1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25#include <sys/zfs_context.h>
26#include <sys/dmu.h>
27#include <sys/dmu_tx.h>
28#include <sys/space_map.h>
29#include <sys/metaslab_impl.h>
30#include <sys/vdev_impl.h>
31#include <sys/zio.h>
32
33uint64_t metaslab_aliquot = 512ULL << 10;
34uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
35
36/*
37 * Metaslab debugging: when set, keeps all space maps in core to verify frees.
38 */
39static int metaslab_debug = 0;
40
41/*
42 * Minimum size which forces the dynamic allocator to change
43 * it's allocation strategy.  Once the space map cannot satisfy
44 * an allocation of this size then it switches to using more
45 * aggressive strategy (i.e search by size rather than offset).
46 */
47uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
48
49/*
50 * The minimum free space, in percent, which must be available
51 * in a space map to continue allocations in a first-fit fashion.
52 * Once the space_map's free space drops below this level we dynamically
53 * switch to using best-fit allocations.
54 */
55int metaslab_df_free_pct = 4;
56
57/*
58 * A metaslab is considered "free" if it contains a contiguous
59 * segment which is greater than metaslab_min_alloc_size.
60 */
61uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
62
63/*
64 * Max number of space_maps to prefetch.
65 */
66int metaslab_prefetch_limit = SPA_DVAS_PER_BP;
67
68/*
69 * Percentage bonus multiplier for metaslabs that are in the bonus area.
70 */
71int metaslab_smo_bonus_pct = 150;
72
73/*
74 * ==========================================================================
75 * Metaslab classes
76 * ==========================================================================
77 */
78metaslab_class_t *
79metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
80{
81	metaslab_class_t *mc;
82
83	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
84
85	mc->mc_spa = spa;
86	mc->mc_rotor = NULL;
87	mc->mc_ops = ops;
88
89	return (mc);
90}
91
92void
93metaslab_class_destroy(metaslab_class_t *mc)
94{
95	ASSERT(mc->mc_rotor == NULL);
96	ASSERT(mc->mc_alloc == 0);
97	ASSERT(mc->mc_deferred == 0);
98	ASSERT(mc->mc_space == 0);
99	ASSERT(mc->mc_dspace == 0);
100
101	kmem_free(mc, sizeof (metaslab_class_t));
102}
103
104int
105metaslab_class_validate(metaslab_class_t *mc)
106{
107	metaslab_group_t *mg;
108	vdev_t *vd;
109
110	/*
111	 * Must hold one of the spa_config locks.
112	 */
113	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
114	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
115
116	if ((mg = mc->mc_rotor) == NULL)
117		return (0);
118
119	do {
120		vd = mg->mg_vd;
121		ASSERT(vd->vdev_mg != NULL);
122		ASSERT3P(vd->vdev_top, ==, vd);
123		ASSERT3P(mg->mg_class, ==, mc);
124		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
125	} while ((mg = mg->mg_next) != mc->mc_rotor);
126
127	return (0);
128}
129
130void
131metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
132    int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
133{
134	atomic_add_64(&mc->mc_alloc, alloc_delta);
135	atomic_add_64(&mc->mc_deferred, defer_delta);
136	atomic_add_64(&mc->mc_space, space_delta);
137	atomic_add_64(&mc->mc_dspace, dspace_delta);
138}
139
140uint64_t
141metaslab_class_get_alloc(metaslab_class_t *mc)
142{
143	return (mc->mc_alloc);
144}
145
146uint64_t
147metaslab_class_get_deferred(metaslab_class_t *mc)
148{
149	return (mc->mc_deferred);
150}
151
152uint64_t
153metaslab_class_get_space(metaslab_class_t *mc)
154{
155	return (mc->mc_space);
156}
157
158uint64_t
159metaslab_class_get_dspace(metaslab_class_t *mc)
160{
161	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
162}
163
164/*
165 * ==========================================================================
166 * Metaslab groups
167 * ==========================================================================
168 */
169static int
170metaslab_compare(const void *x1, const void *x2)
171{
172	const metaslab_t *m1 = x1;
173	const metaslab_t *m2 = x2;
174
175	if (m1->ms_weight < m2->ms_weight)
176		return (1);
177	if (m1->ms_weight > m2->ms_weight)
178		return (-1);
179
180	/*
181	 * If the weights are identical, use the offset to force uniqueness.
182	 */
183	if (m1->ms_map.sm_start < m2->ms_map.sm_start)
184		return (-1);
185	if (m1->ms_map.sm_start > m2->ms_map.sm_start)
186		return (1);
187
188	ASSERT3P(m1, ==, m2);
189
190	return (0);
191}
192
193metaslab_group_t *
194metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
195{
196	metaslab_group_t *mg;
197
198	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
199	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
200	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
201	    sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
202	mg->mg_vd = vd;
203	mg->mg_class = mc;
204	mg->mg_activation_count = 0;
205
206	return (mg);
207}
208
209void
210metaslab_group_destroy(metaslab_group_t *mg)
211{
212	ASSERT(mg->mg_prev == NULL);
213	ASSERT(mg->mg_next == NULL);
214	/*
215	 * We may have gone below zero with the activation count
216	 * either because we never activated in the first place or
217	 * because we're done, and possibly removing the vdev.
