free(newdev[i]);
4545
4546	if (count > 1)
4547		kmem_free(newdev, (count - 1) * sizeof (void *));
4548}
4549
4550/*
4551 * Evacuate the device.
4552 */
4553static int
4554spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4555{
4556	uint64_t txg;
4557	int error = 0;
4558
4559	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4560	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4561	ASSERT(vd == vd->vdev_top);
4562
4563	/*
4564	 * Evacuate the device.  We don't hold the config lock as writer
4565	 * since we need to do I/O but we do keep the
4566	 * spa_namespace_lock held.  Once this completes the device
4567	 * should no longer have any blocks allocated on it.
4568	 */
4569	if (vd->vdev_islog) {
4570		if (vd->vdev_stat.vs_alloc != 0)
4571			error = spa_offline_log(spa);
4572	} else {
4573		error = ENOTSUP;
4574	}
4575
4576	if (error)
4577		return (error);
4578
4579	/*
4580	 * The evacuation succeeded.  Remove any remaining MOS metadata
4581	 * associated with this vdev, and wait for these changes to sync.
4582	 */
4583	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4584	txg = spa_vdev_config_enter(spa);
4585	vd->vdev_removing = B_TRUE;
4586	vdev_dirty(vd, 0, NULL, txg);
4587	vdev_config_dirty(vd);
4588	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4589
4590	return (0);
4591}
4592
4593/*
4594 * Complete the removal by cleaning up the namespace.
4595 */
4596static void
4597spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4598{
4599	vdev_t *rvd = spa->spa_root_vdev;
4600	uint64_t id = vd->vdev_id;
4601	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4602
4603	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4604	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4605	ASSERT(vd == vd->vdev_top);
4606
4607	/*
4608	 * Only remove any devices which are empty.
4609	 */
4610	if (vd->vdev_stat.vs_alloc != 0)
4611		return;
4612
4613	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4614
4615	if (list_link_active(&vd->vdev_state_dirty_node))
4616		vdev_state_clean(vd);
4617	if (list_link_active(&vd->vdev_config_dirty_node))
4618		vdev_config_clean(vd);
4619
4620	vdev_free(vd);
4621
4622	if (last_vdev) {
4623		vdev_compact_children(rvd);
4624	} else {
4625		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4626		vdev_add_child(rvd, vd);
4627	}
4628	vdev_config_dirty(rvd);
4629
4630	/*
4631	 * Reassess the health of our root vdev.
4632	 */
4633	vdev_reopen(rvd);
4634}
4635
4636/*
4637 * Remove a device from the pool -
4638 *
4639 * Removing a device from the vdev namespace requires several steps
4640 * and can take a significant amount of time.  As a result we use
4641 * the spa_vdev_config_[enter/exit] functions which allow us to
4642 * grab and release the spa_config_lock while still holding the namespace
4643 * lock.  During each step the configuration is synced out.
4644 */
4645
4646/*
4647 * Remove a device from the pool.  Currently, this supports removing only hot
4648 * spares, slogs, and level 2 ARC devices.
4649 */
4650int
4651spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4652{
4653	vdev_t *vd;
4654	metaslab_group_t *mg;
4655	nvlist_t **spares, **l2cache, *nv;
4656	uint64_t txg = 0;
4657	uint_t nspares, nl2cache;
4658	int error = 0;
4659	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4660
4661	ASSERT(spa_writeable(spa));
4662
4663	if (!locked)
4664		txg = spa_vdev_enter(spa);
4665
4666	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4667
4668	if (spa->spa_spares.sav_vdevs != NULL &&
4669	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4670	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4671	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4672		/*
4673		 * Only remove the hot spare if it's not currently in use
4674		 * in this pool.
4675		 */
4676		if (vd == NULL || unspare) {
4677			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4678			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4679			spa_load_spares(spa);
4680			spa->spa_spares.sav_sync = B_TRUE;
4681		} else {
4682			error = EBUSY;
4683		}
4684	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4685	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4686	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4687	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4688		/*
4689		 * Cache devices can always be removed.
4690		 */
4691		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4692		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4693		spa_load_l2cache(spa);
4694		spa->spa_l2cache.sav_sync = B_TRUE;
4695	} else if (vd != NULL && vd->vdev_islog) {
4696		ASSERT(!locked);
4697		ASSERT(vd == vd->vdev_top);
4698
4699		/*
4700		 * XXX - Once we have bp-rewrite this should
4701		 * become the common case.
4702		 */
4703
4704		mg = vd->vdev_mg;
4705
4706		/*
4707		 * Stop allocating from this vdev.
4708		 */
4709		metaslab_group_passivate(mg);
4710
4711		/*
4712		 * Wait for the youngest allocations and frees to sync,
4713		 * and then wait for the deferral of those frees to finish.
4714		 */
4715		spa_vdev_config_exit(spa, NULL,
4716		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4717
4718		/*
4719		 * Attempt to evacuate the vdev.
