1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27/*	  All Rights Reserved  	*/
28
29#include <sys/types.h>
30#include <sys/param.h>
31#include <sys/thread.h>
32#include <sys/sysmacros.h>
33#include <sys/signal.h>
34#include <sys/cred.h>
35#include <sys/user.h>
36#include <sys/errno.h>
37#include <sys/vnode.h>
38#include <sys/mman.h>
39#include <sys/kmem.h>
40#include <sys/proc.h>
41#include <sys/pathname.h>
42#include <sys/cmn_err.h>
43#include <sys/systm.h>
44#include <sys/elf.h>
45#include <sys/vmsystm.h>
46#include <sys/debug.h>
47#include <sys/auxv.h>
48#include <sys/exec.h>
49#include <sys/prsystm.h>
50#include <vm/as.h>
51#include <vm/rm.h>
52#include <vm/seg.h>
53#include <vm/seg_vn.h>
54#include <sys/modctl.h>
55#include <sys/systeminfo.h>
56#include <sys/vmparam.h>
57#include <sys/machelf.h>
58#include <sys/shm_impl.h>
59#include <sys/archsystm.h>
60#include <sys/fasttrap.h>
61#include <sys/brand.h>
62#include "elf_impl.h"
63#include <sys/sdt.h>
64
65extern int at_flags;
66
67#define	ORIGIN_STR	"ORIGIN"
68#define	ORIGIN_STR_SIZE	6
69
70static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *);
71static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *,
72    ssize_t *);
73static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *,
74    ssize_t *, caddr_t *, ssize_t *);
75static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *);
76static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t,
77    Phdr **, Phdr **, Phdr **, Phdr **, Phdr *,
78    caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *);
79
80typedef enum {
81	STR_CTF,
82	STR_SYMTAB,
83	STR_DYNSYM,
84	STR_STRTAB,
85	STR_DYNSTR,
86	STR_SHSTRTAB,
87	STR_NUM
88} shstrtype_t;
89
90static const char *shstrtab_data[] = {
91	".SUNW_ctf",
92	".symtab",
93	".dynsym",
94	".strtab",
95	".dynstr",
96	".shstrtab"
97};
98
99typedef struct shstrtab {
100	int	sst_ndx[STR_NUM];
101	int	sst_cur;
102} shstrtab_t;
103
104static void
105shstrtab_init(shstrtab_t *s)
106{
107	bzero(&s->sst_ndx, sizeof (s->sst_ndx));
108	s->sst_cur = 1;
109}
110
111static int
112shstrtab_ndx(shstrtab_t *s, shstrtype_t type)
113{
114	int ret;
115
116	if ((ret = s->sst_ndx[type]) != 0)
117		return (ret);
118
119	ret = s->sst_ndx[type] = s->sst_cur;
120	s->sst_cur += strlen(shstrtab_data[type]) + 1;
121
122	return (ret);
123}
124
125static size_t
126shstrtab_size(const shstrtab_t *s)
127{
128	return (s->sst_cur);
129}
130
131static void
132shstrtab_dump(const shstrtab_t *s, char *buf)
133{
134	int i, ndx;
135
136	*buf = '\0';
137	for (i = 0; i < STR_NUM; i++) {
138		if ((ndx = s->sst_ndx[i]) != 0)
139			(void) strcpy(buf + ndx, shstrtab_data[i]);
140	}
141}
142
143static int
144dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base)
145{
146	ASSERT(phdrp->p_type == PT_SUNWDTRACE);
147
148	/*
149	 * See the comment in fasttrap.h for information on how to safely
150	 * update this program header.
151	 */
152	if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE ||
153	    (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X))
154		return (-1);
155
156	args->thrptr = phdrp->p_vaddr + base;
157
158	return (0);
159}
160
161/*
162 * Map in the executable pointed to by vp. Returns 0 on success.
163 */
164int
165mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr,
166    intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase,
167    caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap)
168{
169	size_t		len;
170	struct vattr	vat;
171	caddr_t		phdrbase = NULL;
172	ssize_t		phdrsize;
173	int		nshdrs, shstrndx, nphdrs;
174	int		error = 0;
175	Phdr		*uphdr = NULL;
176	Phdr		*junk = NULL;
177	Phdr		*dynphdr = NULL;
178	Phdr		*dtrphdr = NULL;
179	uintptr_t	lddata;
180	long		execsz;
181	intptr_t	minaddr;
182
183	if (lddatap != NULL)
184		*lddatap = NULL;
185
186	if (error = execpermissions(vp, &vat, args)) {
187		uprintf("%s: Cannot execute %s\n", exec_file, args->pathname);
188		return (error);
189	}
190
191	if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx,
192	    &nphdrs)) != 0 ||
193	    (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase,
194	    &phdrsize)) != 0) {
195		uprintf("%s: Cannot read %s\n", exec_file, args->pathname);
196		return (error);
197	}
198
199	if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) {
200		uprintf("%s: Nothing to load in %s", exec_file, args->pathname);
201		kmem_free(phdrbase, phdrsize);
202		return (ENOEXEC);
203	}
204	if (lddatap != NULL)
205		*lddatap = lddata;
206
207	if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr,
208	    &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr,
209	    len, &execsz, brksize)) {
210		uprintf("%s: Cannot map %s\n", exec_file, args->pathname);
211		kmem_free(phdrbase, phdrsize);
212		return (error);
213	}
214
215	/*
216	 * Inform our caller if the executable needs an interpreter.
217	 */
218	*interp = (dynphdr == NULL) ? 0 : 1;
219
220	/*
221	 * If this is a statically linked executable, voffset should indicate
222	 * the address of the executable itself (it normally holds the address
223	 * of the interpreter).
224	 */
225	if (ehdr->e_type == ET_EXEC && *interp == 0)
226		*voffset = minaddr;
227
228	if (uphdr != NULL) {
229		*uphdr_vaddr = uphdr->p_vaddr;
230	} else {
231		*uphdr_vaddr = (Addr)-1;
232	}
233
234	kmem_free(phdrbase, phdrsize);
235	return (error);
236}
237
238/*ARGSUSED*/
239int
240elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
241    int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred,
242    int brand_action)
243{
244	caddr_t		phdrbase = NULL;
245	caddr_t 	bssbase = 0;
246	caddr_t 	brkbase = 0;
247	size_t		brksize = 0;
248	ssize_t		dlnsize;
249	aux_entry_t	*aux;
250	int		error;
251	ssize_t		resid;
252	int		fd = -1;
253	intptr_t	voffset;
254	Phdr		*dyphdr = NULL;
255	Phdr		*stphdr = NULL;
256	Phdr		*uphdr = NULL;
257	Phdr		*junk = NULL;
258	size_t		len;
259	ssize_t		phdrsize;
260	int		postfixsize = 0;
261	int		i, hsize;
262	Phdr		*phdrp;
263	Phdr		*dataphdrp = NULL;
264	Phdr		*dtrphdr;
265	Phdr		*capphdr = NULL;
266	Cap		*cap = NULL;
267	ssize_t		capsize;
268	int		hasu = 0;
269	int		hasauxv = 0;
270	int		hasdy = 0;
271	int		branded = 0;
272
273	struct proc *p = ttoproc(curthread);
274	struct user *up = PTOU(p);
275	struct bigwad {
276		Ehdr	ehdr;
277		aux_entry_t	elfargs[__KERN_NAUXV_IMPL];
278		char		dl_name[MAXPATHLEN];
279		char		pathbuf[MAXPATHLEN];
280		struct vattr	vattr;
281		struct execenv	exenv;
282	} *bigwad;	/* kmem_alloc this behemoth so we don't blow stack */
283	Ehdr		*ehdrp;
284	int		nshdrs, shstrndx, nphdrs;
285	char		*dlnp;
286	char		*pathbufp;
287	rlim64_t	limit;
288	rlim64_t	roundlimit;
289
290	ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64);
291
292	bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP);
293	ehdrp = &bigwad->ehdr;
294	dlnp = bigwad->dl_name;
295	pathbufp = bigwad->pathbuf;
296
297	/*
298	 * Obtain ELF and program header information.
299	 */
300	if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx,
301	    &nphdrs)) != 0 ||
302	    (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase,
303	    &phdrsize)) != 0)
304		goto out;
305
306	/*
307	 * Prevent executing an ELF file that has no entry point.
308	 */
309	if (ehdrp->e_entry == 0) {
310		uprintf("%s: Bad entry point\n", exec_file);
311		goto bad;
312	}
313
314	/*
315	 * Put data model that we're exec-ing to into the args passed to
316	 * exec_args(), so it will know what it is copying to on new stack.
