1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27/*	  All Rights Reserved  	*/
28
29#include <sys/types.h>
30#include <sys/param.h>
31#include <sys/sysmacros.h>
32#include <sys/cred.h>
33#include <sys/proc.h>
34#include <sys/session.h>
35#include <sys/strsubr.h>
36#include <sys/signal.h>
37#include <sys/user.h>
38#include <sys/priocntl.h>
39#include <sys/class.h>
40#include <sys/disp.h>
41#include <sys/procset.h>
42#include <sys/debug.h>
43#include <sys/ts.h>
44#include <sys/tspriocntl.h>
45#include <sys/iapriocntl.h>
46#include <sys/kmem.h>
47#include <sys/errno.h>
48#include <sys/cpuvar.h>
49#include <sys/systm.h>		/* for lbolt */
50#include <sys/vtrace.h>
51#include <sys/vmsystm.h>
52#include <sys/schedctl.h>
53#include <sys/tnf_probe.h>
54#include <sys/atomic.h>
55#include <sys/policy.h>
56#include <sys/sdt.h>
57#include <sys/cpupart.h>
58#include <vm/rm.h>
59#include <vm/seg_kmem.h>
60#include <sys/modctl.h>
61#include <sys/cpucaps.h>
62
63static pri_t ts_init(id_t, int, classfuncs_t **);
64
65static struct sclass csw = {
66	"TS",
67	ts_init,
68	0
69};
70
71static struct modlsched modlsched = {
72	&mod_schedops, "time sharing sched class", &csw
73};
74
75static struct modlinkage modlinkage = {
76	MODREV_1, (void *)&modlsched, NULL
77};
78
79int
80_init()
81{
82	return (mod_install(&modlinkage));
83}
84
85int
86_fini()
87{
88	return (EBUSY);		/* don't remove TS for now */
89}
90
91int
92_info(struct modinfo *modinfop)
93{
94	return (mod_info(&modlinkage, modinfop));
95}
96
97/*
98 * Class specific code for the time-sharing class
99 */
100
101
102/*
103 * Extern declarations for variables defined in the ts master file
104 */
105#define	TSMAXUPRI 60
106
107pri_t	ts_maxupri = TSMAXUPRI;	/* max time-sharing user priority */
108pri_t	ts_maxumdpri;		/* maximum user mode ts priority */
109
110pri_t	ia_maxupri = IAMAXUPRI;	/* max interactive user priority */
111pri_t	ia_boost = IA_BOOST;	/* boost value for interactive */
112
113tsdpent_t  *ts_dptbl;	/* time-sharing disp parameter table */
114pri_t	*ts_kmdpris;	/* array of global pris used by ts procs when */
115			/*  sleeping or running in kernel after sleep */
116
117static id_t ia_cid;
118
119int ts_sleep_promote = 1;
120
121#define	tsmedumdpri	(ts_maxumdpri >> 1)
122
123#define	TS_NEWUMDPRI(tspp) \
124{ \
125	pri_t pri; \
126	pri = (tspp)->ts_cpupri + (tspp)->ts_upri + (tspp)->ts_boost; \
127	if (pri > ts_maxumdpri) \
128		(tspp)->ts_umdpri = ts_maxumdpri; \
129	else if (pri < 0) \
130		(tspp)->ts_umdpri = 0; \
131	else \
132		(tspp)->ts_umdpri = pri; \
133	ASSERT((tspp)->ts_umdpri >= 0 && (tspp)->ts_umdpri <= ts_maxumdpri); \
134}
135
136/*
137 * The tsproc_t structures are kept in an array of circular doubly linked
138 * lists.  A hash on the thread pointer is used to determine which list
139 * each thread should be placed.  Each list has a dummy "head" which is
140 * never removed, so the list is never empty.  ts_update traverses these
141 * lists to update the priorities of threads that have been waiting on
142 * the run queue.
143 */
144
145#define	TS_LISTS 16		/* number of lists, must be power of 2 */
146
147/* hash function, argument is a thread pointer */
148#define	TS_LIST_HASH(tp)	(((uintptr_t)(tp) >> 9) & (TS_LISTS - 1))
149
150/* iterate to the next list */
151#define	TS_LIST_NEXT(i)		(((i) + 1) & (TS_LISTS - 1))
152
153/*
154 * Insert thread into the appropriate tsproc list.
155 */
156#define	TS_LIST_INSERT(tspp)				\
157{							\
158	int index = TS_LIST_HASH(tspp->ts_tp);		\
159	kmutex_t *lockp = &ts_list_lock[index];		\
160	tsproc_t *headp = &ts_plisthead[index];		\
161	mutex_enter(lockp);				\
162	tspp->ts_next = headp->ts_next;			\
163	tspp->ts_prev = headp;				\
164	headp->ts_next->ts_prev = tspp;			\
165	headp->ts_next = tspp;				\
166	mutex_exit(lockp);				\
167}
168
169/*
170 * Remove thread from tsproc list.
171 */
172#define	TS_LIST_DELETE(tspp)				\
173{							\
174	int index = TS_LIST_HASH(tspp->ts_tp);		\
175	kmutex_t *lockp = &ts_list_lock[index];		\
176	mutex_enter(lockp);				\
177	tspp->ts_prev->ts_next = tspp->ts_next;		\
178	tspp->ts_next->ts_prev = tspp->ts_prev;		\
179	mutex_exit(lockp);				\
180}
181
182
183static int	ts_admin(caddr_t, cred_t *);
184static int	ts_enterclass(kthread_t *, id_t, void *, cred_t *, void *);
185static int	ts_fork(kthread_t *, kthread_t *, void *);
186static int	ts_getclinfo(void *);
187static int	ts_getclpri(pcpri_t *);
188static int	ts_parmsin(void *);
189static int	ts_parmsout(void *, pc_vaparms_t *);
190static int	ts_vaparmsin(void *, pc_vaparms_t *);
191static int	ts_vaparmsout(void *, pc_vaparms_t *);
192static int	ts_parmsset(kthread_t *, void *, id_t, cred_t *);
193static void	ts_exit(kthread_t *);
194static int	ts_donice(kthread_t *, cred_t *, int, int *);
195static int	ts_doprio(kthread_t *, cred_t *, int, int *);
196static void	ts_exitclass(void *);
197static int	ts_canexit(kthread_t *, cred_t *);
198static void	ts_forkret(kthread_t *, kthread_t *);
199static void	ts_nullsys();
200static void	ts_parmsget(kthread_t *, void *);
201static void	ts_preempt(kthread_t *);
202static void	ts_setrun(kthread_t *);
203static void	ts_sleep(kthread_t *);
204static pri_t	ts_swapin(kthread_t *, int);
205static pri_t	ts_swapout(kthread_t *, int);
206static void	ts_tick(kthread_t *);
207static void	ts_trapret(kthread_t *);
208static void	ts_update(void *);
209static int	ts_update_list(int);
210static void	ts_wakeup(kthread_t *);
211static pri_t	ts_globpri(kthread_t *);
212static void	ts_yield(kthread_t *);
213extern tsdpent_t *ts_getdptbl(void);
214extern pri_t	*ts_getkmdpris(void);
215extern pri_t	td_getmaxumdpri(void);
216static int	ts_alloc(void **, int);
217static void	ts_free(void *);
218
219pri_t		ia_init(id_t, int, classfuncs_t **);
220static int	ia_getclinfo(void *);
221static int	ia_getclpri(pcpri_t *);
222static int	ia_parmsin(void *);
223static int	ia_vaparmsin(void *, pc_vaparms_t *);
224static int	ia_vaparmsout(void *, pc_vaparms_t *);
225static int	ia_parmsset(kthread_t *, void *, id_t, cred_t *);
226static void	ia_parmsget(kthread_t *, void *);