4720		 */
4721		error = spa_vdev_remove_evacuate(spa, vd);
4722
4723		txg = spa_vdev_config_enter(spa);
4724
4725		/*
4726		 * If we couldn't evacuate the vdev, unwind.
4727		 */
4728		if (error) {
4729			metaslab_group_activate(mg);
4730			return (spa_vdev_exit(spa, NULL, txg, error));
4731		}
4732
4733		/*
4734		 * Clean up the vdev namespace.
4735		 */
4736		spa_vdev_remove_from_namespace(spa, vd);
4737
4738	} else if (vd != NULL) {
4739		/*
4740		 * Normal vdevs cannot be removed (yet).
4741		 */
4742		error = ENOTSUP;
4743	} else {
4744		/*
4745		 * There is no vdev of any kind with the specified guid.
4746		 */
4747		error = ENOENT;
4748	}
4749
4750	if (!locked)
4751		return (spa_vdev_exit(spa, NULL, txg, error));
4752
4753	return (error);
4754}
4755
4756/*
4757 * Find any device that's done replacing, or a vdev marked 'unspare' that's
4758 * current spared, so we can detach it.
4759 */
4760static vdev_t *
4761spa_vdev_resilver_done_hunt(vdev_t *vd)
4762{
4763	vdev_t *newvd, *oldvd;
4764
4765	for (int c = 0; c < vd->vdev_children; c++) {
4766		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4767		if (oldvd != NULL)
4768			return (oldvd);
4769	}
4770
4771	/*
4772	 * Check for a completed replacement.  We always consider the first
4773	 * vdev in the list to be the oldest vdev, and the last one to be
4774	 * the newest (see spa_vdev_attach() for how that works).  In
4775	 * the case where the newest vdev is faulted, we will not automatically
4776	 * remove it after a resilver completes.  This is OK as it will require
4777	 * user intervention to determine which disk the admin wishes to keep.
4778	 */
4779	if (vd->vdev_ops == &vdev_replacing_ops) {
4780		ASSERT(vd->vdev_children > 1);
4781
4782		newvd = vd->vdev_child[vd->vdev_children - 1];
4783		oldvd = vd->vdev_child[0];
4784
4785		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4786		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4787		    !vdev_dtl_required(oldvd))
4788			return (oldvd);
4789	}
4790
4791	/*
4792	 * Check for a completed resilver with the 'unspare' flag set.
4793	 */
4794	if (vd->vdev_ops == &vdev_spare_ops) {
4795		vdev_t *first = vd->vdev_child[0];
4796		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4797
4798		if (last->vdev_unspare) {
4799			oldvd = first;
4800			newvd = last;
4801		} else if (first->vdev_unspare) {
4802			oldvd = last;
4803			newvd = first;
4804		} else {
4805			oldvd = NULL;
4806		}
4807
4808		if (oldvd != NULL &&
4809		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4810		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4811		    !vdev_dtl_required(oldvd))
4812			return (oldvd);
4813
4814		/*
4815		 * If there are more than two spares attached to a disk,
4816		 * and those spares are not required, then we want to
4817		 * attempt to free them up now so that they can be used
4818		 * by other pools.  Once we're back down to a single
4819		 * disk+spare, we stop removing them.
4820		 */
4821		if (vd->vdev_children > 2) {
4822			newvd = vd->vdev_child[1];
4823
4824			if (newvd->vdev_isspare && last->vdev_isspare &&
4825			    vdev_dtl_empty(last, DTL_MISSING) &&
4826			    vdev_dtl_empty(last, DTL_OUTAGE) &&
4827			    !vdev_dtl_required(newvd))
4828				return (newvd);
4829		}
4830	}
4831
4832	return (NULL);
4833}
4834
4835static void
4836spa_vdev_resilver_done(spa_t *spa)
4837{
4838	vdev_t *vd, *pvd, *ppvd;
4839	uint64_t guid, sguid, pguid, ppguid;
4840
4841	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4842
4843	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4844		pvd = vd->vdev_parent;
4845		ppvd = pvd->vdev_parent;
4846		guid = vd->vdev_guid;
4847		pguid = pvd->vdev_guid;
4848		ppguid = ppvd->vdev_guid;
4849		sguid = 0;
4850		/*
4851		 * If we have just finished replacing a hot spared device, then
4852		 * we need to detach the parent's first child (the original hot
4853		 * spare) as well.
4854		 */
4855		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4856		    ppvd->vdev_children == 2) {
4857			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4858			sguid = ppvd->vdev_child[1]->vdev_guid;
4859		}
4860		spa_config_exit(spa, SCL_ALL, FTAG);
4861		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4862			return;
4863		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4864			return;
4865		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4866	}
4867
4868	spa_config_exit(spa, SCL_ALL, FTAG);
4869}
4870
4871/*
4872 * Update the stored path or FRU for this vdev.