317	 * Now that we know whether we are exec-ing a 32-bit or 64-bit
318	 * executable, we can set execsz with the appropriate NCARGS.
319	 */
320#ifdef	_LP64
321	if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) {
322		args->to_model = DATAMODEL_ILP32;
323		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1);
324	} else {
325		args->to_model = DATAMODEL_LP64;
326		args->stk_prot &= ~PROT_EXEC;
327#if defined(__i386) || defined(__amd64)
328		args->dat_prot &= ~PROT_EXEC;
329#endif
330		*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1);
331	}
332#else	/* _LP64 */
333	args->to_model = DATAMODEL_ILP32;
334	*execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1);
335#endif	/* _LP64 */
336
337	/*
338	 * We delay invoking the brand callback until we've figured out
339	 * what kind of elf binary we're trying to run, 32-bit or 64-bit.
340	 * We do this because now the brand library can just check
341	 * args->to_model to see if the target is 32-bit or 64-bit without
342	 * having do duplicate all the code above.
343	 */
344	if ((level < 2) &&
345	    (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
346		error = BROP(p)->b_elfexec(vp, uap, args,
347		    idatap, level + 1, execsz, setid, exec_file, cred,
348		    brand_action);
349		goto out;
350	}
351
352	/*
353	 * Determine aux size now so that stack can be built
354	 * in one shot (except actual copyout of aux image),
355	 * determine any non-default stack protections,
356	 * and still have this code be machine independent.
357	 */
358	hsize = ehdrp->e_phentsize;
359	phdrp = (Phdr *)phdrbase;
360	for (i = nphdrs; i > 0; i--) {
361		switch (phdrp->p_type) {
362		case PT_INTERP:
363			hasauxv = hasdy = 1;
364			break;
365		case PT_PHDR:
366			hasu = 1;
367			break;
368		case PT_SUNWSTACK:
369			args->stk_prot = PROT_USER;
370			if (phdrp->p_flags & PF_R)
371				args->stk_prot |= PROT_READ;
372			if (phdrp->p_flags & PF_W)
373				args->stk_prot |= PROT_WRITE;
374			if (phdrp->p_flags & PF_X)
375				args->stk_prot |= PROT_EXEC;
376			break;
377		case PT_LOAD:
378			dataphdrp = phdrp;
379			break;
380		case PT_SUNWCAP:
381			capphdr = phdrp;
382			break;
383		}
384		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
385	}
386
387	if (ehdrp->e_type != ET_EXEC) {
388		dataphdrp = NULL;
389		hasauxv = 1;
390	}
391
392	/* Copy BSS permissions to args->dat_prot */
393	if (dataphdrp != NULL) {
394		args->dat_prot = PROT_USER;
395		if (dataphdrp->p_flags & PF_R)
396			args->dat_prot |= PROT_READ;
397		if (dataphdrp->p_flags & PF_W)
398			args->dat_prot |= PROT_WRITE;
399		if (dataphdrp->p_flags & PF_X)
400			args->dat_prot |= PROT_EXEC;
401	}
402
403	/*
404	 * If a auxvector will be required - reserve the space for
405	 * it now.  This may be increased by exec_args if there are
406	 * ISA-specific types (included in __KERN_NAUXV_IMPL).
407	 */
408	if (hasauxv) {
409		/*
410		 * If a AUX vector is being built - the base AUX
411		 * entries are:
412		 *
413		 *	AT_BASE
414		 *	AT_FLAGS
415		 *	AT_PAGESZ
416		 *	AT_SUN_LDSECURE
417		 *	AT_SUN_HWCAP
418		 *	AT_SUN_PLATFORM
419		 *	AT_SUN_EXECNAME
420		 *	AT_NULL
421		 *
422		 * total == 8
423		 */
424		if (hasdy && hasu) {
425			/*
426			 * Has PT_INTERP & PT_PHDR - the auxvectors that
427			 * will be built are:
428			 *
429			 *	AT_PHDR
430			 *	AT_PHENT
431			 *	AT_PHNUM
432			 *	AT_ENTRY
433			 *	AT_LDDATA
434			 *
435			 * total = 5
436			 */
437			args->auxsize = (8 + 5) * sizeof (aux_entry_t);
438		} else if (hasdy) {
439			/*
440			 * Has PT_INTERP but no PT_PHDR
441			 *
442			 *	AT_EXECFD
443			 *	AT_LDDATA
444			 *
445			 * total = 2
446			 */
447			args->auxsize = (8 + 2) * sizeof (aux_entry_t);
448		} else {
449			args->auxsize = 8 * sizeof (aux_entry_t);
450		}
451	} else {
452		args->auxsize = 0;
453	}
454
455	/*
456	 * If this binary is using an emulator, we need to add an
457	 * AT_SUN_EMULATOR aux entry.
458	 */
459	if (args->emulator != NULL)
460		args->auxsize += sizeof (aux_entry_t);
461
462	if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) {
463		branded = 1;
464		/*
465		 * We will be adding 4 entries to the aux vectors.  One for
466		 * the the brandname and 3 for the brand specific aux vectors.
467		 */
468		args->auxsize += 4 * sizeof (aux_entry_t);
469	}
470
471	/* Hardware/Software capabilities */
472	if (capphdr != NULL &&
473	    (capsize = capphdr->p_filesz) > 0 &&
474	    capsize <= 16 * sizeof (*cap)) {
475		int ncaps = capsize / sizeof (*cap);
476		Cap *cp;
477
478		cap = kmem_alloc(capsize, KM_SLEEP);
479		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap,
480		    capsize, (offset_t)capphdr->p_offset,
481		    UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) {
482			uprintf("%s: Cannot read capabilities section\n",
483			    exec_file);
484			goto out;
485		}
486		for (cp = cap; cp < cap + ncaps; cp++) {
487			if (cp->c_tag == CA_SUNW_SF_1 &&
488			    (cp->c_un.c_val & SF1_SUNW_ADDR32)) {
489				if (args->to_model == DATAMODEL_LP64)
490					args->addr32 = 1;
491				break;
492			}
493		}
494	}
495
496	aux = bigwad->elfargs;
497	/*
498	 * Move args to the user's stack.
499	 */
500	if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) {
501		if (error == -1) {
502			error = ENOEXEC;
503			goto bad;
504		}
505		goto out;
506	}
507	/* we're single threaded after this point */
508
509	/*
510	 * If this is an ET_DYN executable (shared object),
511	 * determine its memory size so that mapelfexec() can load it.
512	 */
513	if (ehdrp->e_type == ET_DYN)
514		len = elfsize(ehdrp, nphdrs, phdrbase, NULL);
515	else
516		len = 0;
517
518	dtrphdr = NULL;
519
520	if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr,
521	    &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL,
522	    len, execsz, &brksize)) != 0)
523		goto bad;
524
525	if (uphdr != NULL && dyphdr == NULL)
526		goto bad;
527
528	if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
529		uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file);
530		goto bad;
531	}
532
533	if (dyphdr != NULL) {
534		size_t		len;
535		uintptr_t	lddata;
536		char		*p;
537		struct vnode	*nvp;
538
539		dlnsize = dyphdr->p_filesz;
540
541		if (dlnsize > MAXPATHLEN || dlnsize <= 0)
542			goto bad;
543
544		/*
545		 * Read in "interpreter" pathname.
546		 */
547		if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz,
548		    (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
549		    CRED(), &resid)) != 0) {
550			uprintf("%s: Cannot obtain interpreter pathname\n",
551			    exec_file);
552			goto bad;
553		}
554
555		if (resid != 0 || dlnp[dlnsize - 1] != '\0')
556			goto bad;
557
558		/*
559		 * Search for '$ORIGIN' token in interpreter path.
560		 * If found, expand it.
561		 */
562		for (p = dlnp; p = strchr(p, '$'); ) {
563			uint_t	len, curlen;
564			char	*_ptr;
565
566			if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE))
567				continue;
568
569			curlen = 0;
570			len = p - dlnp - 1;
571			if (len) {
572				bcopy(dlnp, pathbufp, len);
573				curlen += len;
574			}
575			if (_ptr = strrchr(args->pathname, '/')) {
576				len = _ptr - args->pathname;
577				if ((curlen + len) > MAXPATHLEN)
578					break;
579
580				bcopy(args->pathname, &pathbufp[curlen], len);
581				curlen += len;
582			} else {
583				/*
584				 * executable is a basename found in the
585				 * current directory.  So - just substitue
586				 * '.' for ORIGIN.