227static void	ia_set_process_group(pid_t, pid_t, pid_t);
228
229static void	ts_change_priority(kthread_t *, tsproc_t *);
230
231extern pri_t	ts_maxkmdpri;	/* maximum kernel mode ts priority */
232static pri_t	ts_maxglobpri;	/* maximum global priority used by ts class */
233static kmutex_t	ts_dptblock;	/* protects time sharing dispatch table */
234static kmutex_t	ts_list_lock[TS_LISTS];	/* protects tsproc lists */
235static tsproc_t	ts_plisthead[TS_LISTS];	/* dummy tsproc at head of lists */
236
237static gid_t	IA_gid = 0;
238
239static struct classfuncs ts_classfuncs = {
240	/* class functions */
241	ts_admin,
242	ts_getclinfo,
243	ts_parmsin,
244	ts_parmsout,
245	ts_vaparmsin,
246	ts_vaparmsout,
247	ts_getclpri,
248	ts_alloc,
249	ts_free,
250
251	/* thread functions */
252	ts_enterclass,
253	ts_exitclass,
254	ts_canexit,
255	ts_fork,
256	ts_forkret,
257	ts_parmsget,
258	ts_parmsset,
259	ts_nullsys,	/* stop */
260	ts_exit,
261	ts_nullsys,	/* active */
262	ts_nullsys,	/* inactive */
263	ts_swapin,
264	ts_swapout,
265	ts_trapret,
266	ts_preempt,
267	ts_setrun,
268	ts_sleep,
269	ts_tick,
270	ts_wakeup,
271	ts_donice,
272	ts_globpri,
273	ts_nullsys,	/* set_process_group */
274	ts_yield,
275	ts_doprio,
276};
277
278/*
279 * ia_classfuncs is used for interactive class threads; IA threads are stored
280 * on the same class list as TS threads, and most of the class functions are
281 * identical, but a few have different enough functionality to require their
282 * own functions.
283 */
284static struct classfuncs ia_classfuncs = {
285	/* class functions */
286	ts_admin,
287	ia_getclinfo,
288	ia_parmsin,
289	ts_parmsout,
290	ia_vaparmsin,
291	ia_vaparmsout,
292	ia_getclpri,
293	ts_alloc,
294	ts_free,
295
296	/* thread functions */
297	ts_enterclass,
298	ts_exitclass,
299	ts_canexit,
300	ts_fork,
301	ts_forkret,
302	ia_parmsget,
303	ia_parmsset,
304	ts_nullsys,	/* stop */
305	ts_exit,
306	ts_nullsys,	/* active */
307	ts_nullsys,	/* inactive */
308	ts_swapin,
309	ts_swapout,
310	ts_trapret,
311	ts_preempt,
312	ts_setrun,
313	ts_sleep,
314	ts_tick,
315	ts_wakeup,
316	ts_donice,
317	ts_globpri,
318	ia_set_process_group,
319	ts_yield,
320	ts_doprio,
321};
322
323
324/*
325 * Time sharing class initialization.  Called by dispinit() at boot time.
326 * We can ignore the clparmsz argument since we know that the smallest
327 * possible parameter buffer is big enough for us.
328 */
329/* ARGSUSED */
330static pri_t
331ts_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
332{
333	int i;
334	extern pri_t ts_getmaxumdpri(void);
335
336	ts_dptbl = ts_getdptbl();
337	ts_kmdpris = ts_getkmdpris();
338	ts_maxumdpri = ts_getmaxumdpri();
339	ts_maxglobpri = MAX(ts_kmdpris[0], ts_dptbl[ts_maxumdpri].ts_globpri);
340
341	/*
342	 * Initialize the tsproc lists.
343	 */
344	for (i = 0; i < TS_LISTS; i++) {
345		ts_plisthead[i].ts_next = ts_plisthead[i].ts_prev =
346		    &ts_plisthead[i];
347	}
348
349	/*
350	 * We're required to return a pointer to our classfuncs
351	 * structure and the highest global priority value we use.
352	 */
353	*clfuncspp = &ts_classfuncs;
354	return (ts_maxglobpri);
355}
356
357
358/*
359 * Interactive class scheduler initialization
360 */
361/* ARGSUSED */
362pri_t
363ia_init(id_t cid, int clparmsz, classfuncs_t **clfuncspp)
364{
365	/*
366	 * We're required to return a pointer to our classfuncs
367	 * structure and the highest global priority value we use.
368	 */
369	ia_cid = cid;
370	*clfuncspp = &ia_classfuncs;
371	return (ts_maxglobpri);
372}
373
374
375/*
376 * Get or reset the ts_dptbl values per the user's request.
377 */
378static int
379ts_admin(caddr_t uaddr, cred_t *reqpcredp)
380{
381	tsadmin_t	tsadmin;
382	tsdpent_t	*tmpdpp;
383	int		userdpsz;
384	int		i;
385	size_t		tsdpsz;
386
387	if (get_udatamodel() == DATAMODEL_NATIVE) {
388		if (copyin(uaddr, &tsadmin, sizeof (tsadmin_t)))
389			return (EFAULT);
390	}
391#ifdef _SYSCALL32_IMPL
392	else {
393		/* get tsadmin struct from ILP32 caller */
394		tsadmin32_t tsadmin32;
395		if (copyin(uaddr, &tsadmin32, sizeof (tsadmin32_t)))
396			return (EFAULT);
397		tsadmin.ts_dpents =
398		    (struct tsdpent *)(uintptr_t)tsadmin32.ts_dpents;
399		tsadmin.ts_ndpents = tsadmin32.ts_ndpents;
400		tsadmin.ts_cmd = tsadmin32.ts_cmd;
401	}
402#endif /* _SYSCALL32_IMPL */
403
404	tsdpsz = (ts_maxumdpri + 1) * sizeof (tsdpent_t);
405
406	switch (tsadmin.ts_cmd) {
407	case TS_GETDPSIZE:
408		tsadmin.ts_ndpents = ts_maxumdpri + 1;
409
410		if (get_udatamodel() == DATAMODEL_NATIVE) {
411			if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
412				return (EFAULT);
413		}
414#ifdef _SYSCALL32_IMPL
415		else {
416			/* return tsadmin struct to ILP32 caller */
417			tsadmin32_t tsadmin32;
418			tsadmin32.ts_dpents =
419			    (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
420			tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
421			tsadmin32.ts_cmd = tsadmin.ts_cmd;
422			if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
423				return (EFAULT);
424		}
425#endif /* _SYSCALL32_IMPL */
426		break;
427
428	case TS_GETDPTBL:
429		userdpsz = MIN(tsadmin.ts_ndpents * sizeof (tsdpent_t),
430		    tsdpsz);
431		if (copyout(ts_dptbl, tsadmin.ts_dpents, userdpsz))
432			return (EFAULT);
433
434		tsadmin.ts_ndpents = userdpsz / sizeof (tsdpent_t);
435
436		if (get_udatamodel() == DATAMODEL_NATIVE) {
437			if (copyout(&tsadmin, uaddr, sizeof (tsadmin_t)))
438				return (EFAULT);
439		}
440#ifdef _SYSCALL32_IMPL
441		else {
442			/* return tsadmin struct to ILP32 callers */
443			tsadmin32_t tsadmin32;
444			tsadmin32.ts_dpents =
445			    (caddr32_t)(uintptr_t)tsadmin.ts_dpents;
446			tsadmin32.ts_ndpents = tsadmin.ts_ndpents;
447			tsadmin32.ts_cmd = tsadmin.ts_cmd;
448			if (copyout(&tsadmin32, uaddr, sizeof (tsadmin32_t)))
449				return (EFAULT);
450		}
451#endif /* _SYSCALL32_IMPL */
452		break;
453
454	case TS_SETDPTBL:
455		/*
456		 * We require that the requesting process has sufficient
457		 * priveleges.  We also require that the table supplied by
458		 * the user exactly match the current ts_dptbl in size.