218	 */
219	ASSERT(mg->mg_activation_count <= 0);
220
221	avl_destroy(&mg->mg_metaslab_tree);
222	mutex_destroy(&mg->mg_lock);
223	kmem_free(mg, sizeof (metaslab_group_t));
224}
225
226void
227metaslab_group_activate(metaslab_group_t *mg)
228{
229	metaslab_class_t *mc = mg->mg_class;
230	metaslab_group_t *mgprev, *mgnext;
231
232	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
233
234	ASSERT(mc->mc_rotor != mg);
235	ASSERT(mg->mg_prev == NULL);
236	ASSERT(mg->mg_next == NULL);
237	ASSERT(mg->mg_activation_count <= 0);
238
239	if (++mg->mg_activation_count <= 0)
240		return;
241
242	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
243
244	if ((mgprev = mc->mc_rotor) == NULL) {
245		mg->mg_prev = mg;
246		mg->mg_next = mg;
247	} else {
248		mgnext = mgprev->mg_next;
249		mg->mg_prev = mgprev;
250		mg->mg_next = mgnext;
251		mgprev->mg_next = mg;
252		mgnext->mg_prev = mg;
253	}
254	mc->mc_rotor = mg;
255}
256
257void
258metaslab_group_passivate(metaslab_group_t *mg)
259{
260	metaslab_class_t *mc = mg->mg_class;
261	metaslab_group_t *mgprev, *mgnext;
262
263	ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
264
265	if (--mg->mg_activation_count != 0) {
266		ASSERT(mc->mc_rotor != mg);
267		ASSERT(mg->mg_prev == NULL);
268		ASSERT(mg->mg_next == NULL);
269		ASSERT(mg->mg_activation_count < 0);
270		return;
271	}
272
273	mgprev = mg->mg_prev;
274	mgnext = mg->mg_next;
275
276	if (mg == mgnext) {
277		mc->mc_rotor = NULL;
278	} else {
279		mc->mc_rotor = mgnext;
280		mgprev->mg_next = mgnext;
281		mgnext->mg_prev = mgprev;
282	}
283
284	mg->mg_prev = NULL;
285	mg->mg_next = NULL;
286}
287
288static void
289metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
290{
291	mutex_enter(&mg->mg_lock);
292	ASSERT(msp->ms_group == NULL);
293	msp->ms_group = mg;
294	msp->ms_weight = 0;
295	avl_add(&mg->mg_metaslab_tree, msp);
296	mutex_exit(&mg->mg_lock);
297}
298
299static void
300metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
301{
302	mutex_enter(&mg->mg_lock);
303	ASSERT(msp->ms_group == mg);
304	avl_remove(&mg->mg_metaslab_tree, msp);
305	msp->ms_group = NULL;
306	mutex_exit(&mg->mg_lock);
307}
308
309static void
310metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
311{
312	/*
313	 * Although in principle the weight can be any value, in
314	 * practice we do not use values in the range [1, 510].
315	 */
316	ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
317	ASSERT(MUTEX_HELD(&msp->ms_lock));
318
319	mutex_enter(&mg->mg_lock);
320	ASSERT(msp->ms_group == mg);
321	avl_remove(&mg->mg_metaslab_tree, msp);
322	msp->ms_weight = weight;
323	avl_add(&mg->mg_metaslab_tree, msp);
324	mutex_exit(&mg->mg_lock);
325}
326
327/*
328 * ==========================================================================
329 * Common allocator routines
330 * ==========================================================================
331 */
332static int
333metaslab_segsize_compare(const void *x1, const void *x2)
334{
335	const space_seg_t *s1 = x1;
336	const space_seg_t *s2 = x2;
337	uint64_t ss_size1 = s1->ss_end - s1->ss_start;
338	uint64_t ss_size2 = s2->ss_end - s2->ss_start;
339
340	if (ss_size1 < ss_size2)
341		return (-1);
342	if (ss_size1 > ss_size2)
343		return (1);
344
345	if (s1->ss_start < s2->ss_start)
346		return (-1);
347	if (s1->ss_start > s2->ss_start)
348		return (1);
349
350	return (0);
351}
352
353/*
354 * This is a helper function that can be used by the allocator to find
355 * a suitable block to allocate. This will search the specified AVL
356 * tree looking for a block that matches the specified criteria.
357 */
358static uint64_t
359metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
360    uint64_t align)
361{
362	space_seg_t *ss, ssearch;
363	avl_index_t where;
364
365	ssearch.ss_start = *cursor;
366	ssearch.ss_end = *cursor + size;
367
368	ss = avl_find(t, &ssearch, &where);
369	if (ss == NULL)
370		ss = avl_nearest(t, where, AVL_AFTER);
371
372	while (ss != NULL) {
373		uint64_t offset = P2ROUNDUP(ss->ss_start, align);
374
375		if (offset + size <= ss->ss_end) {
376			*cursor = offset + size;
377			return (offset);
378		}
379		ss = AVL_NEXT(t, ss);
380	}
381
382	/*
383	 * If we know we've searched the whole map (*cursor == 0), give up.
384	 * Otherwise, reset the cursor to the beginning and try again.
385	 */
386	if (*cursor == 0)
387		return (-1ULL);
388
389	*cursor = 0;
390	return (metaslab_block_picker(t, cursor, size, align));
391}
392
393static void
394metaslab_pp_load(space_map_t *sm)
395{
396	space_seg_t *ss;
397
398	ASSERT(sm->sm_ppd == NULL);
399	sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
400
401	sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
402	avl_create(sm->sm_pp_root, metaslab_segsize_compare,
403	    sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
404
405	for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
406		avl_add(sm->sm_pp_root, ss);
407}
408
409static void
410metaslab_pp_unload(space_map_t *sm)
411{
412	void *cookie = NULL;
413
414	kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
415	sm->sm_ppd = NULL;
416
417	while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
418		/* tear down the tree */
419	}
420
421	avl_destroy(sm->sm_pp_root);
422	kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
423	sm->sm_pp_root = NULL;
424}
425
426/* ARGSUSED */
427static void
428metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
429{
430	/* No need to update cursor */
431}
432
433/* ARGSUSED */
434static void
435metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
436{
437	/* No need to update cursor */
438}
439
440/*
441 * Return the maximum contiguous segment within the metaslab.