4873 */
4874int
4875spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4876    boolean_t ispath)
4877{
4878	vdev_t *vd;
4879	boolean_t sync = B_FALSE;
4880
4881	ASSERT(spa_writeable(spa));
4882
4883	spa_vdev_state_enter(spa, SCL_ALL);
4884
4885	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4886		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4887
4888	if (!vd->vdev_ops->vdev_op_leaf)
4889		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4890
4891	if (ispath) {
4892		if (strcmp(value, vd->vdev_path) != 0) {
4893			spa_strfree(vd->vdev_path);
4894			vd->vdev_path = spa_strdup(value);
4895			sync = B_TRUE;
4896		}
4897	} else {
4898		if (vd->vdev_fru == NULL) {
4899			vd->vdev_fru = spa_strdup(value);
4900			sync = B_TRUE;
4901		} else if (strcmp(value, vd->vdev_fru) != 0) {
4902			spa_strfree(vd->vdev_fru);
4903			vd->vdev_fru = spa_strdup(value);
4904			sync = B_TRUE;
4905		}
4906	}
4907
4908	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4909}
4910
4911int
4912spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4913{
4914	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4915}
4916
4917int
4918spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4919{
4920	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4921}
4922
4923/*
4924 * ==========================================================================
4925 * SPA Scanning
4926 * ==========================================================================
4927 */
4928
4929int
4930spa_scan_stop(spa_t *spa)
4931{
4932	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4933	if (dsl_scan_resilvering(spa->spa_dsl_pool))
4934		return (EBUSY);
4935	return (dsl_scan_cancel(spa->spa_dsl_pool));
4936}
4937
4938int
4939spa_scan(spa_t *spa, pool_scan_func_t func)
4940{
4941	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4942
4943	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
4944		return (ENOTSUP);
4945
4946	/*
4947	 * If a resilver was requested, but there is no DTL on a
4948	 * writeable leaf device, we have nothing to do.
4949	 */
4950	if (func == POOL_SCAN_RESILVER &&
4951	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4952		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4953		return (0);
4954	}
4955
4956	return (dsl_scan(spa->spa_dsl_pool, func));
4957}
4958
4959/*
4960 * ==========================================================================
4961 * SPA async task processing
4962 * ==========================================================================
4963 */
4964
4965static void
4966spa_async_remove(spa_t *spa, vdev_t *vd)
4967{
4968	if (vd->vdev_remove_wanted) {
4969		vd->vdev_remove_wanted = B_FALSE;
4970		vd->vdev_delayed_close = B_FALSE;
4971		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4972
4973		/*
4974		 * We want to clear the stats, but we don't want to do a full
4975		 * vdev_clear() as that will cause us to throw away
4976		 * degraded/faulted state as well as attempt to reopen the
4977		 * device, all of which is a waste.
4978		 */
4979		vd->vdev_stat.vs_read_errors = 0;
4980		vd->vdev_stat.vs_write_errors = 0;
4981		vd->vdev_stat.vs_checksum_errors = 0;
4982
4983		vdev_state_dirty(vd->vdev_top);
4984	}
4985
4986	for (int c = 0; c < vd->vdev_children; c++)
4987		spa_async_remove(spa, vd->vdev_child[c]);
4988}
4989
4990static void
4991spa_async_probe(spa_t *spa, vdev_t *vd)
4992{
4993	if (vd->vdev_probe_wanted) {
4994		vd->vdev_probe_wanted = B_FALSE;
4995		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4996	}
4997
4998	for (int c = 0; c < vd->vdev_children; c++)
4999		spa_async_probe(spa, vd->vdev_child[c]);
5000}
5001
5002static void
5003spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5004{
5005	sysevent_id_t eid;
5006	nvlist_t *attr;
5007	char *physpath;
5008
5009	if (!spa->spa_autoexpand)
5010		return;
5011
5012	for (int c = 0; c < vd->vdev_children; c++) {
5013		vdev_t *cvd = vd->vdev_child[c];
5014		spa_async_autoexpand(spa, cvd);
5015	}
5016
5017	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5018		return;
5019
5020	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5021	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5022
5023	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5024	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5025
5026	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5027	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5028
5029	nvlist_free(attr);
5030	kmem_free(physpath, MAXPATHLEN);
5031}
5032
5033static void
5034spa_async_thread(spa_t *spa)
5035{
5036	int tasks;
5037
5038	ASSERT(spa->spa_sync_on);
5039
5040	mutex_enter(&spa->spa_async_lock);
5041	tasks = spa->spa_async_tasks;
5042	spa->spa_async_tasks = 0;
5043	mutex_exit(&spa->spa_async_lock);
5044
5045	/*
5046	 * See if the config needs to be updated.
5047	 */
5048	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5049		uint64_t old_space, new_space;
5050
5051		mutex_enter(&spa_namespace_lock);
5052		old_space = metaslab_class_get_space(spa_normal_class(spa));
5053		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5054		new_space = metaslab_class_get_space(spa_normal_class(spa));
5055		mutex_exit(&spa_namespace_lock);
5056
5057		/*
5058		 * If the pool grew as a result of the config update,
5059		 * then log an internal history event.
5060		 */
5061		if (new_space != old_space) {
5062			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5063			    spa, NULL,
5064			    "pool '%s' size: %llu(+%llu)",
5065			    spa_name(spa), new_space, new_space - old_space);
5066		}
5067	}
5068
5069	/*
5070	 * See if any devices need to be marked REMOVED.