459		 */
460		if (secpolicy_dispadm(reqpcredp) != 0)
461			return (EPERM);
462
463		if (tsadmin.ts_ndpents * sizeof (tsdpent_t) != tsdpsz) {
464			return (EINVAL);
465		}
466
467		/*
468		 * We read the user supplied table into a temporary buffer
469		 * where it is validated before being copied over the
470		 * ts_dptbl.
471		 */
472		tmpdpp = kmem_alloc(tsdpsz, KM_SLEEP);
473		if (copyin((caddr_t)tsadmin.ts_dpents, (caddr_t)tmpdpp,
474		    tsdpsz)) {
475			kmem_free(tmpdpp, tsdpsz);
476			return (EFAULT);
477		}
478		for (i = 0; i < tsadmin.ts_ndpents; i++) {
479
480			/*
481			 * Validate the user supplied values.  All we are doing
482			 * here is verifying that the values are within their
483			 * allowable ranges and will not panic the system.  We
484			 * make no attempt to ensure that the resulting
485			 * configuration makes sense or results in reasonable
486			 * performance.
487			 */
488			if (tmpdpp[i].ts_quantum <= 0) {
489				kmem_free(tmpdpp, tsdpsz);
490				return (EINVAL);
491			}
492			if (tmpdpp[i].ts_tqexp > ts_maxumdpri ||
493			    tmpdpp[i].ts_tqexp < 0) {
494				kmem_free(tmpdpp, tsdpsz);
495				return (EINVAL);
496			}
497			if (tmpdpp[i].ts_slpret > ts_maxumdpri ||
498			    tmpdpp[i].ts_slpret < 0) {
499				kmem_free(tmpdpp, tsdpsz);
500				return (EINVAL);
501			}
502			if (tmpdpp[i].ts_maxwait < 0) {
503				kmem_free(tmpdpp, tsdpsz);
504				return (EINVAL);
505			}
506			if (tmpdpp[i].ts_lwait > ts_maxumdpri ||
507			    tmpdpp[i].ts_lwait < 0) {
508				kmem_free(tmpdpp, tsdpsz);
509				return (EINVAL);
510			}
511		}
512
513		/*
514		 * Copy the user supplied values over the current ts_dptbl
515		 * values.  The ts_globpri member is read-only so we don't
516		 * overwrite it.
517		 */
518		mutex_enter(&ts_dptblock);
519		for (i = 0; i < tsadmin.ts_ndpents; i++) {
520			ts_dptbl[i].ts_quantum = tmpdpp[i].ts_quantum;
521			ts_dptbl[i].ts_tqexp = tmpdpp[i].ts_tqexp;
522			ts_dptbl[i].ts_slpret = tmpdpp[i].ts_slpret;
523			ts_dptbl[i].ts_maxwait = tmpdpp[i].ts_maxwait;
524			ts_dptbl[i].ts_lwait = tmpdpp[i].ts_lwait;
525		}
526		mutex_exit(&ts_dptblock);
527		kmem_free(tmpdpp, tsdpsz);
528		break;
529
530	default:
531		return (EINVAL);
532	}
533	return (0);
534}
535
536
537/*
538 * Allocate a time-sharing class specific thread structure and
539 * initialize it with the parameters supplied. Also move the thread
540 * to specified time-sharing priority.
541 */
542static int
543ts_enterclass(kthread_t *t, id_t cid, void *parmsp,
544	cred_t *reqpcredp, void *bufp)
545{
546	tsparms_t	*tsparmsp = (tsparms_t *)parmsp;
547	tsproc_t	*tspp;
548	pri_t		reqtsuprilim;
549	pri_t		reqtsupri;
550	static uint32_t	tspexists = 0;	/* set on first occurrence of */
551					/*   a time-sharing process */
552
553	tspp = (tsproc_t *)bufp;
554	ASSERT(tspp != NULL);
555
556	/*
557	 * Initialize the tsproc structure.
558	 */
559	tspp->ts_cpupri = tsmedumdpri;
560	if (cid == ia_cid) {
561		/*
562		 * Check to make sure caller is either privileged or the
563		 * window system.  When the window system is converted
564		 * to using privileges, the second check can go away.
565		 */
566		if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
567		    secpolicy_setpriority(reqpcredp) != 0)
568			return (EPERM);
569		/*
570		 * Belongs to IA "class", so set appropriate flags.
571		 * Mark as 'on' so it will not be a swap victim
572		 * while forking.
573		 */
574		tspp->ts_flags = TSIA | TSIASET;
575		tspp->ts_boost = ia_boost;
576	} else {
577		tspp->ts_flags = 0;
578		tspp->ts_boost = 0;
579	}
580
581	if (tsparmsp == NULL) {
582		/*
583		 * Use default values.
584		 */
585		tspp->ts_uprilim = tspp->ts_upri = 0;
586		tspp->ts_nice = NZERO;
587	} else {
588		/*
589		 * Use supplied values.
590		 */
591		if (tsparmsp->ts_uprilim == TS_NOCHANGE)
592			reqtsuprilim = 0;
593		else {
594			if (tsparmsp->ts_uprilim > 0 &&
595			    secpolicy_setpriority(reqpcredp) != 0)
596				return (EPERM);
597			reqtsuprilim = tsparmsp->ts_uprilim;
598		}
599
600		if (tsparmsp->ts_upri == TS_NOCHANGE) {
601			reqtsupri = reqtsuprilim;
602		} else {
603			if (tsparmsp->ts_upri > 0 &&
604			    secpolicy_setpriority(reqpcredp) != 0)
605				return (EPERM);
606			/*
607			 * Set the user priority to the requested value
608			 * or the upri limit, whichever is lower.