587				 */
588				pathbufp[curlen] = '.';
589				curlen++;
590			}
591			p += ORIGIN_STR_SIZE;
592			len = strlen(p);
593
594			if ((curlen + len) > MAXPATHLEN)
595				break;
596			bcopy(p, &pathbufp[curlen], len);
597			curlen += len;
598			pathbufp[curlen++] = '\0';
599			bcopy(pathbufp, dlnp, curlen);
600		}
601
602		/*
603		 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1
604		 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1).
605		 * Just in case /usr is not mounted, change it now.
606		 */
607		if (strcmp(dlnp, USR_LIB_RTLD) == 0)
608			dlnp += 4;
609		error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp);
610		if (error && dlnp != bigwad->dl_name) {
611			/* new kernel, old user-level */
612			error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW,
613			    NULLVPP, &nvp);
614		}
615		if (error) {
616			uprintf("%s: Cannot find %s\n", exec_file, dlnp);
617			goto bad;
618		}
619
620		/*
621		 * Setup the "aux" vector.
622		 */
623		if (uphdr) {
624			if (ehdrp->e_type == ET_DYN) {
625				/* don't use the first page */
626				bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE;
627				bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE;
628			} else {
629				bigwad->exenv.ex_bssbase = bssbase;
630				bigwad->exenv.ex_brkbase = brkbase;
631			}
632			bigwad->exenv.ex_brksize = brksize;
633			bigwad->exenv.ex_magic = elfmagic;
634			bigwad->exenv.ex_vp = vp;
635			setexecenv(&bigwad->exenv);
636
637			ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset)
638			ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize)
639			ADDAUX(aux, AT_PHNUM, nphdrs)
640			ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset)
641		} else {
642			if ((error = execopen(&vp, &fd)) != 0) {
643				VN_RELE(nvp);
644				goto bad;
645			}
646
647			ADDAUX(aux, AT_EXECFD, fd)
648		}
649
650		if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) {
651			VN_RELE(nvp);
652			uprintf("%s: Cannot execute %s\n", exec_file, dlnp);
653			goto bad;
654		}
655
656		/*
657		 * Now obtain the ELF header along with the entire program
658		 * header contained in "nvp".
659		 */
660		kmem_free(phdrbase, phdrsize);
661		phdrbase = NULL;
662		if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs,
663		    &shstrndx, &nphdrs)) != 0 ||
664		    (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase,
665		    &phdrsize)) != 0) {
666			VN_RELE(nvp);
667			uprintf("%s: Cannot read %s\n", exec_file, dlnp);
668			goto bad;
669		}
670
671		/*
672		 * Determine memory size of the "interpreter's" loadable
673		 * sections.  This size is then used to obtain the virtual
674		 * address of a hole, in the user's address space, large
675		 * enough to map the "interpreter".
676		 */
677		if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) {
678			VN_RELE(nvp);
679			uprintf("%s: Nothing to load in %s\n", exec_file, dlnp);
680			goto bad;
681		}
682
683		dtrphdr = NULL;
684
685		error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk,
686		    &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len,
687		    execsz, NULL);
688		if (error || junk != NULL) {
689			VN_RELE(nvp);
690			uprintf("%s: Cannot map %s\n", exec_file, dlnp);
691			goto bad;
692		}
693
694		/*
695		 * We use the DTrace program header to initialize the
696		 * architecture-specific user per-LWP location. The dtrace
697		 * fasttrap provider requires ready access to per-LWP scratch
698		 * space. We assume that there is only one such program header
699		 * in the interpreter.
700		 */
701		if (dtrphdr != NULL &&
702		    dtrace_safe_phdr(dtrphdr, args, voffset) != 0) {
703			VN_RELE(nvp);
704			uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp);
705			goto bad;
706		}
707
708		VN_RELE(nvp);
709		ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata)
710	}
711
712	if (hasauxv) {
713		int auxf = AF_SUN_HWCAPVERIFY;
714		/*
715		 * Note: AT_SUN_PLATFORM was filled in via exec_args()
716		 */
717		ADDAUX(aux, AT_BASE, voffset)
718		ADDAUX(aux, AT_FLAGS, at_flags)
719		ADDAUX(aux, AT_PAGESZ, PAGESIZE)
720		/*
721		 * Linker flags. (security)
722		 * p_flag not yet set at this time.
723		 * We rely on gexec() to provide us with the information.
724		 * If the application is set-uid but this is not reflected
725		 * in a mismatch between real/effective uids/gids, then
726		 * don't treat this as a set-uid exec.  So we care about
727		 * the EXECSETID_UGIDS flag but not the ...SETID flag.
728		 */
729		if ((setid &= ~EXECSETID_SETID) != 0)
730			auxf |= AF_SUN_SETUGID;
731
732		/*
733		 * If we're running a native process from within a branded
734		 * zone under pfexec then we clear the AF_SUN_SETUGID flag so
735		 * that the native ld.so.1 is able to link with the native
736		 * libraries instead of using the brand libraries that are
737		 * installed in the zone.  We only do this for processes
738		 * which we trust because we see they are already running
739		 * under pfexec (where uid != euid).  This prevents a
740		 * malicious user within the zone from crafting a wrapper to
741		 * run native suid commands with unsecure libraries interposed.
742		 */
743		if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) &&
744		    (setid &= ~EXECSETID_SETID) != 0))
745			auxf &= ~AF_SUN_SETUGID;
746
747		/*
748		 * Record the user addr of the auxflags aux vector entry
749		 * since brands may optionally want to manipulate this field.
750		 */
751		args->auxp_auxflags =
752		    (char *)((char *)args->stackend +
753		    ((char *)&aux->a_type -
754		    (char *)bigwad->elfargs));
755		ADDAUX(aux, AT_SUN_AUXFLAGS, auxf);
756		/*
757		 * Hardware capability flag word (performance hints)
758		 * Used for choosing faster library routines.
759		 * (Potentially different between 32-bit and 64-bit ABIs)
760		 */
761#if defined(_LP64)
762		if (args->to_model == DATAMODEL_NATIVE)
763			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
764		else
765			ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32)
766#else
767		ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap)
768#endif
769		if (branded) {
770			/*
771			 * Reserve space for the brand-private aux vectors,
772			 * and record the user addr of that space.
773			 */
774			args->auxp_brand =
775			    (char *)((char *)args->stackend +
776			    ((char *)&aux->a_type -
777			    (char *)bigwad->elfargs));
778			ADDAUX(aux, AT_SUN_BRAND_AUX1, 0)
779			ADDAUX(aux, AT_SUN_BRAND_AUX2, 0)
780			ADDAUX(aux, AT_SUN_BRAND_AUX3, 0)
781		}
782
783		ADDAUX(aux, AT_NULL, 0)
784		postfixsize = (char *)aux - (char *)bigwad->elfargs;
785		ASSERT(postfixsize == args->auxsize);
786		ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t));
787	}
788
789	/*
790	 * For the 64-bit kernel, the limit is big enough that rounding it up
791	 * to a page can overflow the 64-bit limit, so we check for btopr()
792	 * overflowing here by comparing it with the unrounded limit in pages.
793	 * If it hasn't overflowed, compare the exec size with the rounded up
794	 * limit in pages.  Otherwise, just compare with the unrounded limit.
795	 */
796	limit = btop(p->p_vmem_ctl);
797	roundlimit = btopr(p->p_vmem_ctl);
798	if ((roundlimit > limit && *execsz > roundlimit) ||
799	    (roundlimit < limit && *execsz > limit)) {
800		mutex_enter(&p->p_lock);
801		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
802		    RCA_SAFE);
803		mutex_exit(&p->p_lock);
804		error = ENOMEM;
805		goto bad;
806	}
807
808	bzero(up->u_auxv, sizeof (up->u_auxv));
809	if (postfixsize) {
810		int num_auxv;
811
812		/*
813		 * Copy the aux vector to the user stack.
814		 */
815		error = execpoststack(args, bigwad->elfargs, postfixsize);
816		if (error)
817			goto bad;
818
819		/*
820		 * Copy auxv to the process's user structure for use by /proc.
821		 * If this is a branded process, the brand's exec routine will
822		 * copy it's private entries to the user structure later. It
823		 * relies on the fact that the blank entries are at the end.
824		 */
825		num_auxv = postfixsize / sizeof (aux_entry_t);
826		ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t));
827		aux = bigwad->elfargs;
828		for (i = 0; i < num_auxv; i++) {
829			up->u_auxv[i].a_type = aux[i].a_type;
830			up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val;
831		}
832	}
833
834	/*
835	 * Pass back the starting address so we can set the program counter.