5071	 */
5072	if (tasks & SPA_ASYNC_REMOVE) {
5073		spa_vdev_state_enter(spa, SCL_NONE);
5074		spa_async_remove(spa, spa->spa_root_vdev);
5075		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5076			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5077		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5078			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5079		(void) spa_vdev_state_exit(spa, NULL, 0);
5080	}
5081
5082	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5083		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5084		spa_async_autoexpand(spa, spa->spa_root_vdev);
5085		spa_config_exit(spa, SCL_CONFIG, FTAG);
5086	}
5087
5088	/*
5089	 * See if any devices need to be probed.
5090	 */
5091	if (tasks & SPA_ASYNC_PROBE) {
5092		spa_vdev_state_enter(spa, SCL_NONE);
5093		spa_async_probe(spa, spa->spa_root_vdev);
5094		(void) spa_vdev_state_exit(spa, NULL, 0);
5095	}
5096
5097	/*
5098	 * If any devices are done replacing, detach them.
5099	 */
5100	if (tasks & SPA_ASYNC_RESILVER_DONE)
5101		spa_vdev_resilver_done(spa);
5102
5103	/*
5104	 * Kick off a resilver.
5105	 */
5106	if (tasks & SPA_ASYNC_RESILVER)
5107		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5108
5109	/*
5110	 * Let the world know that we're done.
5111	 */
5112	mutex_enter(&spa->spa_async_lock);
5113	spa->spa_async_thread = NULL;
5114	cv_broadcast(&spa->spa_async_cv);
5115	mutex_exit(&spa->spa_async_lock);
5116	thread_exit();
5117}
5118
5119void
5120spa_async_suspend(spa_t *spa)
5121{
5122	mutex_enter(&spa->spa_async_lock);
5123	spa->spa_async_suspended++;
5124	while (spa->spa_async_thread != NULL)
5125		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5126	mutex_exit(&spa->spa_async_lock);
5127}
5128
5129void
5130spa_async_resume(spa_t *spa)
5131{
5132	mutex_enter(&spa->spa_async_lock);
5133	ASSERT(spa->spa_async_suspended != 0);
5134	spa->spa_async_suspended--;
5135	mutex_exit(&spa->spa_async_lock);
5136}
5137
5138static void
5139spa_async_dispatch(spa_t *spa)
5140{
5141	mutex_enter(&spa->spa_async_lock);
5142	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5143	    spa->spa_async_thread == NULL &&
5144	    rootdir != NULL && !vn_is_readonly(rootdir))
5145		spa->spa_async_thread = thread_create(NULL, 0,
5146		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5147	mutex_exit(&spa->spa_async_lock);
5148}
5149
5150void
5151spa_async_request(spa_t *spa, int task)
5152{
5153	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5154	mutex_enter(&spa->spa_async_lock);
5155	spa->spa_async_tasks |= task;
5156	mutex_exit(&spa->spa_async_lock);
5157}
5158
5159/*
5160 * ==========================================================================
5161 * SPA syncing routines
5162 * ==========================================================================
5163 */
5164
5165static int
5166bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5167{
5168	bpobj_t *bpo = arg;
5169	bpobj_enqueue(bpo, bp, tx);
5170	return (0);
5171}
5172
5173static int
5174spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5175{
5176	zio_t *zio = arg;
5177
5178	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5179	    zio->io_flags));
5180	return (0);
5181}
5182
5183static void
5184spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5185{
5186	char *packed = NULL;
5187	size_t bufsize;
5188	size_t nvsize = 0;
5189	dmu_buf_t *db;
5190
5191	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5192
5193	/*
5194	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5195	 * information.  This avoids the dbuf_will_dirty() path and
5196	 * saves us a pre-read to get data we don't actually care about.
5197	 */
5198	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5199	packed = kmem_alloc(bufsize, KM_SLEEP);
5200
5201	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5202	    KM_SLEEP) == 0);
5203	bzero(packed + nvsize, bufsize - nvsize);
5204
5205	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5206
5207	kmem_free(packed, bufsize);
5208
5209	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5210	dmu_buf_will_dirty(db, tx);
5211	*(uint64_t *)db->db_data = nvsize;
5212	dmu_buf_rele(db, FTAG);
5213}
5214
5215static void
5216spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5217    const char *config, const char *entry)
5218{
5219	nvlist_t *nvroot;
5220	nvlist_t **list;
5221	int i;
5222
5223	if (!sav->sav_sync)
5224		return;
5225
5226	/*
5227	 * Update the MOS nvlist describing the list of available devices.
5228	 * spa_validate_aux() will have already made sure this nvlist is
5229	 * valid and the vdevs are labeled appropriately.