609			 */
610			reqtsupri = tsparmsp->ts_upri;
611			if (reqtsupri > reqtsuprilim)
612				reqtsupri = reqtsuprilim;
613		}
614
615
616		tspp->ts_uprilim = reqtsuprilim;
617		tspp->ts_upri = reqtsupri;
618		tspp->ts_nice = NZERO - (NZERO * reqtsupri) / ts_maxupri;
619	}
620	TS_NEWUMDPRI(tspp);
621
622	tspp->ts_dispwait = 0;
623	tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
624	tspp->ts_tp = t;
625	cpucaps_sc_init(&tspp->ts_caps);
626
627	/*
628	 * Reset priority. Process goes to a "user mode" priority
629	 * here regardless of whether or not it has slept since
630	 * entering the kernel.
631	 */
632	thread_lock(t);			/* get dispatcher lock on thread */
633	t->t_clfuncs = &(sclass[cid].cl_funcs->thread);
634	t->t_cid = cid;
635	t->t_cldata = (void *)tspp;
636	t->t_schedflag &= ~TS_RUNQMATCH;
637	ts_change_priority(t, tspp);
638	thread_unlock(t);
639
640	/*
641	 * Link new structure into tsproc list.
642	 */
643	TS_LIST_INSERT(tspp);
644
645	/*
646	 * If this is the first time-sharing thread to occur since
647	 * boot we set up the initial call to ts_update() here.
648	 * Use an atomic compare-and-swap since that's easier and
649	 * faster than a mutex (but check with an ordinary load first
650	 * since most of the time this will already be done).
651	 */
652	if (tspexists == 0 && cas32(&tspexists, 0, 1) == 0)
653		(void) timeout(ts_update, NULL, hz);
654
655	return (0);
656}
657
658
659/*
660 * Free tsproc structure of thread.
661 */
662static void
663ts_exitclass(void *procp)
664{
665	tsproc_t *tspp = (tsproc_t *)procp;
666
667	/* Remove tsproc_t structure from list */
668	TS_LIST_DELETE(tspp);
669	kmem_free(tspp, sizeof (tsproc_t));
670}
671
672/* ARGSUSED */
673static int
674ts_canexit(kthread_t *t, cred_t *cred)
675{
676	/*
677	 * A thread can always leave a TS/IA class
678	 */
679	return (0);
680}
681
682static int
683ts_fork(kthread_t *t, kthread_t *ct, void *bufp)
684{
685	tsproc_t	*ptspp;		/* ptr to parent's tsproc structure */
686	tsproc_t	*ctspp;		/* ptr to child's tsproc structure */
687
688	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
689
690	ctspp = (tsproc_t *)bufp;
691	ASSERT(ctspp != NULL);
692	ptspp = (tsproc_t *)t->t_cldata;
693	/*
694	 * Initialize child's tsproc structure.
695	 */
696	thread_lock(t);
697	ctspp->ts_timeleft = ts_dptbl[ptspp->ts_cpupri].ts_quantum;
698	ctspp->ts_cpupri = ptspp->ts_cpupri;
699	ctspp->ts_boost = ptspp->ts_boost;
700	ctspp->ts_uprilim = ptspp->ts_uprilim;
701	ctspp->ts_upri = ptspp->ts_upri;
702	TS_NEWUMDPRI(ctspp);
703	ctspp->ts_nice = ptspp->ts_nice;
704	ctspp->ts_dispwait = 0;
705	ctspp->ts_flags = ptspp->ts_flags & ~(TSKPRI | TSBACKQ | TSRESTORE);
706	ctspp->ts_tp = ct;
707	cpucaps_sc_init(&ctspp->ts_caps);
708	thread_unlock(t);
709
710	/*
711	 * Link new structure into tsproc list.
712	 */
713	ct->t_cldata = (void *)ctspp;
714	TS_LIST_INSERT(ctspp);
715	return (0);
716}
717
718
719/*
720 * Child is placed at back of dispatcher queue and parent gives
721 * up processor so that the child runs first after the fork.
722 * This allows the child immediately execing to break the multiple
723 * use of copy on write pages with no disk home. The parent will
724 * get to steal them back rather than uselessly copying them.
725 */
726static void
727ts_forkret(kthread_t *t, kthread_t *ct)
728{
729	proc_t	*pp = ttoproc(t);
730	proc_t	*cp = ttoproc(ct);
731	tsproc_t *tspp;
732
733	ASSERT(t == curthread);
734	ASSERT(MUTEX_HELD(&pidlock));
735
736	/*
737	 * Grab the child's p_lock before dropping pidlock to ensure
738	 * the process does not disappear before we set it running.
739	 */
740	mutex_enter(&cp->p_lock);
741	continuelwps(cp);
742	mutex_exit(&cp->p_lock);
743
744	mutex_enter(&pp->p_lock);
745	mutex_exit(&pidlock);
746	continuelwps(pp);
747
748	thread_lock(t);
749	tspp = (tsproc_t *)(t->t_cldata);
750	tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
751	TS_NEWUMDPRI(tspp);
752	tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
753	tspp->ts_dispwait = 0;
754	t->t_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
755	ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
756	tspp->ts_flags &= ~TSKPRI;
757	THREAD_TRANSITION(t);
758	ts_setrun(t);
759	thread_unlock(t);
760	/*
761	 * Safe to drop p_lock now since since it is safe to change
762	 * the scheduling class after this point.
763	 */
764	mutex_exit(&pp->p_lock);
765
766	swtch();
767}
768
769
770/*
771 * Get information about the time-sharing class into the buffer
772 * pointed to by tsinfop. The maximum configured user priority
773 * is the only information we supply.  ts_getclinfo() is called
774 * for TS threads, and ia_getclinfo() is called for IA threads.
775 */
776static int
777ts_getclinfo(void *infop)
778{
779	tsinfo_t *tsinfop = (tsinfo_t *)infop;
780	tsinfop->ts_maxupri = ts_maxupri;
781	return (0);
782}
783
784static int
785ia_getclinfo(void *infop)
786{
787	iainfo_t *iainfop = (iainfo_t *)infop;
788	iainfop->ia_maxupri = ia_maxupri;
789	return (0);
790}
791
792
793/*
794 * Return the user mode scheduling priority range.
795 */
796static int
797ts_getclpri(pcpri_t *pcprip)
798{
799	pcprip->pc_clpmax = ts_maxupri;
800	pcprip->pc_clpmin = -ts_maxupri;
801	return (0);
802}
803
804
805static int
806ia_getclpri(pcpri_t *pcprip)
807{
808	pcprip->pc_clpmax = ia_maxupri;
809	pcprip->pc_clpmin = -ia_maxupri;
810	return (0);
811}
812
813
814static void
815ts_nullsys()
816{}
817
818
819/*
820 * Get the time-sharing parameters of the thread pointed to by
821 * tsprocp into the buffer pointed to by tsparmsp.  ts_parmsget()
822 * is called for TS threads, and ia_parmsget() is called for IA
823 * threads.