442 */
443uint64_t
444metaslab_pp_maxsize(space_map_t *sm)
445{
446	avl_tree_t *t = sm->sm_pp_root;
447	space_seg_t *ss;
448
449	if (t == NULL || (ss = avl_last(t)) == NULL)
450		return (0ULL);
451
452	return (ss->ss_end - ss->ss_start);
453}
454
455/*
456 * ==========================================================================
457 * The first-fit block allocator
458 * ==========================================================================
459 */
460static uint64_t
461metaslab_ff_alloc(space_map_t *sm, uint64_t size)
462{
463	avl_tree_t *t = &sm->sm_root;
464	uint64_t align = size & -size;
465	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
466
467	return (metaslab_block_picker(t, cursor, size, align));
468}
469
470/* ARGSUSED */
471boolean_t
472metaslab_ff_fragmented(space_map_t *sm)
473{
474	return (B_TRUE);
475}
476
477static space_map_ops_t metaslab_ff_ops = {
478	metaslab_pp_load,
479	metaslab_pp_unload,
480	metaslab_ff_alloc,
481	metaslab_pp_claim,
482	metaslab_pp_free,
483	metaslab_pp_maxsize,
484	metaslab_ff_fragmented
485};
486
487/*
488 * ==========================================================================
489 * Dynamic block allocator -
490 * Uses the first fit allocation scheme until space get low and then
491 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
492 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
493 * ==========================================================================
494 */
495static uint64_t
496metaslab_df_alloc(space_map_t *sm, uint64_t size)
497{
498	avl_tree_t *t = &sm->sm_root;
499	uint64_t align = size & -size;
500	uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
501	uint64_t max_size = metaslab_pp_maxsize(sm);
502	int free_pct = sm->sm_space * 100 / sm->sm_size;
503
504	ASSERT(MUTEX_HELD(sm->sm_lock));
505	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
506
507	if (max_size < size)
508		return (-1ULL);
509
510	/*
511	 * If we're running low on space switch to using the size
512	 * sorted AVL tree (best-fit).
513	 */
514	if (max_size < metaslab_df_alloc_threshold ||
515	    free_pct < metaslab_df_free_pct) {
516		t = sm->sm_pp_root;
517		*cursor = 0;
518	}
519
520	return (metaslab_block_picker(t, cursor, size, 1ULL));
521}
522
523static boolean_t
524metaslab_df_fragmented(space_map_t *sm)
525{
526	uint64_t max_size = metaslab_pp_maxsize(sm);
527	int free_pct = sm->sm_space * 100 / sm->sm_size;
528
529	if (max_size >= metaslab_df_alloc_threshold &&
530	    free_pct >= metaslab_df_free_pct)
531		return (B_FALSE);
532
533	return (B_TRUE);
534}
535
536static space_map_ops_t metaslab_df_ops = {
537	metaslab_pp_load,
538	metaslab_pp_unload,
539	metaslab_df_alloc,
540	metaslab_pp_claim,
541	metaslab_pp_free,
542	metaslab_pp_maxsize,
543	metaslab_df_fragmented
544};
545
546/*
547 * ==========================================================================
548 * Other experimental allocators
549 * ==========================================================================
550 */
551static uint64_t
552metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
553{
554	avl_tree_t *t = &sm->sm_root;
555	uint64_t *cursor = (uint64_t *)sm->sm_ppd;
556	uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
557	uint64_t max_size = metaslab_pp_maxsize(sm);
558	uint64_t rsize = size;
559	uint64_t offset = 0;
560
561	ASSERT(MUTEX_HELD(sm->sm_lock));
562	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
563
564	if (max_size < size)
565		return (-1ULL);
566
567	ASSERT3U(*extent_end, >=, *cursor);
568
569	/*
570	 * If we're running low on space switch to using the size
571	 * sorted AVL tree (best-fit).
572	 */
573	if ((*cursor + size) > *extent_end) {
574
575		t = sm->sm_pp_root;
576		*cursor = *extent_end = 0;
577
578		if (max_size > 2 * SPA_MAXBLOCKSIZE)
579			rsize = MIN(metaslab_min_alloc_size, max_size);
580		offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
581		if (offset != -1)
582			*cursor = offset + size;
583	} else {
584		offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
585	}
586	ASSERT3U(*cursor, <=, *extent_end);
587	return (offset);
588}
589
590static boolean_t
591metaslab_cdf_fragmented(space_map_t *sm)
592{
593	uint64_t max_size = metaslab_pp_maxsize(sm);
594
595	if (max_size > (metaslab_min_alloc_size * 10))
596		return (B_FALSE);
597	return (B_TRUE);
598}
599
600static space_map_ops_t metaslab_cdf_ops = {
601	metaslab_pp_load,
602	metaslab_pp_unload,
603	metaslab_cdf_alloc,
604	metaslab_pp_claim,
605	metaslab_pp_free,
606	metaslab_pp_maxsize,
607	metaslab_cdf_fragmented
608};
609
610uint64_t metaslab_ndf_clump_shift = 4;
611
612static uint64_t
613metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
614{
615	avl_tree_t *t = &sm->sm_root;
616	avl_index_t where;
617	space_seg_t *ss, ssearch;
618	uint64_t hbit = highbit(size);
619	uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1;
620	uint64_t max_size = metaslab_pp_maxsize(sm);
621
622	ASSERT(MUTEX_HELD(sm->sm_lock));
623	ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
624
625	if (max_size < size)
626		return (-1ULL);
627
628	ssearch.ss_start = *cursor;
629	ssearch.ss_end = *cursor + size;
630
631	ss = avl_find(t, &ssearch, &where);
632	if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
633		t = sm->sm_pp_root;
634
635		ssearch.ss_start = 0;
636		ssearch.ss_end = MIN(max_size,
637		    1ULL << (hbit + metaslab_ndf_clump_shift));
638		ss = avl_find(t, &ssearch, &where);
639		if (ss == NULL)
640			ss = avl_nearest(t, where, AVL_AFTER);
641		ASSERT(ss != NULL);
642	}
643
644	if (ss != NULL) {
645		if (ss->ss_start + size <= ss->ss_end) {
646			*cursor = ss->ss_start + size;
647			return (ss->ss_start);
648		}
649	}
650	return (-1ULL);
651}
652
653static boolean_t
654metaslab_ndf_fragmented(space_map_t *sm)
655{
656	uint64_t max_size = metaslab_pp_maxsize(sm);
657
658	if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift))
659		return (B_FALSE);
660	return (B_TRUE);
661}
662
663
664static space_map_ops_t metaslab_ndf_ops = {
665	metaslab_pp_load,
666	metaslab_pp_unload,
667	metaslab_ndf_alloc,
668	metaslab_pp_claim,
669	metaslab_pp_free,
670	metaslab_pp_maxsize,
671	metaslab_ndf_fragmented
672};
673
674space_map_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
675
676/*
677 * ==========================================================================
678 * Metaslabs
679 * ==========================================================================
680 */
681metaslab_t *
682metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
683	uint64_t start, uint64_t size, uint64_t txg)
684{
685	vdev_t *vd = mg->mg_vd;
686	metaslab_t *msp;
687
688	msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
689	mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
690
691	msp->ms_smo_syncing = *smo;
692
693	/*
694	 * We create the main space map here, but we don't create the
695	 * allocmaps and freemaps until metaslab_sync_done().  This serves
696	 * two purposes: it allows metaslab_sync_done() to detect the
697	 * addition of new space; and for debugging, it ensures that we'd
698	 * data fault on any attempt to use this metaslab before it's ready.