5230	 */
5231	if (sav->sav_object == 0) {
5232		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5233		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5234		    sizeof (uint64_t), tx);
5235		VERIFY(zap_update(spa->spa_meta_objset,
5236		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5237		    &sav->sav_object, tx) == 0);
5238	}
5239
5240	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5241	if (sav->sav_count == 0) {
5242		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5243	} else {
5244		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5245		for (i = 0; i < sav->sav_count; i++)
5246			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5247			    B_FALSE, VDEV_CONFIG_L2CACHE);
5248		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5249		    sav->sav_count) == 0);
5250		for (i = 0; i < sav->sav_count; i++)
5251			nvlist_free(list[i]);
5252		kmem_free(list, sav->sav_count * sizeof (void *));
5253	}
5254
5255	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5256	nvlist_free(nvroot);
5257
5258	sav->sav_sync = B_FALSE;
5259}
5260
5261static void
5262spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5263{
5264	nvlist_t *config;
5265
5266	if (list_is_empty(&spa->spa_config_dirty_list))
5267		return;
5268
5269	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5270
5271	config = spa_config_generate(spa, spa->spa_root_vdev,
5272	    dmu_tx_get_txg(tx), B_FALSE);
5273
5274	spa_config_exit(spa, SCL_STATE, FTAG);
5275
5276	if (spa->spa_config_syncing)
5277		nvlist_free(spa->spa_config_syncing);
5278	spa->spa_config_syncing = config;
5279
5280	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5281}
5282
5283/*
5284 * Set zpool properties.
5285 */
5286static void
5287spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5288{
5289	spa_t *spa = arg1;
5290	objset_t *mos = spa->spa_meta_objset;
5291	nvlist_t *nvp = arg2;
5292	nvpair_t *elem;
5293	uint64_t intval;
5294	char *strval;
5295	zpool_prop_t prop;
5296	const char *propname;
5297	zprop_type_t proptype;
5298
5299	mutex_enter(&spa->spa_props_lock);
5300
5301	elem = NULL;
5302	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5303		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5304		case ZPOOL_PROP_VERSION:
5305			/*
5306			 * Only set version for non-zpool-creation cases
5307			 * (set/import). spa_create() needs special care
5308			 * for version setting.
5309			 */
5310			if (tx->tx_txg != TXG_INITIAL) {
5311				VERIFY(nvpair_value_uint64(elem,
5312				    &intval) == 0);
5313				ASSERT(intval <= SPA_VERSION);
5314				ASSERT(intval >= spa_version(spa));
5315				spa->spa_uberblock.ub_version = intval;
5316				vdev_config_dirty(spa->spa_root_vdev);
5317			}
5318			break;
5319
5320		case ZPOOL_PROP_ALTROOT:
5321			/*
5322			 * 'altroot' is a non-persistent property. It should
5323			 * have been set temporarily at creation or import time.
5324			 */
5325			ASSERT(spa->spa_root != NULL);
5326			break;
5327
5328		case ZPOOL_PROP_READONLY:
5329		case ZPOOL_PROP_CACHEFILE:
5330			/*
5331			 * 'readonly' and 'cachefile' are also non-persisitent
5332			 * properties.
5333			 */
5334			break;
5335		default:
5336			/*
5337			 * Set pool property values in the poolprops mos object.
5338			 */
5339			if (spa->spa_pool_props_object == 0) {
5340				VERIFY((spa->spa_pool_props_object =
5341				    zap_create(mos, DMU_OT_POOL_PROPS,
5342				    DMU_OT_NONE, 0, tx)) > 0);
5343
5344				VERIFY(zap_update(mos,
5345				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5346				    8, 1, &spa->spa_pool_props_object, tx)
5347				    == 0);
5348			}
5349
5350			/* normalize the property name */
5351			propname = zpool_prop_to_name(prop);
5352			proptype = zpool_prop_get_type(prop);
5353
5354			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5355				ASSERT(proptype == PROP_TYPE_STRING);
5356				VERIFY(nvpair_value_string(elem, &strval) == 0);
5357				VERIFY(zap_update(mos,
5358				    spa->spa_pool_props_object, propname,
5359				    1, strlen(strval) + 1, strval, tx) == 0);
5360
5361			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5362				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5363
5364				if (proptype == PROP_TYPE_INDEX) {
5365					const char *unused;
5366					VERIFY(zpool_prop_index_to_string(
5367					    prop, intval, &unused) == 0);
5368				}
5369				VERIFY(zap_update(mos,
5370				    spa->spa_pool_props_object, propname,
5371				    8, 1, &intval, tx) == 0);
5372			} else {
5373				ASSERT(0); /* not allowed */
5374			}
5375
5376			switch (prop) {
5377			case ZPOOL_PROP_DELEGATION:
5378				spa->spa_delegation = intval;
5379				break;
5380			case ZPOOL_PROP_BOOTFS:
5381				spa->spa_bootfs = intval;
5382				break;
5383			case ZPOOL_PROP_FAILUREMODE:
5384				spa->spa_failmode = intval;
5385				break;
5386			case ZPOOL_PROP_AUTOEXPAND:
5387				spa->spa_autoexpand = intval;
5388				if (tx->tx_txg != TXG_INITIAL)
5389					spa_async_request(spa,
5390					    SPA_ASYNC_AUTOEXPAND);
5391				break;
5392			case ZPOOL_PROP_DEDUPDITTO:
5393				spa->spa_dedup_ditto = intval;
5394				break;
5395			default:
5396				break;
5397			}
5398		}
5399
5400		/* log internal history if this is not a zpool create */
5401		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5402		    tx->tx_txg != TXG_INITIAL) {
5403			spa_history_log_internal(LOG_POOL_PROPSET,
5404			    spa, tx, "%s %lld %s",
5405			    nvpair_name(elem), intval, spa_name(spa));
5406		}
5407	}
5408
5409	mutex_exit(&spa->spa_props_lock);
5410}
5411
5412/*
5413 * Perform one-time upgrade on-disk changes.  spa_version() does not
5414 * reflect the new version this txg, so there must be no changes this
5415 * txg to anything that the upgrade code depends on after it executes.