836	 */
837	args->entry = (uintptr_t)(ehdrp->e_entry + voffset);
838
839	if (!uphdr) {
840		if (ehdrp->e_type == ET_DYN) {
841			/*
842			 * If we are executing a shared library which doesn't
843			 * have a interpreter (probably ld.so.1) then
844			 * we don't set the brkbase now.  Instead we
845			 * delay it's setting until the first call
846			 * via grow.c::brk().  This permits ld.so.1 to
847			 * initialize brkbase to the tail of the executable it
848			 * loads (which is where it needs to be).
849			 */
850			bigwad->exenv.ex_brkbase = (caddr_t)0;
851			bigwad->exenv.ex_bssbase = (caddr_t)0;
852			bigwad->exenv.ex_brksize = 0;
853		} else {
854			bigwad->exenv.ex_brkbase = brkbase;
855			bigwad->exenv.ex_bssbase = bssbase;
856			bigwad->exenv.ex_brksize = brksize;
857		}
858		bigwad->exenv.ex_magic = elfmagic;
859		bigwad->exenv.ex_vp = vp;
860		setexecenv(&bigwad->exenv);
861	}
862
863	ASSERT(error == 0);
864	goto out;
865
866bad:
867	if (fd != -1)		/* did we open the a.out yet */
868		(void) execclose(fd);
869
870	psignal(p, SIGKILL);
871
872	if (error == 0)
873		error = ENOEXEC;
874out:
875	if (phdrbase != NULL)
876		kmem_free(phdrbase, phdrsize);
877	if (cap != NULL)
878		kmem_free(cap, capsize);
879	kmem_free(bigwad, sizeof (struct bigwad));
880	return (error);
881}
882
883/*
884 * Compute the memory size requirement for the ELF file.
885 */
886static size_t
887elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata)
888{
889	size_t	len;
890	Phdr	*phdrp = (Phdr *)phdrbase;
891	int	hsize = ehdrp->e_phentsize;
892	int	first = 1;
893	int	dfirst = 1;	/* first data segment */
894	uintptr_t loaddr = 0;
895	uintptr_t hiaddr = 0;
896	uintptr_t lo, hi;
897	int	i;
898
899	for (i = nphdrs; i > 0; i--) {
900		if (phdrp->p_type == PT_LOAD) {
901			lo = phdrp->p_vaddr;
902			hi = lo + phdrp->p_memsz;
903			if (first) {
904				loaddr = lo;
905				hiaddr = hi;
906				first = 0;
907			} else {
908				if (loaddr > lo)
909					loaddr = lo;
910				if (hiaddr < hi)
911					hiaddr = hi;
912			}
913
914			/*
915			 * save the address of the first data segment
916			 * of a object - used for the AT_SUNW_LDDATA
917			 * aux entry.
918			 */
919			if ((lddata != NULL) && dfirst &&
920			    (phdrp->p_flags & PF_W)) {
921				*lddata = lo;
922				dfirst = 0;
923			}
924		}
925		phdrp = (Phdr *)((caddr_t)phdrp + hsize);
926	}
927
928	len = hiaddr - (loaddr & PAGEMASK);
929	len = roundup(len, PAGESIZE);
930
931	return (len);
932}
933
934/*
935 * Read in the ELF header and program header table.
936 * SUSV3 requires:
937 *	ENOEXEC	File format is not recognized
938 *	EINVAL	Format recognized but execution not supported
939 */
940static int
941getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx,
942    int *nphdrs)
943{
944	int error;
945	ssize_t resid;
946
947	/*
948	 * We got here by the first two bytes in ident,
949	 * now read the entire ELF header.
950	 */
951	if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr,
952	    sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0,
953	    (rlim64_t)0, credp, &resid)) != 0)
954		return (error);
955
956	/*
957	 * Since a separate version is compiled for handling 32-bit and
958	 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version
959	 * doesn't need to be able to deal with 32-bit ELF files.
960	 */
961	if (resid != 0 ||
962	    ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
963	    ehdr->e_ident[EI_MAG3] != ELFMAG3)
964		return (ENOEXEC);
965
966	if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) ||
967#if defined(_ILP32) || defined(_ELF32_COMPAT)
968	    ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
969#else
970	    ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
971#endif
972	    !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine,
973	    ehdr->e_flags))
974		return (EINVAL);
975
976	*nshdrs = ehdr->e_shnum;
977	*shstrndx = ehdr->e_shstrndx;
978	*nphdrs = ehdr->e_phnum;
979
980	/*
981	 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need
982	 * to read in the section header at index zero to acces the true
983	 * values for those fields.
984	 */
985	if ((*nshdrs == 0 && ehdr->e_shoff != 0) ||
986	    *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) {
987		Shdr shdr;
988
989		if (ehdr->e_shoff == 0)
990			return (EINVAL);
991
992		if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr,
993		    sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0,
994		    (rlim64_t)0, credp, &resid)) != 0)
995			return (error);
996
997		if (*nshdrs == 0)
998			*nshdrs = shdr.sh_size;
999		if (*shstrndx == SHN_XINDEX)
1000			*shstrndx = shdr.sh_link;
1001		if (*nphdrs == PN_XNUM && shdr.sh_info != 0)
1002			*nphdrs = shdr.sh_info;
1003	}
1004
1005	return (0);
1006}
1007
1008#ifdef _ELF32_COMPAT
1009extern size_t elf_nphdr_max;
1010#else
1011size_t elf_nphdr_max = 1000;
1012#endif
1013
1014static int
1015getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs,
1016    caddr_t *phbasep, ssize_t *phsizep)
1017{
1018	ssize_t resid, minsize;
1019	int err;
1020
1021	/*
1022	 * Since we're going to be using e_phentsize to iterate down the
1023	 * array of program headers, it must be 8-byte aligned or else
1024	 * a we might cause a misaligned access. We use all members through
1025	 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so
1026	 * e_phentsize must be at least large enough to include those
1027	 * members.
1028	 */
1029#if !defined(_LP64) || defined(_ELF32_COMPAT)
1030	minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags);
1031#else
1032	minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz);
1033#endif
1034	if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3))
1035		return (EINVAL);
1036
1037	*phsizep = nphdrs * ehdr->e_phentsize;
1038
1039	if (*phsizep > sizeof (Phdr) * elf_nphdr_max) {
1040		if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL)
1041			return (ENOMEM);
1042	} else {
1043		*phbasep = kmem_alloc(*phsizep, KM_SLEEP);
1044	}
1045
1046	if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep,
1047	    (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1048	    credp, &resid)) != 0) {
1049		kmem_free(*phbasep, *phsizep);
1050		*phbasep = NULL;
1051		return (err);
1052	}
1053
1054	return (0);
1055}
1056
1057#ifdef _ELF32_COMPAT
1058extern size_t elf_nshdr_max;
1059extern size_t elf_shstrtab_max;
1060#else
1061size_t elf_nshdr_max = 10000;
1062size_t elf_shstrtab_max = 100 * 1024;
1063#endif
1064
1065
1066static int
1067getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr,
1068    int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep,
1069    char **shstrbasep, ssize_t *shstrsizep)
1070{
1071	ssize_t resid, minsize;
1072	int err;
1073	Shdr *shdr;
1074
1075	/*
1076	 * Since we're going to be using e_shentsize to iterate down the
1077	 * array of section headers, it must be 8-byte aligned or else
1078	 * a we might cause a misaligned access. We use all members through
1079	 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize
1080	 * must be at least large enough to include that member. The index
1081	 * of the string table section must also be valid.
1082	 */
1083	minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize);
1084	if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) ||
1085	    shstrndx >= nshdrs)
1086		return (EINVAL);
1087
1088	*shsizep = nshdrs * ehdr->e_shentsize;
1089
1090	if (*shsizep > sizeof (Shdr) * elf_nshdr_max) {
1091		if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL)
1092			return (ENOMEM);
1093	} else {
1094		*shbasep = kmem_alloc(*shsizep, KM_SLEEP);
1095	}
1096
1097	if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep,
1098	    (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0,
1099	    credp, &resid)) != 0) {
1100		kmem_free(*shbasep, *shsizep);
1101		return (err);
1102	}
1103
1104	/*
1105	 * Pull the section string table out of the vnode; fail if the size
1106	 * is zero.