699	 */
700	space_map_create(&msp->ms_map, start, size,
701	    vd->vdev_ashift, &msp->ms_lock);
702
703	metaslab_group_add(mg, msp);
704
705	if (metaslab_debug && smo->smo_object != 0) {
706		mutex_enter(&msp->ms_lock);
707		VERIFY(space_map_load(&msp->ms_map, mg->mg_class->mc_ops,
708		    SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
709		mutex_exit(&msp->ms_lock);
710	}
711
712	/*
713	 * If we're opening an existing pool (txg == 0) or creating
714	 * a new one (txg == TXG_INITIAL), all space is available now.
715	 * If we're adding space to an existing pool, the new space
716	 * does not become available until after this txg has synced.
717	 */
718	if (txg <= TXG_INITIAL)
719		metaslab_sync_done(msp, 0);
720
721	if (txg != 0) {
722		vdev_dirty(vd, 0, NULL, txg);
723		vdev_dirty(vd, VDD_METASLAB, msp, txg);
724	}
725
726	return (msp);
727}
728
729void
730metaslab_fini(metaslab_t *msp)
731{
732	metaslab_group_t *mg = msp->ms_group;
733
734	vdev_space_update(mg->mg_vd,
735	    -msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size);
736
737	metaslab_group_remove(mg, msp);
738
739	mutex_enter(&msp->ms_lock);
740
741	space_map_unload(&msp->ms_map);
742	space_map_destroy(&msp->ms_map);
743
744	for (int t = 0; t < TXG_SIZE; t++) {
745		space_map_destroy(&msp->ms_allocmap[t]);
746		space_map_destroy(&msp->ms_freemap[t]);
747	}
748
749	for (int t = 0; t < TXG_DEFER_SIZE; t++)
750		space_map_destroy(&msp->ms_defermap[t]);
751
752	ASSERT3S(msp->ms_deferspace, ==, 0);
753
754	mutex_exit(&msp->ms_lock);
755	mutex_destroy(&msp->ms_lock);
756
757	kmem_free(msp, sizeof (metaslab_t));
758}
759
760#define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
761#define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
762#define	METASLAB_ACTIVE_MASK		\
763	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
764
765static uint64_t
766metaslab_weight(metaslab_t *msp)
767{
768	metaslab_group_t *mg = msp->ms_group;
769	space_map_t *sm = &msp->ms_map;
770	space_map_obj_t *smo = &msp->ms_smo;
771	vdev_t *vd = mg->mg_vd;
772	uint64_t weight, space;
773
774	ASSERT(MUTEX_HELD(&msp->ms_lock));
775
776	/*
777	 * The baseline weight is the metaslab's free space.
778	 */
779	space = sm->sm_size - smo->smo_alloc;
780	weight = space;
781
782	/*
783	 * Modern disks have uniform bit density and constant angular velocity.
784	 * Therefore, the outer recording zones are faster (higher bandwidth)
785	 * than the inner zones by the ratio of outer to inner track diameter,
786	 * which is typically around 2:1.  We account for this by assigning
787	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
788	 * In effect, this means that we'll select the metaslab with the most
789	 * free bandwidth rather than simply the one with the most free space.
790	 */
791	weight = 2 * weight -
792	    ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
793	ASSERT(weight >= space && weight <= 2 * space);
794
795	/*
796	 * For locality, assign higher weight to metaslabs which have
797	 * a lower offset than what we've already activated.
798	 */
799	if (sm->sm_start <= mg->mg_bonus_area)
800		weight *= (metaslab_smo_bonus_pct / 100);
801	ASSERT(weight >= space &&
802	    weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);
803
804	if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
805		/*
806		 * If this metaslab is one we're actively using, adjust its
807		 * weight to make it preferable to any inactive metaslab so
808		 * we'll polish it off.