5416 * Therefore this must be called after dsl_pool_sync() does the sync
5417 * tasks.
5418 */
5419static void
5420spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5421{
5422	dsl_pool_t *dp = spa->spa_dsl_pool;
5423
5424	ASSERT(spa->spa_sync_pass == 1);
5425
5426	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5427	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5428		dsl_pool_create_origin(dp, tx);
5429
5430		/* Keeping the origin open increases spa_minref */
5431		spa->spa_minref += 3;
5432	}
5433
5434	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5435	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5436		dsl_pool_upgrade_clones(dp, tx);
5437	}
5438
5439	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5440	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5441		dsl_pool_upgrade_dir_clones(dp, tx);
5442
5443		/* Keeping the freedir open increases spa_minref */
5444		spa->spa_minref += 3;
5445	}
5446}
5447
5448/*
5449 * Sync the specified transaction group.  New blocks may be dirtied as
5450 * part of the process, so we iterate until it converges.
5451 */
5452void
5453spa_sync(spa_t *spa, uint64_t txg)
5454{
5455	dsl_pool_t *dp = spa->spa_dsl_pool;
5456	objset_t *mos = spa->spa_meta_objset;
5457	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5458	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5459	vdev_t *rvd = spa->spa_root_vdev;
5460	vdev_t *vd;
5461	dmu_tx_t *tx;
5462	int error;
5463
5464	VERIFY(spa_writeable(spa));
5465
5466	/*
5467	 * Lock out configuration changes.
5468	 */
5469	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5470
5471	spa->spa_syncing_txg = txg;
5472	spa->spa_sync_pass = 0;
5473
5474	/*
5475	 * If there are any pending vdev state changes, convert them
5476	 * into config changes that go out with this transaction group.
5477	 */
5478	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5479	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5480		/*
5481		 * We need the write lock here because, for aux vdevs,
5482		 * calling vdev_config_dirty() modifies sav_config.
5483		 * This is ugly and will become unnecessary when we
5484		 * eliminate the aux vdev wart by integrating all vdevs
5485		 * into the root vdev tree.
5486		 */
5487		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5488		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5489		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5490			vdev_state_clean(vd);
5491			vdev_config_dirty(vd);
5492		}
5493		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5494		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5495	}
5496	spa_config_exit(spa, SCL_STATE, FTAG);
5497
5498	tx = dmu_tx_create_assigned(dp, txg);
5499
5500	/*
5501	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5502	 * set spa_deflate if we have no raid-z vdevs.
5503	 */
5504	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5505	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5506		int i;
5507
5508		for (i = 0; i < rvd->vdev_children; i++) {
5509			vd = rvd->vdev_child[i];
5510			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5511				break;
5512		}
5513		if (i == rvd->vdev_children) {
5514			spa->spa_deflate = TRUE;
5515			VERIFY(0 == zap_add(spa->spa_meta_objset,
5516			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5517			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5518		}
5519	}
5520
5521	/*
5522	 * If anything has changed in this txg, or if someone is waiting
5523	 * for this txg to sync (eg, spa_vdev_remove()), push the
5524	 * deferred frees from the previous txg.  If not, leave them
5525	 * alone so that we don't generate work on an otherwise idle
5526	 * system.
5527	 */
5528	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5529	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5530	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5531	    ((dsl_scan_active(dp->dp_scan) ||
5532	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5533		zio_t *zio = zio_root(spa, NULL, NULL, 0);
5534		VERIFY3U(bpobj_iterate(defer_bpo,
5535		    spa_free_sync_cb, zio, tx), ==, 0);
5536		VERIFY3U(zio_wait(zio), ==, 0);
5537	}
5538
5539	/*
5540	 * Iterate to convergence.