824 */
825static void
826ts_parmsget(kthread_t *t, void *parmsp)
827{
828	tsproc_t *tspp = (tsproc_t *)t->t_cldata;
829	tsparms_t *tsparmsp = (tsparms_t *)parmsp;
830
831	tsparmsp->ts_uprilim = tspp->ts_uprilim;
832	tsparmsp->ts_upri = tspp->ts_upri;
833}
834
835static void
836ia_parmsget(kthread_t *t, void *parmsp)
837{
838	tsproc_t *tspp = (tsproc_t *)t->t_cldata;
839	iaparms_t *iaparmsp = (iaparms_t *)parmsp;
840
841	iaparmsp->ia_uprilim = tspp->ts_uprilim;
842	iaparmsp->ia_upri = tspp->ts_upri;
843	if (tspp->ts_flags & TSIASET)
844		iaparmsp->ia_mode = IA_SET_INTERACTIVE;
845	else
846		iaparmsp->ia_mode = IA_INTERACTIVE_OFF;
847}
848
849
850/*
851 * Check the validity of the time-sharing parameters in the buffer
852 * pointed to by tsparmsp.
853 * ts_parmsin() is called for TS threads, and ia_parmsin() is called
854 * for IA threads.
855 */
856static int
857ts_parmsin(void *parmsp)
858{
859	tsparms_t	*tsparmsp = (tsparms_t *)parmsp;
860	/*
861	 * Check validity of parameters.
862	 */
863	if ((tsparmsp->ts_uprilim > ts_maxupri ||
864	    tsparmsp->ts_uprilim < -ts_maxupri) &&
865	    tsparmsp->ts_uprilim != TS_NOCHANGE)
866		return (EINVAL);
867
868	if ((tsparmsp->ts_upri > ts_maxupri ||
869	    tsparmsp->ts_upri < -ts_maxupri) &&
870	    tsparmsp->ts_upri != TS_NOCHANGE)
871		return (EINVAL);
872
873	return (0);
874}
875
876static int
877ia_parmsin(void *parmsp)
878{
879	iaparms_t	*iaparmsp = (iaparms_t *)parmsp;
880
881	if ((iaparmsp->ia_uprilim > ia_maxupri ||
882	    iaparmsp->ia_uprilim < -ia_maxupri) &&
883	    iaparmsp->ia_uprilim != IA_NOCHANGE) {
884		return (EINVAL);
885	}
886
887	if ((iaparmsp->ia_upri > ia_maxupri ||
888	    iaparmsp->ia_upri < -ia_maxupri) &&
889	    iaparmsp->ia_upri != IA_NOCHANGE) {
890		return (EINVAL);
891	}
892
893	return (0);
894}
895
896
897/*
898 * Check the validity of the time-sharing parameters in the pc_vaparms_t
899 * structure vaparmsp and put them in the buffer pointed to by tsparmsp.
900 * pc_vaparms_t contains (key, value) pairs of parameter.
901 * ts_vaparmsin() is called for TS threads, and ia_vaparmsin() is called
902 * for IA threads. ts_vaparmsin() is the variable parameter version of
903 * ts_parmsin() and ia_vaparmsin() is the variable parameter version of
904 * ia_parmsin().
905 */
906static int
907ts_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
908{
909	tsparms_t	*tsparmsp = (tsparms_t *)parmsp;
910	int		priflag = 0;
911	int		limflag = 0;
912	uint_t		cnt;
913	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
914
915
916	/*
917	 * TS_NOCHANGE (-32768) is outside of the range of values for
918	 * ts_uprilim and ts_upri. If the structure tsparms_t is changed,
919	 * TS_NOCHANGE should be replaced by a flag word (in the same manner
920	 * as in rt.c).
921	 */
922	tsparmsp->ts_uprilim = TS_NOCHANGE;
923	tsparmsp->ts_upri = TS_NOCHANGE;
924
925	/*
926	 * Get the varargs parameter and check validity of parameters.
927	 */
928	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
929		return (EINVAL);
930
931	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
932
933		switch (vpp->pc_key) {
934		case TS_KY_UPRILIM:
935			if (limflag++)
936				return (EINVAL);
937			tsparmsp->ts_uprilim = (pri_t)vpp->pc_parm;
938			if (tsparmsp->ts_uprilim > ts_maxupri ||
939			    tsparmsp->ts_uprilim < -ts_maxupri)
940				return (EINVAL);
941			break;
942
943		case TS_KY_UPRI:
944			if (priflag++)
945				return (EINVAL);
946			tsparmsp->ts_upri = (pri_t)vpp->pc_parm;
947			if (tsparmsp->ts_upri > ts_maxupri ||
948			    tsparmsp->ts_upri < -ts_maxupri)
949				return (EINVAL);
950			break;
951
952		default:
953			return (EINVAL);
954		}
955	}
956
957	if (vaparmsp->pc_vaparmscnt == 0) {
958		/*
959		 * Use default parameters.
960		 */
961		tsparmsp->ts_upri = tsparmsp->ts_uprilim = 0;
962	}
963
964	return (0);
965}
966
967static int
968ia_vaparmsin(void *parmsp, pc_vaparms_t *vaparmsp)
969{
970	iaparms_t	*iaparmsp = (iaparms_t *)parmsp;
971	int		priflag = 0;
972	int		limflag = 0;
973	int		mflag = 0;
974	uint_t		cnt;
975	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
976
977	/*
978	 * IA_NOCHANGE (-32768) is outside of the range of values for
979	 * ia_uprilim, ia_upri and ia_mode. If the structure iaparms_t is
980	 * changed, IA_NOCHANGE should be replaced by a flag word (in the
981	 * same manner as in rt.c).
982	 */
983	iaparmsp->ia_uprilim = IA_NOCHANGE;
984	iaparmsp->ia_upri = IA_NOCHANGE;
985	iaparmsp->ia_mode = IA_NOCHANGE;
986
987	/*
988	 * Get the varargs parameter and check validity of parameters.
989	 */
990	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
991		return (EINVAL);
992
993	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
994
995		switch (vpp->pc_key) {
996		case IA_KY_UPRILIM:
997			if (limflag++)
998				return (EINVAL);
999			iaparmsp->ia_uprilim = (pri_t)vpp->pc_parm;
1000			if (iaparmsp->ia_uprilim > ia_maxupri ||
1001			    iaparmsp->ia_uprilim < -ia_maxupri)
1002				return (EINVAL);
1003			break;
1004
1005		case IA_KY_UPRI:
1006			if (priflag++)
1007				return (EINVAL);
1008			iaparmsp->ia_upri = (pri_t)vpp->pc_parm;
1009			if (iaparmsp->ia_upri > ia_maxupri ||
1010			    iaparmsp->ia_upri < -ia_maxupri)
1011				return (EINVAL);
1012			break;
1013
1014		case IA_KY_MODE:
1015			if (mflag++)
1016				return (EINVAL);
1017			iaparmsp->ia_mode = (int)vpp->pc_parm;
1018			if (iaparmsp->ia_mode != IA_SET_INTERACTIVE &&
1019			    iaparmsp->ia_mode != IA_INTERACTIVE_OFF)
1020				return (EINVAL);
1021			break;
1022
1023		default:
1024			return (EINVAL);
1025		}
1026	}
1027
1028	if (vaparmsp->pc_vaparmscnt == 0) {
1029		/*
1030		 * Use default parameters.