809		 */
810		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
811	}
812	return (weight);
813}
814
815static void
816metaslab_prefetch(metaslab_group_t *mg)
817{
818	spa_t *spa = mg->mg_vd->vdev_spa;
819	metaslab_t *msp;
820	avl_tree_t *t = &mg->mg_metaslab_tree;
821	int m;
822
823	mutex_enter(&mg->mg_lock);
824
825	/*
826	 * Prefetch the next potential metaslabs
827	 */
828	for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
829		space_map_t *sm = &msp->ms_map;
830		space_map_obj_t *smo = &msp->ms_smo;
831
832		/* If we have reached our prefetch limit then we're done */
833		if (m >= metaslab_prefetch_limit)
834			break;
835
836		if (!sm->sm_loaded && smo->smo_object != 0) {
837			mutex_exit(&mg->mg_lock);
838			dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
839			    0ULL, smo->smo_objsize);
840			mutex_enter(&mg->mg_lock);
841		}
842	}
843	mutex_exit(&mg->mg_lock);
844}
845
846static int
847metaslab_activate(metaslab_t *msp, uint64_t activation_weight, uint64_t size)
848{
849	metaslab_group_t *mg = msp->ms_group;
850	space_map_t *sm = &msp->ms_map;
851	space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
852
853	ASSERT(MUTEX_HELD(&msp->ms_lock));
854
855	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
856		space_map_load_wait(sm);
857		if (!sm->sm_loaded) {
858			int error = space_map_load(sm, sm_ops, SM_FREE,
859			    &msp->ms_smo,
860			    spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
861			if (error)  {
862				metaslab_group_sort(msp->ms_group, msp, 0);
863				return (error);
864			}
865			for (int t = 0; t < TXG_DEFER_SIZE; t++)
866				space_map_walk(&msp->ms_defermap[t],
867				    space_map_claim, sm);
868
869		}
870
871		/*
872		 * Track the bonus area as we activate new metaslabs.
873		 */
874		if (sm->sm_start > mg->mg_bonus_area) {
875			mutex_enter(&mg->mg_lock);
876			mg->mg_bonus_area = sm->sm_start;
877			mutex_exit(&mg->mg_lock);
878		}
879
880		/*
881		 * If we were able to load the map then make sure
882		 * that this map is still able to satisfy our request.
883		 */
884		if (msp->ms_weight < size)
885			return (ENOSPC);
886
887		metaslab_group_sort(msp->ms_group, msp,
888		    msp->ms_weight | activation_weight);
889	}
890	ASSERT(sm->sm_loaded);
891	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
892
893	return (0);
894}
895
896static void
897metaslab_passivate(metaslab_t *msp, uint64_t size)
898{
899	/*
900	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
901	 * this metaslab again.  In that case, it had better be empty,
902	 * or we would be leaving space on the table.
903	 */
904	ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
905	metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
906	ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
907}
908
909/*
910 * Write a metaslab to disk in the context of the specified transaction group.
911 */
912void
913metaslab_sync(metaslab_t *msp, uint64_t txg)
914{
915	vdev_t *vd = msp->ms_group->mg_vd;
916	spa_t *spa = vd->vdev_spa;
917	objset_t *mos = spa_meta_objset(spa);
918	space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
919	space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
920	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
921	space_map_t *sm = &msp->ms_map;
922	space_map_obj_t *smo = &msp->ms_smo_syncing;
923	dmu_buf_t *db;
924	dmu_tx_t *tx;
925
926	ASSERT(!vd->vdev_ishole);
927
928	if (allocmap->sm_space == 0 && freemap->sm_space == 0)
929		return;
930
931	/*
932	 * The only state that can actually be changing concurrently with
933	 * metaslab_sync() is the metaslab's ms_map.  No other thread can
934	 * be modifying this txg's allocmap, freemap, freed_map, or smo.
935	 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
936	 * We drop it whenever we call into the DMU, because the DMU
937	 * can call down to us (e.g. via zio_free()) at any time.
938	 */
939
940	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
941
942	if (smo->smo_object == 0) {
943		ASSERT(smo->smo_objsize == 0);
944		ASSERT(smo->smo_alloc == 0);
945		smo->smo_object = dmu_object_alloc(mos,
946		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
947		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
948		ASSERT(smo->smo_object != 0);
949		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
950		    (sm->sm_start >> vd->vdev_ms_shift),
951		    sizeof (uint64_t), &smo->smo_object, tx);
952	}
953
954	mutex_enter(&msp->ms_lock);
955
956	space_map_walk(freemap, space_map_add, freed_map);
957
958	if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
959	    2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
960		/*
961		 * The in-core space map representation is twice as compact
962		 * as the on-disk one, so it's time to condense the latter
963		 * by generating a pure allocmap from first principles.
964		 *
965		 * This metaslab is 100% allocated,
966		 * minus the content of the in-core map (sm),
967		 * minus what's been freed this txg (freed_map),
968		 * minus deferred frees (ms_defermap[]),
969		 * minus allocations from txgs in the future
970		 * (because they haven't been committed yet).
971		 */
972		space_map_vacate(allocmap, NULL, NULL);
973		space_map_vacate(freemap, NULL, NULL);
974
975		space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
976
977		space_map_walk(sm, space_map_remove, allocmap);
978		space_map_walk(freed_map, space_map_remove, allocmap);
979
980		for (int t = 0; t < TXG_DEFER_SIZE; t++)
981			space_map_walk(&msp->ms_defermap[t],
982			    space_map_remove, allocmap);
983
984		for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
985			space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
986			    space_map_remove, allocmap);
987
988		mutex_exit(&msp->ms_lock);
989		space_map_truncate(smo, mos, tx);
990		mutex_enter(&msp->ms_lock);
991	}
992
993	space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
994	space_map_sync(freemap, SM_FREE, smo, mos, tx);
995
996	mutex_exit(&msp->ms_lock);
997
998	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
999	dmu_buf_will_dirty(db, tx);
1000	ASSERT3U(db->db_size, >=, sizeof (*smo));
1001	bcopy(smo, db->db_data, sizeof (*smo));
1002	dmu_buf_rele(db, FTAG);
1003
1004	dmu_tx_commit(tx);
1005}
1006
1007/*
1008 * Called after a transaction group has completely synced to mark
1009 * all of the metaslab's free space as usable.
1010 */
1011void
1012metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1013{
1014	space_map_obj_t *smo = &msp->ms_smo;
1015	space_map_obj_t *smosync = &msp->ms_smo_syncing;
1016	space_map_t *sm = &msp->ms_map;
1017	space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1018	space_map_t *defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
1019	metaslab_group_t *mg = msp->ms_group;
1020	vdev_t *vd = mg->mg_vd;
1021	int64_t alloc_delta, defer_delta;
1022
1023	ASSERT(!vd->vdev_ishole);
1024
1025	mutex_enter(&msp->ms_lock);
1026
1027	/*
1028	 * If this metaslab is just becoming available, initialize its
1029	 * allocmaps and freemaps and add its capacity to the vdev.