5541	 */
5542	do {
5543		int pass = ++spa->spa_sync_pass;
5544
5545		spa_sync_config_object(spa, tx);
5546		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5547		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5548		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5549		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5550		spa_errlog_sync(spa, txg);
5551		dsl_pool_sync(dp, txg);
5552
5553		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5554			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5555			bplist_iterate(free_bpl, spa_free_sync_cb,
5556			    zio, tx);
5557			VERIFY(zio_wait(zio) == 0);
5558		} else {
5559			bplist_iterate(free_bpl, bpobj_enqueue_cb,
5560			    defer_bpo, tx);
5561		}
5562
5563		ddt_sync(spa, txg);
5564		dsl_scan_sync(dp, tx);
5565
5566		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5567			vdev_sync(vd, txg);
5568
5569		if (pass == 1)
5570			spa_sync_upgrades(spa, tx);
5571
5572	} while (dmu_objset_is_dirty(mos, txg));
5573
5574	/*
5575	 * Rewrite the vdev configuration (which includes the uberblock)
5576	 * to commit the transaction group.
5577	 *
5578	 * If there are no dirty vdevs, we sync the uberblock to a few
5579	 * random top-level vdevs that are known to be visible in the
5580	 * config cache (see spa_vdev_add() for a complete description).
5581	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5582	 */
5583	for (;;) {
5584		/*
5585		 * We hold SCL_STATE to prevent vdev open/close/etc.
5586		 * while we're attempting to write the vdev labels.
5587		 */
5588		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5589
5590		if (list_is_empty(&spa->spa_config_dirty_list)) {
5591			vdev_t *svd[SPA_DVAS_PER_BP];
5592			int svdcount = 0;
5593			int children = rvd->vdev_children;
5594			int c0 = spa_get_random(children);
5595
5596			for (int c = 0; c < children; c++) {
5597				vd = rvd->vdev_child[(c0 + c) % children];
5598				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5599					continue;
5600				svd[svdcount++] = vd;
5601				if (svdcount == SPA_DVAS_PER_BP)
5602					break;
5603			}
5604			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5605			if (error != 0)
5606				error = vdev_config_sync(svd, svdcount, txg,
5607				    B_TRUE);
5608		} else {
5609			error = vdev_config_sync(rvd->vdev_child,
5610			    rvd->vdev_children, txg, B_FALSE);
5611			if (error != 0)
5612				error = vdev_config_sync(rvd->vdev_child,
5613				    rvd->vdev_children, txg, B_TRUE);
5614		}
5615
5616		spa_config_exit(spa, SCL_STATE, FTAG);
5617
5618		if (error == 0)
5619			break;
5620		zio_suspend(spa, NULL);
5621		zio_resume_wait(spa);
5622	}
5623	dmu_tx_commit(tx);
5624
5625	/*
5626	 * Clear the dirty config list.
5627	 */
5628	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5629		vdev_config_clean(vd);
5630
5631	/*
5632	 * Now that the new config has synced transactionally,
5633	 * let it become visible to the config cache.
5634	 */
5635	if (spa->spa_config_syncing != NULL) {
5636		spa_config_set(spa, spa->spa_config_syncing);
5637		spa->spa_config_txg = txg;
5638		spa->spa_config_syncing = NULL;
5639	}
5640
5641	spa->spa_ubsync = spa->spa_uberblock;
5642
5643	dsl_pool_sync_done(dp, txg);
5644
5645	/*
5646	 * Update usable space statistics.
5647	 */
5648	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5649		vdev_sync_done(vd, txg);
5650
5651	spa_update_dspace(spa);
5652
5653	/*
5654	 * It had better be the case that we didn't dirty anything
5655	 * since vdev_config_sync().
5656	 */
5657	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5658	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5659	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5660
5661	spa->spa_sync_pass = 0;
5662
5663	spa_config_exit(spa, SCL_CONFIG, FTAG);
5664
5665	spa_handle_ignored_writes(spa);
5666
5667	/*
5668	 * If any async tasks have been requested, kick them off.
5669	 */
5670	spa_async_dispatch(spa);
5671}
5672
5673/*
5674 * Sync all pools.  We don't want to hold the namespace lock across these
5675 * operations, so we take a reference on the spa_t and drop the lock during the
5676 * sync.
5677 */
5678void
5679spa_sync_allpools(void)
5680{
5681	spa_t *spa = NULL;
5682	mutex_enter(&spa_namespace_lock);
5683	while ((spa = spa_next(spa)) != NULL) {
5684		if (spa_state(spa) != POOL_STATE_ACTIVE ||
5685		    !spa_writeable(spa) || spa_suspended(spa))
5686			continue;
5687		spa_open_ref(spa, FTAG);
5688		mutex_exit(&spa_namespace_lock);
5689		txg_wait_synced(spa_get_dsl(spa), 0);
5690		mutex_enter(&spa_namespace_lock);
5691		spa_close(spa, FTAG);
5692	}
5693	mutex_exit(&spa_namespace_lock);
5694}
5695
5696/*
5697 * ==========================================================================
5698 * Miscellaneous routines
5699 * ==========================================================================
5700 */
5701
5702/*
5703 * Remove all pools in the system.
5704 */
5705void
5706spa_evict_all(void)
5707{
5708	spa_t *spa;
5709
5710	/*
5711	 * Remove all cached state.  All pools should be closed now,
5712	 * so every spa in the AVL tree should be unreferenced.