1107	 */
1108	shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize);
1109	if ((*shstrsizep = shdr->sh_size) == 0) {
1110		kmem_free(*shbasep, *shsizep);
1111		return (EINVAL);
1112	}
1113
1114	if (*shstrsizep > elf_shstrtab_max) {
1115		if ((*shstrbasep = kmem_alloc(*shstrsizep,
1116		    KM_NOSLEEP)) == NULL) {
1117			kmem_free(*shbasep, *shsizep);
1118			return (ENOMEM);
1119		}
1120	} else {
1121		*shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP);
1122	}
1123
1124	if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep,
1125	    (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0,
1126	    credp, &resid)) != 0) {
1127		kmem_free(*shbasep, *shsizep);
1128		kmem_free(*shstrbasep, *shstrsizep);
1129		return (err);
1130	}
1131
1132	/*
1133	 * Make sure the strtab is null-terminated to make sure we
1134	 * don't run off the end of the table.
1135	 */
1136	(*shstrbasep)[*shstrsizep - 1] = '\0';
1137
1138	return (0);
1139}
1140
1141static int
1142mapelfexec(
1143	vnode_t *vp,
1144	Ehdr *ehdr,
1145	int nphdrs,
1146	caddr_t phdrbase,
1147	Phdr **uphdr,
1148	Phdr **dyphdr,
1149	Phdr **stphdr,
1150	Phdr **dtphdr,
1151	Phdr *dataphdrp,
1152	caddr_t *bssbase,
1153	caddr_t *brkbase,
1154	intptr_t *voffset,
1155	intptr_t *minaddr,
1156	size_t len,
1157	long *execsz,
1158	size_t *brksize)
1159{
1160	Phdr *phdr;
1161	int i, prot, error;
1162	caddr_t addr = NULL;
1163	size_t zfodsz;
1164	int ptload = 0;
1165	int page;
1166	off_t offset;
1167	int hsize = ehdr->e_phentsize;
1168	caddr_t mintmp = (caddr_t)-1;
1169	extern int use_brk_lpg;
1170
1171	if (ehdr->e_type == ET_DYN) {
1172		/*
1173		 * Obtain the virtual address of a hole in the
1174		 * address space to map the "interpreter".
1175		 */
1176		map_addr(&addr, len, (offset_t)0, 1, 0);
1177		if (addr == NULL)
1178			return (ENOMEM);
1179		*voffset = (intptr_t)addr;
1180
1181		/*
1182		 * Calculate the minimum vaddr so it can be subtracted out.
1183		 * According to the ELF specification, since PT_LOAD sections
1184		 * must be sorted by increasing p_vaddr values, this is
1185		 * guaranteed to be the first PT_LOAD section.
1186		 */
1187		phdr = (Phdr *)phdrbase;
1188		for (i = nphdrs; i > 0; i--) {
1189			if (phdr->p_type == PT_LOAD) {
1190				*voffset -= (uintptr_t)phdr->p_vaddr;
1191				break;
1192			}
1193			phdr = (Phdr *)((caddr_t)phdr + hsize);
1194		}
1195
1196	} else {
1197		*voffset = 0;
1198	}
1199	phdr = (Phdr *)phdrbase;
1200	for (i = nphdrs; i > 0; i--) {
1201		switch (phdr->p_type) {
1202		case PT_LOAD:
1203			if ((*dyphdr != NULL) && (*uphdr == NULL))
1204				return (0);
1205
1206			ptload = 1;
1207			prot = PROT_USER;
1208			if (phdr->p_flags & PF_R)
1209				prot |= PROT_READ;
1210			if (phdr->p_flags & PF_W)
1211				prot |= PROT_WRITE;
1212			if (phdr->p_flags & PF_X)
1213				prot |= PROT_EXEC;
1214
1215			addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset);
1216
1217			/*
1218			 * Keep track of the segment with the lowest starting
1219			 * address.
1220			 */
1221			if (addr < mintmp)
1222				mintmp = addr;
1223
1224			zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz;
1225
1226			offset = phdr->p_offset;
1227			if (((uintptr_t)offset & PAGEOFFSET) ==
1228			    ((uintptr_t)addr & PAGEOFFSET) &&
1229			    (!(vp->v_flag & VNOMAP))) {
1230				page = 1;
1231			} else {
1232				page = 0;
1233			}
1234
1235			/*
1236			 * Set the heap pagesize for OOB when the bss size
1237			 * is known and use_brk_lpg is not 0.
1238			 */
1239			if (brksize != NULL && use_brk_lpg &&
1240			    zfodsz != 0 && phdr == dataphdrp &&
1241			    (prot & PROT_WRITE)) {
1242				size_t tlen = P2NPHASE((uintptr_t)addr +
1243				    phdr->p_filesz, PAGESIZE);
1244
1245				if (zfodsz > tlen) {
1246					curproc->p_brkpageszc =
1247					    page_szc(map_pgsz(MAPPGSZ_HEAP,
1248					    curproc, addr + phdr->p_filesz +
1249					    tlen, zfodsz - tlen, 0));
1250				}
1251			}
1252
1253			if (curproc->p_brkpageszc != 0 && phdr == dataphdrp &&
1254			    (prot & PROT_WRITE)) {
1255				uint_t	szc = curproc->p_brkpageszc;
1256				size_t pgsz = page_get_pagesize(szc);
1257				caddr_t ebss = addr + phdr->p_memsz;
1258				size_t extra_zfodsz;
1259
1260				ASSERT(pgsz > PAGESIZE);
1261
1262				extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz);
1263
1264				if (error = execmap(vp, addr, phdr->p_filesz,
1265				    zfodsz + extra_zfodsz, phdr->p_offset,
1266				    prot, page, szc))
1267					goto bad;
1268				if (brksize != NULL)
1269					*brksize = extra_zfodsz;
1270			} else {
1271				if (error = execmap(vp, addr, phdr->p_filesz,
1272				    zfodsz, phdr->p_offset, prot, page, 0))
1273					goto bad;
1274			}
1275
1276			if (bssbase != NULL && addr >= *bssbase &&
1277			    phdr == dataphdrp) {
1278				*bssbase = addr + phdr->p_filesz;
1279			}
1280			if (brkbase != NULL && addr >= *brkbase) {
1281				*brkbase = addr + phdr->p_memsz;
1282			}
1283
1284			*execsz += btopr(phdr->p_memsz);
1285			break;
1286
1287		case PT_INTERP:
1288			if (ptload)
1289				goto bad;
1290			*dyphdr = phdr;
1291			break;
1292
1293		case PT_SHLIB:
1294			*stphdr = phdr;
1295			break;
1296
1297		case PT_PHDR:
1298			if (ptload)
1299				goto bad;
1300			*uphdr = phdr;
1301			break;
1302
1303		case PT_NULL:
1304		case PT_DYNAMIC:
1305		case PT_NOTE:
1306			break;
1307
1308		case PT_SUNWDTRACE:
1309			if (dtphdr != NULL)
1310				*dtphdr = phdr;
1311			break;
1312
1313		default:
1314			break;
1315		}
1316		phdr = (Phdr *)((caddr_t)phdr + hsize);
1317	}
1318
1319	if (minaddr != NULL) {
1320		ASSERT(mintmp != (caddr_t)-1);
1321		*minaddr = (intptr_t)mintmp;
1322	}
1323
1324	return (0);
1325bad:
1326	if (error == 0)
1327		error = EINVAL;
1328	return (error);
1329}
1330
1331int
1332elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc,
1333    rlim64_t rlimit, cred_t *credp)
1334{
1335	Note note;
1336	int error;
1337
1338	bzero(&note, sizeof (note));
1339	bcopy("CORE", note.name, 4);
1340	note.nhdr.n_type = type;
1341	/*
1342	 * The System V ABI states that n_namesz must be the length of the
1343	 * string that follows the Nhdr structure including the terminating
1344	 * null. The ABI also specifies that sufficient padding should be
1345	 * included so that the description that follows the name string
1346	 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries
1347	 * respectively. However, since this change was not made correctly
1348	 * at the time of the 64-bit port, both 32- and 64-bit binaries
1349	 * descriptions are only guaranteed to begin on a 4-byte boundary.
1350	 */
1351	note.nhdr.n_namesz = 5;
1352	note.nhdr.n_descsz = roundup(descsz, sizeof (Word));
1353
1354	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, &note,
1355	    sizeof (note), rlimit, credp))
1356		return (error);
1357
1358	*offsetp += sizeof (note);
1359
1360	if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc,
1361	    note.nhdr.n_descsz, rlimit, credp))
1362		return (error);
1363
1364	*offsetp += note.nhdr.n_descsz;
1365	return (0);
1366}
1367
1368/*
1369 * Copy the section data from one vnode to the section of another vnode.