1030	 */
1031	if (freed_map->sm_size == 0) {
1032		for (int t = 0; t < TXG_SIZE; t++) {
1033			space_map_create(&msp->ms_allocmap[t], sm->sm_start,
1034			    sm->sm_size, sm->sm_shift, sm->sm_lock);
1035			space_map_create(&msp->ms_freemap[t], sm->sm_start,
1036			    sm->sm_size, sm->sm_shift, sm->sm_lock);
1037		}
1038
1039		for (int t = 0; t < TXG_DEFER_SIZE; t++)
1040			space_map_create(&msp->ms_defermap[t], sm->sm_start,
1041			    sm->sm_size, sm->sm_shift, sm->sm_lock);
1042
1043		vdev_space_update(vd, 0, 0, sm->sm_size);
1044	}
1045
1046	alloc_delta = smosync->smo_alloc - smo->smo_alloc;
1047	defer_delta = freed_map->sm_space - defer_map->sm_space;
1048
1049	vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1050
1051	ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
1052	ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
1053
1054	/*
1055	 * If there's a space_map_load() in progress, wait for it to complete
1056	 * so that we have a consistent view of the in-core space map.
1057	 * Then, add defer_map (oldest deferred frees) to this map and
1058	 * transfer freed_map (this txg's frees) to defer_map.
1059	 */
1060	space_map_load_wait(sm);
1061	space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
1062	space_map_vacate(freed_map, space_map_add, defer_map);
1063
1064	*smo = *smosync;
1065
1066	msp->ms_deferspace += defer_delta;
1067	ASSERT3S(msp->ms_deferspace, >=, 0);
1068	ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
1069	if (msp->ms_deferspace != 0) {
1070		/*
1071		 * Keep syncing this metaslab until all deferred frees
1072		 * are back in circulation.
1073		 */
1074		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1075	}
1076
1077	/*
1078	 * If the map is loaded but no longer active, evict it as soon as all
1079	 * future allocations have synced.  (If we unloaded it now and then
1080	 * loaded a moment later, the map wouldn't reflect those allocations.)
1081	 */
1082	if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1083		int evictable = 1;
1084
1085		for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
1086			if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
1087				evictable = 0;
1088
1089		if (evictable && !metaslab_debug)
1090			space_map_unload(sm);
1091	}
1092
1093	metaslab_group_sort(mg, msp, metaslab_weight(msp));
1094
1095	mutex_exit(&msp->ms_lock);
1096}
1097
1098void
1099metaslab_sync_reassess(metaslab_group_t *mg)
1100{
1101	vdev_t *vd = mg->mg_vd;
1102
1103	/*
1104	 * Re-evaluate all metaslabs which have lower offsets than the
1105	 * bonus area.
1106	 */
1107	for (int m = 0; m < vd->vdev_ms_count; m++) {
1108		metaslab_t *msp = vd->vdev_ms[m];
1109
1110		if (msp->ms_map.sm_start > mg->mg_bonus_area)
1111			break;
1112
1113		mutex_enter(&msp->ms_lock);
1114		metaslab_group_sort(mg, msp, metaslab_weight(msp));
1115		mutex_exit(&msp->ms_lock);
1116	}
1117
1118	/*
1119	 * Prefetch the next potential metaslabs
1120	 */
1121	metaslab_prefetch(mg);
1122}
1123
1124static uint64_t
1125metaslab_distance(metaslab_t *msp, dva_t *dva)
1126{
1127	uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1128	uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1129	uint64_t start = msp->ms_map.sm_start >> ms_shift;
1130
1131	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1132		return (1ULL << 63);
1133
1134	if (offset < start)
1135		return ((start - offset) << ms_shift);
1136	if (offset > start)
1137		return ((offset - start) << ms_shift);
1138	return (0);
1139}
1140
1141static uint64_t
1142metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
1143    uint64_t min_distance, dva_t *dva, int d)
1144{
1145	metaslab_t *msp = NULL;
1146	uint64_t offset = -1ULL;
1147	avl_tree_t *t = &mg->mg_metaslab_tree;
1148	uint64_t activation_weight;
1149	uint64_t target_distance;
1150	int i;
1151
1152	activation_weight = METASLAB_WEIGHT_PRIMARY;
1153	for (i = 0; i < d; i++) {
1154		if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1155			activation_weight = METASLAB_WEIGHT_SECONDARY;
1156			break;
1157		}
1158	}
1159
1160	for (;;) {
1161		boolean_t was_active;
1162
1163		mutex_enter(&mg->mg_lock);
1164		for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1165			if (msp->ms_weight < size) {
1166				mutex_exit(&mg->mg_lock);
1167				return (-1ULL);
1168			}
1169
1170			was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1171			if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1172				break;
1173
1174			target_distance = min_distance +
1175			    (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
1176
1177			for (i = 0; i < d; i++)
1178				if (metaslab_distance(msp, &dva[i]) <
1179				    target_distance)
1180					break;
1181			if (i == d)
1182				break;
1183		}
1184		mutex_exit(&mg->mg_lock);
1185		if (msp == NULL)
1186			return (-1ULL);
1187
1188		mutex_enter(&msp->ms_lock);
1189
1190		/*
1191		 * Ensure that the metaslab we have selected is still
1192		 * capable of handling our request. It's possible that
1193		 * another thread may have changed the weight while we
1194		 * were blocked on the metaslab lock.