1031		 */
1032		iaparmsp->ia_upri = iaparmsp->ia_uprilim = 0;
1033		iaparmsp->ia_mode = IA_SET_INTERACTIVE;
1034	}
1035
1036	return (0);
1037}
1038
1039/*
1040 * Nothing to do here but return success.
1041 */
1042/* ARGSUSED */
1043static int
1044ts_parmsout(void *parmsp, pc_vaparms_t *vaparmsp)
1045{
1046	return (0);
1047}
1048
1049
1050/*
1051 * Copy all selected time-sharing class parameters to the user.
1052 * The parameters are specified by a key.
1053 */
1054static int
1055ts_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1056{
1057	tsparms_t	*tsprmsp = (tsparms_t *)prmsp;
1058	int		priflag = 0;
1059	int		limflag = 0;
1060	uint_t		cnt;
1061	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
1062
1063	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1064
1065	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1066		return (EINVAL);
1067
1068	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1069
1070		switch (vpp->pc_key) {
1071		case TS_KY_UPRILIM:
1072			if (limflag++)
1073				return (EINVAL);
1074			if (copyout(&tsprmsp->ts_uprilim,
1075			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1076				return (EFAULT);
1077			break;
1078
1079		case TS_KY_UPRI:
1080			if (priflag++)
1081				return (EINVAL);
1082			if (copyout(&tsprmsp->ts_upri,
1083			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1084				return (EFAULT);
1085			break;
1086
1087		default:
1088			return (EINVAL);
1089		}
1090	}
1091
1092	return (0);
1093}
1094
1095
1096/*
1097 * Copy all selected interactive class parameters to the user.
1098 * The parameters are specified by a key.
1099 */
1100static int
1101ia_vaparmsout(void *prmsp, pc_vaparms_t *vaparmsp)
1102{
1103	iaparms_t	*iaprmsp = (iaparms_t *)prmsp;
1104	int		priflag = 0;
1105	int		limflag = 0;
1106	int		mflag = 0;
1107	uint_t		cnt;
1108	pc_vaparm_t	*vpp = &vaparmsp->pc_parms[0];
1109
1110	ASSERT(MUTEX_NOT_HELD(&curproc->p_lock));
1111
1112	if (vaparmsp->pc_vaparmscnt > PC_VAPARMCNT)
1113		return (EINVAL);
1114
1115	for (cnt = 0; cnt < vaparmsp->pc_vaparmscnt; cnt++, vpp++) {
1116
1117		switch (vpp->pc_key) {
1118		case IA_KY_UPRILIM:
1119			if (limflag++)
1120				return (EINVAL);
1121			if (copyout(&iaprmsp->ia_uprilim,
1122			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1123				return (EFAULT);
1124			break;
1125
1126		case IA_KY_UPRI:
1127			if (priflag++)
1128				return (EINVAL);
1129			if (copyout(&iaprmsp->ia_upri,
1130			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (pri_t)))
1131				return (EFAULT);
1132			break;
1133
1134		case IA_KY_MODE:
1135			if (mflag++)
1136				return (EINVAL);
1137			if (copyout(&iaprmsp->ia_mode,
1138			    (caddr_t)(uintptr_t)vpp->pc_parm, sizeof (int)))
1139				return (EFAULT);
1140			break;
1141
1142		default:
1143			return (EINVAL);
1144		}
1145	}
1146	return (0);
1147}
1148
1149
1150/*
1151 * Set the scheduling parameters of the thread pointed to by tsprocp
1152 * to those specified in the buffer pointed to by tsparmsp.
1153 * ts_parmsset() is called for TS threads, and ia_parmsset() is
1154 * called for IA threads.
1155 */
1156/* ARGSUSED */
1157static int
1158ts_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1159{
1160	char		nice;
1161	pri_t		reqtsuprilim;
1162	pri_t		reqtsupri;
1163	tsparms_t	*tsparmsp = (tsparms_t *)parmsp;
1164	tsproc_t	*tspp = (tsproc_t *)tx->t_cldata;
1165
1166	ASSERT(MUTEX_HELD(&(ttoproc(tx))->p_lock));
1167
1168	if (tsparmsp->ts_uprilim == TS_NOCHANGE)
1169		reqtsuprilim = tspp->ts_uprilim;
1170	else
1171		reqtsuprilim = tsparmsp->ts_uprilim;
1172
1173	if (tsparmsp->ts_upri == TS_NOCHANGE)
1174		reqtsupri = tspp->ts_upri;
1175	else
1176		reqtsupri = tsparmsp->ts_upri;
1177
1178	/*
1179	 * Make sure the user priority doesn't exceed the upri limit.
1180	 */
1181	if (reqtsupri > reqtsuprilim)
1182		reqtsupri = reqtsuprilim;
1183
1184	/*
1185	 * Basic permissions enforced by generic kernel code
1186	 * for all classes require that a thread attempting
1187	 * to change the scheduling parameters of a target
1188	 * thread be privileged or have a real or effective
1189	 * UID matching that of the target thread. We are not
1190	 * called unless these basic permission checks have
1191	 * already passed. The time-sharing class requires in
1192	 * addition that the calling thread be privileged if it
1193	 * is attempting to raise the upri limit above its current
1194	 * value This may have been checked previously but if our
1195	 * caller passed us a non-NULL credential pointer we assume
1196	 * it hasn't and we check it here.
1197	 */
1198	if (reqpcredp != NULL &&
1199	    reqtsuprilim > tspp->ts_uprilim &&
1200	    secpolicy_setpriority(reqpcredp) != 0)
1201		return (EPERM);
1202
1203	/*
1204	 * Set ts_nice to the nice value corresponding to the user
1205	 * priority we are setting.  Note that setting the nice field
1206	 * of the parameter struct won't affect upri or nice.
1207	 */
1208	nice = NZERO - (reqtsupri * NZERO) / ts_maxupri;
1209	if (nice >= 2 * NZERO)
1210		nice = 2 * NZERO - 1;
1211
1212	thread_lock(tx);
1213
1214	tspp->ts_uprilim = reqtsuprilim;
1215	tspp->ts_upri = reqtsupri;
1216	TS_NEWUMDPRI(tspp);
1217	tspp->ts_nice = nice;
1218
1219	if ((tspp->ts_flags & TSKPRI) != 0) {
1220		thread_unlock(tx);
1221		return (0);
1222	}
1223
1224	tspp->ts_dispwait = 0;
1225	ts_change_priority(tx, tspp);
1226	thread_unlock(tx);
1227	return (0);
1228}
1229
1230
1231static int
1232ia_parmsset(kthread_t *tx, void *parmsp, id_t reqpcid, cred_t *reqpcredp)
1233{
1234	tsproc_t	*tspp = (tsproc_t *)tx->t_cldata;
1235	iaparms_t	*iaparmsp = (iaparms_t *)parmsp;
1236	proc_t		*p;
1237	pid_t		pid, pgid, sid;
1238	pid_t		on, off;
1239	struct stdata 	*stp;
1240	int		sess_held;
1241
1242	/*
1243	 * Handle user priority changes
1244	 */
1245	if (iaparmsp->ia_mode == IA_NOCHANGE)
1246		return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1247
1248	/*
1249	 * Check permissions for changing modes.