1370 */
1371static void
1372copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset,
1373    void *buf, size_t size, cred_t *credp, rlim64_t rlimit)
1374{
1375	ssize_t resid;
1376	size_t len, n = src->sh_size;
1377	offset_t off = 0;
1378
1379	while (n != 0) {
1380		len = MIN(size, n);
1381		if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off,
1382		    UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 ||
1383		    resid >= len ||
1384		    core_write(dst_vp, UIO_SYSSPACE, *doffset + off,
1385		    buf, len - resid, rlimit, credp) != 0) {
1386			dst->sh_size = 0;
1387			dst->sh_offset = 0;
1388			return;
1389		}
1390
1391		ASSERT(n >= len - resid);
1392
1393		n -= len - resid;
1394		off += len - resid;
1395	}
1396
1397	*doffset += src->sh_size;
1398}
1399
1400#ifdef _ELF32_COMPAT
1401extern size_t elf_datasz_max;
1402#else
1403size_t elf_datasz_max = 1 * 1024 * 1024;
1404#endif
1405
1406/*
1407 * This function processes mappings that correspond to load objects to
1408 * examine their respective sections for elfcore(). It's called once with
1409 * v set to NULL to count the number of sections that we're going to need
1410 * and then again with v set to some allocated buffer that we fill in with
1411 * all the section data.
1412 */
1413static int
1414process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp,
1415    Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp)
1416{
1417	vnode_t *lastvp = NULL;
1418	struct seg *seg;
1419	int i, j;
1420	void *data = NULL;
1421	size_t datasz = 0;
1422	shstrtab_t shstrtab;
1423	struct as *as = p->p_as;
1424	int error = 0;
1425
1426	if (v != NULL)
1427		shstrtab_init(&shstrtab);
1428
1429	i = 1;
1430	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1431		uint_t prot;
1432		vnode_t *mvp;
1433		void *tmp = NULL;
1434		caddr_t saddr = seg->s_base;
1435		caddr_t naddr;
1436		caddr_t eaddr;
1437		size_t segsize;
1438
1439		Ehdr ehdr;
1440		int nshdrs, shstrndx, nphdrs;
1441		caddr_t shbase;
1442		ssize_t shsize;
1443		char *shstrbase;
1444		ssize_t shstrsize;
1445
1446		Shdr *shdr;
1447		const char *name;
1448		size_t sz;
1449		uintptr_t off;
1450
1451		int ctf_ndx = 0;
1452		int symtab_ndx = 0;
1453
1454		/*
1455		 * Since we're just looking for text segments of load
1456		 * objects, we only care about the protection bits; we don't
1457		 * care about the actual size of the segment so we use the
1458		 * reserved size. If the segment's size is zero, there's
1459		 * something fishy going on so we ignore this segment.
1460		 */
1461		if (seg->s_ops != &segvn_ops ||
1462		    SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1463		    mvp == lastvp || mvp == NULL || mvp->v_type != VREG ||
1464		    (segsize = pr_getsegsize(seg, 1)) == 0)
1465			continue;
1466
1467		eaddr = saddr + segsize;
1468		prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr);
1469		pr_getprot_done(&tmp);
1470
1471		/*
1472		 * Skip this segment unless the protection bits look like
1473		 * what we'd expect for a text segment.
1474		 */
1475		if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC)
1476			continue;
1477
1478		if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx,
1479		    &nphdrs) != 0 ||
1480		    getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx,
1481		    &shbase, &shsize, &shstrbase, &shstrsize) != 0)
1482			continue;
1483
1484		off = ehdr.e_shentsize;
1485		for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) {
1486			Shdr *symtab = NULL, *strtab;
1487
1488			shdr = (Shdr *)(shbase + off);
1489
1490			if (shdr->sh_name >= shstrsize)
1491				continue;
1492
1493			name = shstrbase + shdr->sh_name;
1494
1495			if (strcmp(name, shstrtab_data[STR_CTF]) == 0) {
1496				if ((content & CC_CONTENT_CTF) == 0 ||
1497				    ctf_ndx != 0)
1498					continue;
1499
1500				if (shdr->sh_link > 0 &&
1501				    shdr->sh_link < nshdrs) {
1502					symtab = (Shdr *)(shbase +
1503					    shdr->sh_link * ehdr.e_shentsize);
1504				}
1505
1506				if (v != NULL && i < nv - 1) {
1507					if (shdr->sh_size > datasz &&
1508					    shdr->sh_size <= elf_datasz_max) {
1509						if (data != NULL)
1510							kmem_free(data, datasz);
1511
1512						datasz = shdr->sh_size;
1513						data = kmem_alloc(datasz,
1514						    KM_SLEEP);
1515					}
1516
1517					v[i].sh_name = shstrtab_ndx(&shstrtab,
1518					    STR_CTF);
1519					v[i].sh_addr = (Addr)(uintptr_t)saddr;
1520					v[i].sh_type = SHT_PROGBITS;
1521					v[i].sh_addralign = 4;
1522					*doffsetp = roundup(*doffsetp,
1523					    v[i].sh_addralign);
1524					v[i].sh_offset = *doffsetp;
1525					v[i].sh_size = shdr->sh_size;
1526					if (symtab == NULL)  {
1527						v[i].sh_link = 0;
1528					} else if (symtab->sh_type ==
1529					    SHT_SYMTAB &&
1530					    symtab_ndx != 0) {
1531						v[i].sh_link =
1532						    symtab_ndx;
1533					} else {
1534						v[i].sh_link = i + 1;
1535					}
1536
1537					copy_scn(shdr, mvp, &v[i], vp,
1538					    doffsetp, data, datasz, credp,
1539					    rlimit);
1540				}
1541
1542				ctf_ndx = i++;
1543
1544				/*
1545				 * We've already dumped the symtab.
1546				 */
1547				if (symtab != NULL &&
1548				    symtab->sh_type == SHT_SYMTAB &&
1549				    symtab_ndx != 0)
1550					continue;
1551
1552			} else if (strcmp(name,
1553			    shstrtab_data[STR_SYMTAB]) == 0) {
1554				if ((content & CC_CONTENT_SYMTAB) == 0 ||
1555				    symtab != 0)
1556					continue;
1557
1558				symtab = shdr;
1559			}
1560
1561			if (symtab != NULL) {
1562				if ((symtab->sh_type != SHT_DYNSYM &&
1563				    symtab->sh_type != SHT_SYMTAB) ||
1564				    symtab->sh_link == 0 ||
1565				    symtab->sh_link >= nshdrs)
1566					continue;
1567
1568				strtab = (Shdr *)(shbase +
1569				    symtab->sh_link * ehdr.e_shentsize);
1570
1571				if (strtab->sh_type != SHT_STRTAB)
1572					continue;
1573
1574				if (v != NULL && i < nv - 2) {
1575					sz = MAX(symtab->sh_size,
1576					    strtab->sh_size);
1577					if (sz > datasz &&
1578					    sz <= elf_datasz_max) {
1579						if (data != NULL)
1580							kmem_free(data, datasz);
1581
1582						datasz = sz;
1583						data = kmem_alloc(datasz,
1584						    KM_SLEEP);
1585					}
1586
1587					if (symtab->sh_type == SHT_DYNSYM) {
1588						v[i].sh_name = shstrtab_ndx(
1589						    &shstrtab, STR_DYNSYM);
1590						v[i + 1].sh_name = shstrtab_ndx(
1591						    &shstrtab, STR_DYNSTR);
1592					} else {
1593						v[i].sh_name = shstrtab_ndx(
1594						    &shstrtab, STR_SYMTAB);
1595						v[i + 1].sh_name = shstrtab_ndx(
1596						    &shstrtab, STR_STRTAB);
1597					}
1598
1599					v[i].sh_type = symtab->sh_type;
1600					v[i].sh_addr = symtab->sh_addr;
1601					if (ehdr.e_type == ET_DYN ||
1602					    v[i].sh_addr == 0)
1603						v[i].sh_addr +=
1604						    (Addr)(uintptr_t)saddr;
1605					v[i].sh_addralign =
1606					    symtab->sh_addralign;
1607					*doffsetp = roundup(*doffsetp,
1608					    v[i].sh_addralign);
1609					v[i].sh_offset = *doffsetp;
1610					v[i].sh_size = symtab->sh_size;
1611					v[i].sh_link = i + 1;
1612					v[i].sh_entsize = symtab->sh_entsize;
1613					v[i].sh_info = symtab->sh_info;
1614
1615					copy_scn(symtab, mvp, &v[i], vp,
1616					    doffsetp, data, datasz, credp,
1617					    rlimit);
1618
1619					v[i + 1].sh_type = SHT_STRTAB;
1620					v[i + 1].sh_flags = SHF_STRINGS;
1621					v[i + 1].sh_addr = symtab->sh_addr;
1622					if (ehdr.e_type == ET_DYN ||
1623					    v[i + 1].sh_addr == 0)
1624						v[i + 1].sh_addr +=