1195		 */
1196		if (msp->ms_weight < size || (was_active &&
1197		    !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1198		    activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1199			mutex_exit(&msp->ms_lock);
1200			continue;
1201		}
1202
1203		if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1204		    activation_weight == METASLAB_WEIGHT_PRIMARY) {
1205			metaslab_passivate(msp,
1206			    msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1207			mutex_exit(&msp->ms_lock);
1208			continue;
1209		}
1210
1211		if (metaslab_activate(msp, activation_weight, size) != 0) {
1212			mutex_exit(&msp->ms_lock);
1213			continue;
1214		}
1215
1216		if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
1217			break;
1218
1219		metaslab_passivate(msp, space_map_maxsize(&msp->ms_map));
1220
1221		mutex_exit(&msp->ms_lock);
1222	}
1223
1224	if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1225		vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1226
1227	space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1228
1229	mutex_exit(&msp->ms_lock);
1230
1231	return (offset);
1232}
1233
1234/*
1235 * Allocate a block for the specified i/o.
1236 */
1237static int
1238metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1239    dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1240{
1241	metaslab_group_t *mg, *rotor;
1242	vdev_t *vd;
1243	int dshift = 3;
1244	int all_zero;
1245	int zio_lock = B_FALSE;
1246	boolean_t allocatable;
1247	uint64_t offset = -1ULL;
1248	uint64_t asize;
1249	uint64_t distance;
1250
1251	ASSERT(!DVA_IS_VALID(&dva[d]));
1252
1253	/*
1254	 * For testing, make some blocks above a certain size be gang blocks.
1255	 */
1256	if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1257		return (ENOSPC);
1258
1259	/*
1260	 * Start at the rotor and loop through all mgs until we find something.
1261	 * Note that there's no locking on mc_rotor or mc_aliquot because
1262	 * nothing actually breaks if we miss a few updates -- we just won't
1263	 * allocate quite as evenly.  It all balances out over time.
1264	 *
1265	 * If we are doing ditto or log blocks, try to spread them across
1266	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
1267	 * allocated all of our ditto blocks, then try and spread them out on
1268	 * that vdev as much as possible.  If it turns out to not be possible,
1269	 * gradually lower our standards until anything becomes acceptable.
1270	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1271	 * gives us hope of containing our fault domains to something we're
1272	 * able to reason about.  Otherwise, any two top-level vdev failures
1273	 * will guarantee the loss of data.  With consecutive allocation,
1274	 * only two adjacent top-level vdev failures will result in data loss.
1275	 *
1276	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1277	 * ourselves on the same vdev as our gang block header.  That
1278	 * way, we can hope for locality in vdev_cache, plus it makes our
1279	 * fault domains something tractable.
1280	 */
1281	if (hintdva) {
1282		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1283
1284		/*
1285		 * It's possible the vdev we're using as the hint no
1286		 * longer exists (i.e. removed). Consult the rotor when
1287		 * all else fails.
1288		 */
1289		if (vd != NULL) {
1290			mg = vd->vdev_mg;
1291
1292			if (flags & METASLAB_HINTBP_AVOID &&
1293			    mg->mg_next != NULL)
1294				mg = mg->mg_next;
1295		} else {
1296			mg = mc->mc_rotor;
1297		}
1298	} else if (d != 0) {
1299		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1300		mg = vd->vdev_mg->mg_next;
1301	} else {
1302		mg = mc->mc_rotor;
1303	}
1304
1305	/*
1306	 * If the hint put us into the wrong metaslab class, or into a
1307	 * metaslab group that has been passivated, just follow the rotor.
1308	 */
1309	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1310		mg = mc->mc_rotor;
1311
1312	rotor = mg;
1313top:
1314	all_zero = B_TRUE;
1315	do {
1316		ASSERT(mg->mg_activation_count == 1);
1317
1318		vd = mg->mg_vd;
1319
1320		/*
1321		 * Don't allocate from faulted devices.
1322		 */
1323		if (zio_lock) {
1324			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1325			allocatable = vdev_allocatable(vd);
1326			spa_config_exit(spa, SCL_ZIO, FTAG);
1327		} else {
1328			allocatable = vdev_allocatable(vd);
1329		}
1330		if (!allocatable)
1331			goto next;
1332
1333		/*
1334		 * Avoid writing single-copy data to a failing vdev
1335		 */
1336		if ((vd->vdev_stat.vs_write_errors > 0 ||
1337		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
1338		    d == 0 && dshift == 3) {
1339			all_zero = B_FALSE;
1340			goto next;
1341		}
1342
1343		ASSERT(mg->mg_class == mc);
1344
1345		distance = vd->vdev_asize >> dshift;
1346		if (distance <= (1ULL << vd->vdev_ms_shift))
1347			distance = 0;
1348		else
1349			all_zero = B_FALSE;
1350
1351		asize = vdev_psize_to_asize(vd, psize);
1352		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1353
1354		offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
1355		if (offset != -1ULL) {
1356			/*
1357			 * If we've just selected this metaslab group,
1358			 * figure out whether the corresponding vdev is
1359			 * over- or under-used relative to the pool,
1360			 * and set an allocation bias to even it out.
1361			 */
1362			if (mc->mc_aliquot == 0) {
1363				vdev_stat_t *vs = &vd->vdev_stat;
1364				int64_t vu, cu;
1365
1366				/*
1367				 * Determine percent used in units of 0..1024.
1368				 * (This is just to avoid floating point.)
1369				 */
1370				vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
1371				cu = (mc->mc_alloc << 10) / (mc->mc_space + 1);
1372
1373				/*
1374				 * Bias by at most +/- 25% of the aliquot.