1250	 */
1251
1252	if (reqpcredp != NULL && !groupmember(IA_gid, reqpcredp) &&
1253	    secpolicy_setpriority(reqpcredp) != 0) {
1254		/*
1255		 * Silently fail in case this is just a priocntl
1256		 * call with upri and uprilim set to IA_NOCHANGE.
1257		 */
1258		return (0);
1259	}
1260
1261	ASSERT(MUTEX_HELD(&pidlock));
1262	if ((p = ttoproc(tx)) == NULL) {
1263		return (0);
1264	}
1265	ASSERT(MUTEX_HELD(&p->p_lock));
1266	if (p->p_stat == SIDL) {
1267		return (0);
1268	}
1269	pid = p->p_pid;
1270	sid = p->p_sessp->s_sid;
1271	pgid = p->p_pgrp;
1272	if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1273		/*
1274		 * session leaders must be turned on now so all processes
1275		 * in the group controlling the tty will be turned on or off.
1276		 * if the ia_mode is off for the session leader,
1277		 * ia_set_process_group will return without setting the
1278		 * processes in the group controlling the tty on.
1279		 */
1280		thread_lock(tx);
1281		tspp->ts_flags |= TSIASET;
1282		thread_unlock(tx);
1283	}
1284	mutex_enter(&p->p_sessp->s_lock);
1285	sess_held = 1;
1286	if ((pid == sid) && (p->p_sessp->s_vp != NULL) &&
1287	    ((stp = p->p_sessp->s_vp->v_stream) != NULL)) {
1288		if ((stp->sd_pgidp != NULL) && (stp->sd_sidp != NULL)) {
1289			pgid = stp->sd_pgidp->pid_id;
1290			sess_held = 0;
1291			mutex_exit(&p->p_sessp->s_lock);
1292			if (iaparmsp->ia_mode ==
1293			    IA_SET_INTERACTIVE) {
1294				off = 0;
1295				on = pgid;
1296			} else {
1297				off = pgid;
1298				on = 0;
1299			}
1300			TRACE_3(TR_FAC_IA, TR_ACTIVE_CHAIN,
1301			    "active chain:pid %d gid %d %p",
1302			    pid, pgid, p);
1303			ia_set_process_group(sid, off, on);
1304		}
1305	}
1306	if (sess_held)
1307		mutex_exit(&p->p_sessp->s_lock);
1308
1309	thread_lock(tx);
1310
1311	if (iaparmsp->ia_mode == IA_SET_INTERACTIVE) {
1312		tspp->ts_flags |= TSIASET;
1313		tspp->ts_boost = ia_boost;
1314	} else {
1315		tspp->ts_flags &= ~TSIASET;
1316		tspp->ts_boost = -ia_boost;
1317	}
1318	thread_unlock(tx);
1319
1320	return (ts_parmsset(tx, parmsp, reqpcid, reqpcredp));
1321}
1322
1323static void
1324ts_exit(kthread_t *t)
1325{
1326	tsproc_t *tspp;
1327
1328	if (CPUCAPS_ON()) {
1329		/*
1330		 * A thread could be exiting in between clock ticks,
1331		 * so we need to calculate how much CPU time it used
1332		 * since it was charged last time.
1333		 *
1334		 * CPU caps are not enforced on exiting processes - it is
1335		 * usually desirable to exit as soon as possible to free
1336		 * resources.
1337		 */
1338		thread_lock(t);
1339		tspp = (tsproc_t *)t->t_cldata;
1340		(void) cpucaps_charge(t, &tspp->ts_caps, CPUCAPS_CHARGE_ONLY);
1341		thread_unlock(t);
1342	}
1343}
1344
1345/*
1346 * Return the global scheduling priority that would be assigned
1347 * to a thread entering the time-sharing class with the ts_upri.
1348 */
1349static pri_t
1350ts_globpri(kthread_t *t)
1351{
1352	tsproc_t *tspp;
1353	pri_t	tspri;
1354
1355	ASSERT(MUTEX_HELD(&ttoproc(t)->p_lock));
1356	tspp = (tsproc_t *)t->t_cldata;
1357	tspri = tsmedumdpri + tspp->ts_upri;
1358	if (tspri > ts_maxumdpri)
1359		tspri = ts_maxumdpri;
1360	else if (tspri < 0)
1361		tspri = 0;
1362	return (ts_dptbl[tspri].ts_globpri);
1363}
1364
1365/*
1366 * Arrange for thread to be placed in appropriate location
1367 * on dispatcher queue.
1368 *
1369 * This is called with the current thread in TS_ONPROC and locked.
1370 */
1371static void
1372ts_preempt(kthread_t *t)
1373{
1374	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1375	klwp_t		*lwp = curthread->t_lwp;
1376	pri_t		oldpri = t->t_pri;
1377
1378	ASSERT(t == curthread);
1379	ASSERT(THREAD_LOCK_HELD(curthread));
1380
1381	/*
1382	 * If preempted in the kernel, make sure the thread has
1383	 * a kernel priority if needed.
1384	 */
1385	if (!(tspp->ts_flags & TSKPRI) && lwp != NULL && t->t_kpri_req) {
1386		tspp->ts_flags |= TSKPRI;
1387		THREAD_CHANGE_PRI(t, ts_kmdpris[0]);
1388		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1389		t->t_trapret = 1;		/* so ts_trapret will run */
1390		aston(t);
1391	}
1392
1393	/*
1394	 * This thread may be placed on wait queue by CPU Caps. In this case we
1395	 * do not need to do anything until it is removed from the wait queue.
1396	 * Do not enforce CPU caps on threads running at a kernel priority
1397	 */
1398	if (CPUCAPS_ON()) {
1399		(void) cpucaps_charge(t, &tspp->ts_caps,
1400		    CPUCAPS_CHARGE_ENFORCE);
1401		if (!(tspp->ts_flags & TSKPRI) && CPUCAPS_ENFORCE(t))
1402			return;
1403	}
1404
1405	/*
1406	 * If thread got preempted in the user-land then we know
1407	 * it isn't holding any locks.  Mark it as swappable.