1625						    (Addr)(uintptr_t)saddr;
1626					v[i + 1].sh_addralign =
1627					    strtab->sh_addralign;
1628					*doffsetp = roundup(*doffsetp,
1629					    v[i + 1].sh_addralign);
1630					v[i + 1].sh_offset = *doffsetp;
1631					v[i + 1].sh_size = strtab->sh_size;
1632
1633					copy_scn(strtab, mvp, &v[i + 1], vp,
1634					    doffsetp, data, datasz, credp,
1635					    rlimit);
1636				}
1637
1638				if (symtab->sh_type == SHT_SYMTAB)
1639					symtab_ndx = i;
1640				i += 2;
1641			}
1642		}
1643
1644		kmem_free(shstrbase, shstrsize);
1645		kmem_free(shbase, shsize);
1646
1647		lastvp = mvp;
1648	}
1649
1650	if (v == NULL) {
1651		if (i == 1)
1652			*nshdrsp = 0;
1653		else
1654			*nshdrsp = i + 1;
1655		goto done;
1656	}
1657
1658	if (i != nv - 1) {
1659		cmn_err(CE_WARN, "elfcore: core dump failed for "
1660		    "process %d; address space is changing", p->p_pid);
1661		error = EIO;
1662		goto done;
1663	}
1664
1665	v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB);
1666	v[i].sh_size = shstrtab_size(&shstrtab);
1667	v[i].sh_addralign = 1;
1668	*doffsetp = roundup(*doffsetp, v[i].sh_addralign);
1669	v[i].sh_offset = *doffsetp;
1670	v[i].sh_flags = SHF_STRINGS;
1671	v[i].sh_type = SHT_STRTAB;
1672
1673	if (v[i].sh_size > datasz) {
1674		if (data != NULL)
1675			kmem_free(data, datasz);
1676
1677		datasz = v[i].sh_size;
1678		data = kmem_alloc(datasz,
1679		    KM_SLEEP);
1680	}
1681
1682	shstrtab_dump(&shstrtab, data);
1683
1684	if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp,
1685	    data, v[i].sh_size, rlimit, credp)) != 0)
1686		goto done;
1687
1688	*doffsetp += v[i].sh_size;
1689
1690done:
1691	if (data != NULL)
1692		kmem_free(data, datasz);
1693
1694	return (error);
1695}
1696
1697int
1698elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig,
1699    core_content_t content)
1700{
1701	offset_t poffset, soffset;
1702	Off doffset;
1703	int error, i, nphdrs, nshdrs;
1704	int overflow = 0;
1705	struct seg *seg;
1706	struct as *as = p->p_as;
1707	union {
1708		Ehdr ehdr;
1709		Phdr phdr[1];
1710		Shdr shdr[1];
1711	} *bigwad;
1712	size_t bigsize;
1713	size_t phdrsz, shdrsz;
1714	Ehdr *ehdr;
1715	Phdr *v;
1716	caddr_t brkbase;
1717	size_t brksize;
1718	caddr_t stkbase;
1719	size_t stksize;
1720	int ntries = 0;
1721
1722top:
1723	/*
1724	 * Make sure we have everything we need (registers, etc.).
1725	 * All other lwps have already stopped and are in an orderly state.
1726	 */
1727	ASSERT(p == ttoproc(curthread));
1728	prstop(0, 0);
1729
1730	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1731	nphdrs = prnsegs(as, 0) + 2;		/* two CORE note sections */
1732
1733	/*
1734	 * Count the number of section headers we're going to need.
1735	 */
1736	nshdrs = 0;
1737	if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) {
1738		(void) process_scns(content, p, credp, NULL, NULL, NULL, 0,
1739		    NULL, &nshdrs);
1740	}
1741	AS_LOCK_EXIT(as, &as->a_lock);
1742
1743	ASSERT(nshdrs == 0 || nshdrs > 1);
1744
1745	/*
1746	 * The core file contents may required zero section headers, but if
1747	 * we overflow the 16 bits allotted to the program header count in
1748	 * the ELF header, we'll need that program header at index zero.
1749	 */
1750	if (nshdrs == 0 && nphdrs >= PN_XNUM)
1751		nshdrs = 1;
1752
1753	phdrsz = nphdrs * sizeof (Phdr);
1754	shdrsz = nshdrs * sizeof (Shdr);
1755
1756	bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz));
1757	bigwad = kmem_alloc(bigsize, KM_SLEEP);
1758
1759	ehdr = &bigwad->ehdr;
1760	bzero(ehdr, sizeof (*ehdr));
1761
1762	ehdr->e_ident[EI_MAG0] = ELFMAG0;
1763	ehdr->e_ident[EI_MAG1] = ELFMAG1;
1764	ehdr->e_ident[EI_MAG2] = ELFMAG2;
1765	ehdr->e_ident[EI_MAG3] = ELFMAG3;
1766	ehdr->e_ident[EI_CLASS] = ELFCLASS;
1767	ehdr->e_type = ET_CORE;
1768
1769#if !defined(_LP64) || defined(_ELF32_COMPAT)
1770
1771#if defined(__sparc)
1772	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1773	ehdr->e_machine = EM_SPARC;
1774#elif defined(__i386) || defined(__i386_COMPAT)
1775	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1776	ehdr->e_machine = EM_386;
1777#else
1778#error "no recognized machine type is defined"
1779#endif
1780
1781#else	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1782
1783#if defined(__sparc)
1784	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
1785	ehdr->e_machine = EM_SPARCV9;
1786#elif defined(__amd64)
1787	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1788	ehdr->e_machine = EM_AMD64;
1789#else
1790#error "no recognized 64-bit machine type is defined"
1791#endif
1792
1793#endif	/* !defined(_LP64) || defined(_ELF32_COMPAT) */
1794
1795	/*
1796	 * If the count of program headers or section headers or the index
1797	 * of the section string table can't fit in the mere 16 bits
1798	 * shortsightedly allotted to them in the ELF header, we use the
1799	 * extended formats and put the real values in the section header
1800	 * as index 0.
1801	 */
1802	ehdr->e_version = EV_CURRENT;
1803	ehdr->e_ehsize = sizeof (Ehdr);
1804
1805	if (nphdrs >= PN_XNUM)
1806		ehdr->e_phnum = PN_XNUM;
1807	else
1808		ehdr->e_phnum = (unsigned short)nphdrs;
1809
1810	ehdr->e_phoff = sizeof (Ehdr);
1811	ehdr->e_phentsize = sizeof (Phdr);
1812
1813	if (nshdrs > 0) {
1814		if (nshdrs >= SHN_LORESERVE)
1815			ehdr->e_shnum = 0;
1816		else
1817			ehdr->e_shnum = (unsigned short)nshdrs;
1818
1819		if (nshdrs - 1 >= SHN_LORESERVE)
1820			ehdr->e_shstrndx = SHN_XINDEX;
1821		else
1822			ehdr->e_shstrndx = (unsigned short)(nshdrs - 1);
1823
1824		ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs;
1825		ehdr->e_shentsize = sizeof (Shdr);
1826	}
1827
1828	if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr,
1829	    sizeof (Ehdr), rlimit, credp))
1830		goto done;
1831
1832	poffset = sizeof (Ehdr);
1833	soffset = sizeof (Ehdr) + phdrsz;
1834	doffset = sizeof (Ehdr) + phdrsz + shdrsz;
1835
1836	v = &bigwad->phdr[0];
1837	bzero(v, phdrsz);
1838
1839	setup_old_note_header(&v[0], p);
1840	v[0].p_offset = doffset = roundup(doffset, sizeof (Word));
1841	doffset += v[0].p_filesz;
1842
1843	setup_note_header(&v[1], p);
1844	v[1].p_offset = doffset = roundup(doffset, sizeof (Word));
1845	doffset += v[1].p_filesz;
1846
1847	mutex_enter(&p->p_lock);
1848
1849	brkbase = p->p_brkbase;
1850	brksize = p->p_brksize;
1851
1852	stkbase = p->p_usrstack - p->p_stksize;
1853	stksize = p->p_stksize;
1854
1855	mutex_exit(&p->p_lock);
1856
1857	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1858	i = 2;
1859	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
1860		caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0);
1861		caddr_t saddr, naddr;
1862		void *tmp = NULL;
1863		extern struct seg_ops segspt_shmops;
1864
1865		for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) {
1866			uint_t prot;
1867			size_t size;
1868			int type;
1869			vnode_t *mvp;
1870
1871			prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr);
1872			prot &= PROT_READ | PROT_WRITE | PROT_EXEC;
1873			if ((size = (size_t)(naddr - saddr)) == 0)
1874				continue;
1875			if (i == nphdrs) {
1876				overflow++;
1877				continue;
1878			}
1879			v[i].p_type = PT_LOAD;
1880			v[i].p_vaddr = (Addr)(uintptr_t)saddr;
1881			v[i].p_memsz = size;
1882			if (prot & PROT_READ)
1883				v[i].p_flags |= PF_R;
1884			if (prot & PROT_WRITE)
1885				v[i].p_flags |= PF_W;
1886			if (prot & PROT_EXEC)
1887				v[i].p_flags |= PF_X;
1888
1889			/*
1890			 * Figure out which mappings to include in the core.