1375				 */
1376				mg->mg_bias = ((cu - vu) *
1377				    (int64_t)mg->mg_aliquot) / (1024 * 4);
1378			}
1379
1380			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1381			    mg->mg_aliquot + mg->mg_bias) {
1382				mc->mc_rotor = mg->mg_next;
1383				mc->mc_aliquot = 0;
1384			}
1385
1386			DVA_SET_VDEV(&dva[d], vd->vdev_id);
1387			DVA_SET_OFFSET(&dva[d], offset);
1388			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1389			DVA_SET_ASIZE(&dva[d], asize);
1390
1391			return (0);
1392		}
1393next:
1394		mc->mc_rotor = mg->mg_next;
1395		mc->mc_aliquot = 0;
1396	} while ((mg = mg->mg_next) != rotor);
1397
1398	if (!all_zero) {
1399		dshift++;
1400		ASSERT(dshift < 64);
1401		goto top;
1402	}
1403
1404	if (!allocatable && !zio_lock) {
1405		dshift = 3;
1406		zio_lock = B_TRUE;
1407		goto top;
1408	}
1409
1410	bzero(&dva[d], sizeof (dva_t));
1411
1412	return (ENOSPC);
1413}
1414
1415/*
1416 * Free the block represented by DVA in the context of the specified
1417 * transaction group.
1418 */
1419static void
1420metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1421{
1422	uint64_t vdev = DVA_GET_VDEV(dva);
1423	uint64_t offset = DVA_GET_OFFSET(dva);
1424	uint64_t size = DVA_GET_ASIZE(dva);
1425	vdev_t *vd;
1426	metaslab_t *msp;
1427
1428	ASSERT(DVA_IS_VALID(dva));
1429
1430	if (txg > spa_freeze_txg(spa))
1431		return;
1432
1433	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1434	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1435		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1436		    (u_longlong_t)vdev, (u_longlong_t)offset);
1437		ASSERT(0);
1438		return;
1439	}
1440
1441	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1442
1443	if (DVA_GET_GANG(dva))
1444		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1445
1446	mutex_enter(&msp->ms_lock);
1447
1448	if (now) {
1449		space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
1450		    offset, size);
1451		space_map_free(&msp->ms_map, offset, size);
1452	} else {
1453		if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
1454			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1455		space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
1456	}
1457
1458	mutex_exit(&msp->ms_lock);
1459}
1460
1461/*
1462 * Intent log support: upon opening the pool after a crash, notify the SPA
1463 * of blocks that the intent log has allocated for immediate write, but
1464 * which are still considered free by the SPA because the last transaction
1465 * group didn't commit yet.
1466 */
1467static int
1468metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1469{
1470	uint64_t vdev = DVA_GET_VDEV(dva);
1471	uint64_t offset = DVA_GET_OFFSET(dva);
1472	uint64_t size = DVA_GET_ASIZE(dva);
1473	vdev_t *vd;
1474	metaslab_t *msp;
1475	int error = 0;
1476
1477	ASSERT(DVA_IS_VALID(dva));
1478
1479	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1480	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1481		return (ENXIO);
1482
1483	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1484
1485	if (DVA_GET_GANG(dva))
1486		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1487
1488	mutex_enter(&msp->ms_lock);
1489
1490	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map.sm_loaded)
1491		error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY, 0);
1492
1493	if (error == 0 && !space_map_contains(&msp->ms_map, offset, size))
1494		error = ENOENT;
1495
1496	if (error || txg == 0) {	/* txg == 0 indicates dry run */
1497		mutex_exit(&msp->ms_lock);
1498		return (error);
1499	}
1500
1501	space_map_claim(&msp->ms_map, offset, size);
1502
1503	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
1504		if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1505			vdev_dirty(vd, VDD_METASLAB, msp, txg);
1506		space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1507	}
1508
1509	mutex_exit(&msp->ms_lock);
1510
1511	return (0);
1512}
1513
1514int
1515metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1516    int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1517{
1518	dva_t *dva = bp->blk_dva;
1519	dva_t *hintdva = hintbp->blk_dva;
1520	int error = 0;
1521
1522	ASSERT(bp->blk_birth == 0);
1523	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
1524
1525	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1526
1527	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
1528		spa_config_exit(spa, SCL_ALLOC, FTAG);
1529		return (ENOSPC);
1530	}
1531
1532	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1533	ASSERT(BP_GET_NDVAS(bp) == 0);
1534	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1535
1536	for (int d = 0; d < ndvas; d++) {
1537		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1538		    txg, flags);
1539		if (error) {
1540			for (d--; d >= 0; d--) {
1541				metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1542				bzero(&dva[d], sizeof (dva_t));
1543			}
1544			spa_config_exit(spa, SCL_ALLOC, FTAG);
1545			return (error);
1546		}
1547	}
1548	ASSERT(error == 0);
1549	ASSERT(BP_GET_NDVAS(bp) == ndvas);
1550
1551	spa_config_exit(spa, SCL_ALLOC, FTAG);
1552
1553	BP_SET_BIRTH(bp, txg, txg);
1554
1555	return (0);
1556}
1557
1558void
1559metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1560{
1561	const dva_t *dva = bp->blk_dva;
1562	int ndvas = BP_GET_NDVAS(bp);
1563
1564	ASSERT(!BP_IS_HOLE(bp));
1565	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
1566
1567	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1568
1569	for (int d = 0; d < ndvas; d++)
1570		metaslab_free_dva(spa, &dva[d], txg, now);
1571
1572	spa_config_exit(spa, SCL_FREE, FTAG);
1573}
1574
1575int
1576metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1577{
1578	const dva_t *dva = bp->blk_dva;
1579	int ndvas = BP_GET_NDVAS(bp);
1580	int error = 0;
1581
1582	ASSERT(!BP_IS_HOLE(bp));
1583
1584	if (txg != 0) {
1585		/*
1586		 * First do a dry run to make sure all DVAs are claimable,
1587		 * so we don't have to unwind from partial failures below.
1588		 */
1589		if ((error = metaslab_claim(spa, bp, 0)) != 0)
1590			return (error);
1591	}
1592
1593	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1594
1595	for (int d = 0; d < ndvas; d++)
1596		if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1597			break;
1598
1599	spa_config_exit(spa, SCL_ALLOC, FTAG);
1600
1601	ASSERT(error == 0 || txg == 0);
1602
1603	return (error);
1604}
1605