5713	 */
5714	mutex_enter(&spa_namespace_lock);
5715	while ((spa = spa_next(NULL)) != NULL) {
5716		/*
5717		 * Stop async tasks.  The async thread may need to detach
5718		 * a device that's been replaced, which requires grabbing
5719		 * spa_namespace_lock, so we must drop it here.
5720		 */
5721		spa_open_ref(spa, FTAG);
5722		mutex_exit(&spa_namespace_lock);
5723		spa_async_suspend(spa);
5724		mutex_enter(&spa_namespace_lock);
5725		spa_close(spa, FTAG);
5726
5727		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5728			spa_unload(spa);
5729			spa_deactivate(spa);
5730		}
5731		spa_remove(spa);
5732	}
5733	mutex_exit(&spa_namespace_lock);
5734}
5735
5736vdev_t *
5737spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5738{
5739	vdev_t *vd;
5740	int i;
5741
5742	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5743		return (vd);
5744
5745	if (aux) {
5746		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5747			vd = spa->spa_l2cache.sav_vdevs[i];
5748			if (vd->vdev_guid == guid)
5749				return (vd);
5750		}
5751
5752		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5753			vd = spa->spa_spares.sav_vdevs[i];
5754			if (vd->vdev_guid == guid)
5755				return (vd);
5756		}
5757	}
5758
5759	return (NULL);
5760}
5761
5762void
5763spa_upgrade(spa_t *spa, uint64_t version)
5764{
5765	ASSERT(spa_writeable(spa));
5766
5767	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5768
5769	/*
5770	 * This should only be called for a non-faulted pool, and since a
5771	 * future version would result in an unopenable pool, this shouldn't be
5772	 * possible.
5773	 */
5774	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5775	ASSERT(version >= spa->spa_uberblock.ub_version);
5776
5777	spa->spa_uberblock.ub_version = version;
5778	vdev_config_dirty(spa->spa_root_vdev);
5779
5780	spa_config_exit(spa, SCL_ALL, FTAG);
5781
5782	txg_wait_synced(spa_get_dsl(spa), 0);
5783}
5784
5785boolean_t
5786spa_has_spare(spa_t *spa, uint64_t guid)
5787{
5788	int i;
5789	uint64_t spareguid;
5790	spa_aux_vdev_t *sav = &spa->spa_spares;
5791
5792	for (i = 0; i < sav->sav_count; i++)
5793		if (sav->sav_vdevs[i]->vdev_guid == guid)
5794			return (B_TRUE);
5795
5796	for (i = 0; i < sav->sav_npending; i++) {
5797		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5798		    &spareguid) == 0 && spareguid == guid)
5799			return (B_TRUE);
5800	}
5801
5802	return (B_FALSE);
5803}
5804
5805/*
5806 * Check if a pool has an active shared spare device.
5807 * Note: reference count of an active spare is 2, as a spare and as a replace
5808 */
5809static boolean_t
5810spa_has_active_shared_spare(spa_t *spa)
5811{
5812	int i, refcnt;
5813	uint64_t pool;
5814	spa_aux_vdev_t *sav = &spa->spa_spares;
5815
5816	for (i = 0; i < sav->sav_count; i++) {
5817		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5818		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5819		    refcnt > 2)
5820			return (B_TRUE);
5821	}
5822
5823	return (B_FALSE);
5824}
5825
5826/*
5827 * Post a sysevent corresponding to the given event.  The 'name' must be one of
5828 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5829 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5830 * in the userland libzpool, as we don't want consumers to misinterpret ztest
5831 * or zdb as real changes.
5832 */
5833void
5834spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5835{
5836#ifdef _KERNEL
5837	sysevent_t		*ev;
5838	sysevent_attr_list_t	*attr = NULL;
5839	sysevent_value_t	value;
5840	sysevent_id_t		eid;
5841
5842	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5843	    SE_SLEEP);
5844
5845	value.value_type = SE_DATA_TYPE_STRING;
5846	value.value.sv_string = spa_name(spa);
5847	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5848		goto done;
5849
5850	value.value_type = SE_DATA_TYPE_UINT64;
5851	value.value.sv_uint64 = spa_guid(spa);
5852	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5853		goto done;
5854
5855	if (vd) {
5856		value.value_type = SE_DATA_TYPE_UINT64;
5857		value.value.sv_uint64 = vd->vdev_guid;
5858		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5859		    SE_SLEEP) != 0)
5860			goto done;
5861
5862		if (vd->vdev_path) {
5863			value.value_type = SE_DATA_TYPE_STRING;
5864			value.value.sv_string = vd->vdev_path;
5865			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5866			    &value, SE_SLEEP) != 0)
5867				goto done;
5868		}
5869	}
5870
5871	if (sysevent_attach_attributes(ev, attr) != 0)
5872		goto done;
5873	attr = NULL;
5874
5875	(void) log_sysevent(ev, SE_SLEEP, &eid);
5876
5877done:
5878	if (attr)
5879		sysevent_free_attr(attr);
5880	sysevent_free(ev);
5881#endif
5882}
5883