1891			 */
1892			type = SEGOP_GETTYPE(seg, saddr);
1893
1894			if (saddr == stkbase && size == stksize) {
1895				if (!(content & CC_CONTENT_STACK))
1896					goto exclude;
1897
1898			} else if (saddr == brkbase && size == brksize) {
1899				if (!(content & CC_CONTENT_HEAP))
1900					goto exclude;
1901
1902			} else if (seg->s_ops == &segspt_shmops) {
1903				if (type & MAP_NORESERVE) {
1904					if (!(content & CC_CONTENT_DISM))
1905						goto exclude;
1906				} else {
1907					if (!(content & CC_CONTENT_ISM))
1908						goto exclude;
1909				}
1910
1911			} else if (seg->s_ops != &segvn_ops) {
1912				goto exclude;
1913
1914			} else if (type & MAP_SHARED) {
1915				if (shmgetid(p, saddr) != SHMID_NONE) {
1916					if (!(content & CC_CONTENT_SHM))
1917						goto exclude;
1918
1919				} else if (SEGOP_GETVP(seg, seg->s_base,
1920				    &mvp) != 0 || mvp == NULL ||
1921				    mvp->v_type != VREG) {
1922					if (!(content & CC_CONTENT_SHANON))
1923						goto exclude;
1924
1925				} else {
1926					if (!(content & CC_CONTENT_SHFILE))
1927						goto exclude;
1928				}
1929
1930			} else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 ||
1931			    mvp == NULL || mvp->v_type != VREG) {
1932				if (!(content & CC_CONTENT_ANON))
1933					goto exclude;
1934
1935			} else if (prot == (PROT_READ | PROT_EXEC)) {
1936				if (!(content & CC_CONTENT_TEXT))
1937					goto exclude;
1938
1939			} else if (prot == PROT_READ) {
1940				if (!(content & CC_CONTENT_RODATA))
1941					goto exclude;
1942
1943			} else {
1944				if (!(content & CC_CONTENT_DATA))
1945					goto exclude;
1946			}
1947
1948			doffset = roundup(doffset, sizeof (Word));
1949			v[i].p_offset = doffset;
1950			v[i].p_filesz = size;
1951			doffset += size;
1952exclude:
1953			i++;
1954		}
1955		ASSERT(tmp == NULL);
1956	}
1957	AS_LOCK_EXIT(as, &as->a_lock);
1958
1959	if (overflow || i != nphdrs) {
1960		if (ntries++ == 0) {
1961			kmem_free(bigwad, bigsize);
1962			overflow = 0;
1963			goto top;
1964		}
1965		cmn_err(CE_WARN, "elfcore: core dump failed for "
1966		    "process %d; address space is changing", p->p_pid);
1967		error = EIO;
1968		goto done;
1969	}
1970
1971	if ((error = core_write(vp, UIO_SYSSPACE, poffset,
1972	    v, phdrsz, rlimit, credp)) != 0)
1973		goto done;
1974
1975	if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit,
1976	    credp)) != 0)
1977		goto done;
1978
1979	if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit,
1980	    credp, content)) != 0)
1981		goto done;
1982
1983	for (i = 2; i < nphdrs; i++) {
1984		if (v[i].p_filesz == 0)
1985			continue;
1986
1987		/*
1988		 * If dumping out this segment fails, rather than failing
1989		 * the core dump entirely, we reset the size of the mapping
1990		 * to zero to indicate that the data is absent from the core
1991		 * file and or in the PF_SUNW_FAILURE flag to differentiate
1992		 * this from mappings that were excluded due to the core file
1993		 * content settings.
1994		 */
1995		if ((error = core_seg(p, vp, v[i].p_offset,
1996		    (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz,
1997		    rlimit, credp)) != 0) {
1998
1999			/*
2000			 * Since the space reserved for the segment is now
2001			 * unused, we stash the errno in the first four
2002			 * bytes. This undocumented interface will let us
2003			 * understand the nature of the failure.
2004			 */
2005			(void) core_write(vp, UIO_SYSSPACE, v[i].p_offset,
2006			    &error, sizeof (error), rlimit, credp);
2007
2008			v[i].p_filesz = 0;
2009			v[i].p_flags |= PF_SUNW_FAILURE;
2010			if ((error = core_write(vp, UIO_SYSSPACE,
2011			    poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]),
2012			    rlimit, credp)) != 0)
2013				goto done;
2014		}
2015	}
2016
2017	if (nshdrs > 0) {
2018		bzero(&bigwad->shdr[0], shdrsz);
2019
2020		if (nshdrs >= SHN_LORESERVE)
2021			bigwad->shdr[0].sh_size = nshdrs;
2022
2023		if (nshdrs - 1 >= SHN_LORESERVE)
2024			bigwad->shdr[0].sh_link = nshdrs - 1;
2025
2026		if (nphdrs >= PN_XNUM)
2027			bigwad->shdr[0].sh_info = nphdrs;
2028
2029		if (nshdrs > 1) {
2030			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2031			if ((error = process_scns(content, p, credp, vp,
2032			    &bigwad->shdr[0], nshdrs, rlimit, &doffset,
2033			    NULL)) != 0) {
2034				AS_LOCK_EXIT(as, &as->a_lock);
2035				goto done;
2036			}
2037			AS_LOCK_EXIT(as, &as->a_lock);
2038		}
2039
2040		if ((error = core_write(vp, UIO_SYSSPACE, soffset,
2041		    &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0)
2042			goto done;
2043	}
2044
2045done:
2046	kmem_free(bigwad, bigsize);
2047	return (error);
2048}
2049
2050#ifndef	_ELF32_COMPAT
2051
2052static struct execsw esw = {
2053#ifdef	_LP64
2054	elf64magicstr,
2055#else	/* _LP64 */
2056	elf32magicstr,
2057#endif	/* _LP64 */
2058	0,
2059	5,
2060	elfexec,
2061	elfcore
2062};
2063
2064static struct modlexec modlexec = {
2065	&mod_execops, "exec module for elf", &esw
2066};
2067
2068#ifdef	_LP64
2069extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args,
2070			intpdata_t *idatap, int level, long *execsz,
2071			int setid, caddr_t exec_file, cred_t *cred,
2072			int brand_action);
2073extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp,
2074			rlim64_t rlimit, int sig, core_content_t content);
2075
2076static struct execsw esw32 = {
2077	elf32magicstr,
2078	0,
2079	5,
2080	elf32exec,
2081	elf32core
2082};
2083
2084static struct modlexec modlexec32 = {
2085	&mod_execops, "32-bit exec module for elf", &esw32
2086};
2087#endif	/* _LP64 */
2088
2089static struct modlinkage modlinkage = {
2090	MODREV_1,
2091	(void *)&modlexec,
2092#ifdef	_LP64
2093	(void *)&modlexec32,
2094#endif	/* _LP64 */
2095	NULL
2096};
2097
2098int
2099_init(void)
2100{
2101	return (mod_install(&modlinkage));
2102}
2103
2104int
2105_fini(void)
2106{
2107	return (mod_remove(&modlinkage));
2108}
2109
2110int
2111_info(struct modinfo *modinfop)
2112{
2113	return (mod_info(&modlinkage, modinfop));
2114}
2115
2116#endif	/* !_ELF32_COMPAT */
2117