1408	 */
1409	ASSERT(t->t_schedflag & TS_DONT_SWAP);
1410	if (lwp != NULL && lwp->lwp_state == LWP_USER)
1411		t->t_schedflag &= ~TS_DONT_SWAP;
1412
1413	/*
1414	 * Check to see if we're doing "preemption control" here.  If
1415	 * we are, and if the user has requested that this thread not
1416	 * be preempted, and if preemptions haven't been put off for
1417	 * too long, let the preemption happen here but try to make
1418	 * sure the thread is rescheduled as soon as possible.  We do
1419	 * this by putting it on the front of the highest priority run
1420	 * queue in the TS class.  If the preemption has been put off
1421	 * for too long, clear the "nopreempt" bit and let the thread
1422	 * be preempted.
1423	 */
1424	if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1425		if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1426			DTRACE_SCHED1(schedctl__nopreempt, kthread_t *, t);
1427			if (!(tspp->ts_flags & TSKPRI)) {
1428				/*
1429				 * If not already remembered, remember current
1430				 * priority for restoration in ts_yield().
1431				 */
1432				if (!(tspp->ts_flags & TSRESTORE)) {
1433					tspp->ts_scpri = t->t_pri;
1434					tspp->ts_flags |= TSRESTORE;
1435				}
1436				THREAD_CHANGE_PRI(t, ts_maxumdpri);
1437				t->t_schedflag |= TS_DONT_SWAP;
1438			}
1439			schedctl_set_yield(t, 1);
1440			setfrontdq(t);
1441			goto done;
1442		} else {
1443			if (tspp->ts_flags & TSRESTORE) {
1444				THREAD_CHANGE_PRI(t, tspp->ts_scpri);
1445				tspp->ts_flags &= ~TSRESTORE;
1446			}
1447			schedctl_set_nopreempt(t, 0);
1448			DTRACE_SCHED1(schedctl__preempt, kthread_t *, t);
1449			TNF_PROBE_2(schedctl_preempt, "schedctl TS ts_preempt",
1450			    /* CSTYLED */, tnf_pid, pid, ttoproc(t)->p_pid,
1451			    tnf_lwpid, lwpid, t->t_tid);
1452			/*
1453			 * Fall through and be preempted below.
1454			 */
1455		}
1456	}
1457
1458	if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == TSBACKQ) {
1459		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1460		tspp->ts_dispwait = 0;
1461		tspp->ts_flags &= ~TSBACKQ;
1462		setbackdq(t);
1463	} else if ((tspp->ts_flags & (TSBACKQ|TSKPRI)) == (TSBACKQ|TSKPRI)) {
1464		tspp->ts_flags &= ~TSBACKQ;
1465		setbackdq(t);
1466	} else {
1467		setfrontdq(t);
1468	}
1469
1470done:
1471	TRACE_2(TR_FAC_DISP, TR_PREEMPT,
1472	    "preempt:tid %p old pri %d", t, oldpri);
1473}
1474
1475static void
1476ts_setrun(kthread_t *t)
1477{
1478	tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1479
1480	ASSERT(THREAD_LOCK_HELD(t));	/* t should be in transition */
1481
1482	if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1483		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1484		TS_NEWUMDPRI(tspp);
1485		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1486		tspp->ts_dispwait = 0;
1487		if ((tspp->ts_flags & TSKPRI) == 0) {
1488			THREAD_CHANGE_PRI(t,
1489			    ts_dptbl[tspp->ts_umdpri].ts_globpri);
1490			ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1491		}
1492	}
1493
1494	tspp->ts_flags &= ~TSBACKQ;
1495
1496	if (tspp->ts_flags & TSIA) {
1497		if (tspp->ts_flags & TSIASET)
1498			setfrontdq(t);
1499		else
1500			setbackdq(t);
1501	} else {
1502		if (t->t_disp_time != ddi_get_lbolt())
1503			setbackdq(t);
1504		else
1505			setfrontdq(t);
1506	}
1507}
1508
1509
1510/*
1511 * Prepare thread for sleep. We reset the thread priority so it will
1512 * run at the kernel priority level when it wakes up.
1513 */
1514static void
1515ts_sleep(kthread_t *t)
1516{
1517	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1518	int		flags;
1519	pri_t		old_pri = t->t_pri;
1520
1521	ASSERT(t == curthread);
1522	ASSERT(THREAD_LOCK_HELD(t));
1523
1524	/*
1525	 * Account for time spent on CPU before going to sleep.
1526	 */
1527	(void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
1528
1529	flags = tspp->ts_flags;
1530	if (t->t_kpri_req) {
1531		tspp->ts_flags = flags | TSKPRI;
1532		THREAD_CHANGE_PRI(t, ts_kmdpris[0]);
1533		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1534		t->t_trapret = 1;		/* so ts_trapret will run */
1535		aston(t);
1536	} else if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1537		/*
1538		 * If thread has blocked in the kernel (as opposed to
1539		 * being merely preempted), recompute the user mode priority.
1540		 */
1541		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1542		TS_NEWUMDPRI(tspp);
1543		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1544		tspp->ts_dispwait = 0;
1545
1546		THREAD_CHANGE_PRI(curthread,
1547		    ts_dptbl[tspp->ts_umdpri].ts_globpri);
1548		ASSERT(curthread->t_pri >= 0 &&
1549		    curthread->t_pri <= ts_maxglobpri);
1550		tspp->ts_flags = flags & ~TSKPRI;
1551
1552		if (DISP_MUST_SURRENDER(curthread))
1553			cpu_surrender(curthread);
1554	} else if (flags & TSKPRI) {
1555		THREAD_CHANGE_PRI(curthread,
1556		    ts_dptbl[tspp->ts_umdpri].ts_globpri);
1557		ASSERT(curthread->t_pri >= 0 &&
1558		    curthread->t_pri <= ts_maxglobpri);
1559		tspp->ts_flags = flags & ~TSKPRI;
1560
1561		if (DISP_MUST_SURRENDER(curthread))
1562			cpu_surrender(curthread);
1563	}
1564	t->t_stime = ddi_get_lbolt();		/* time stamp for the swapper */
1565	TRACE_2(TR_FAC_DISP, TR_SLEEP,
1566	    "sleep:tid %p old pri %d", t, old_pri);
1567}
1568
1569
1570/*
1571 * Return Values:
1572 *
1573 *	-1 if the thread is loaded or is not eligible to be swapped in.
1574 *
1575 *	effective priority of the specified thread based on swapout time
1576 *		and size of process (epri >= 0 , epri <= SHRT_MAX).
1577 */
1578/* ARGSUSED */
1579static pri_t
1580ts_swapin(kthread_t *t, int flags)
1581{
1582	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1583	long		epri = -1;
1584	proc_t		*pp = ttoproc(t);
1585
1586	ASSERT(THREAD_LOCK_HELD(t));
1587
1588	/*
1589	 * We know that pri_t is a short.
1590	 * Be sure not to overrun its range.
1591	 */
1592	if (t->t_state == TS_RUN && (t->t_schedflag & TS_LOAD) == 0) {
1593		time_t swapout_time;
1594
1595		swapout_time = (ddi_get_lbolt() - t->t_stime) / hz;
1596		if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)))
1597			epri = (long)DISP_PRIO(t) + swapout_time;
1598		else {
1599			/*
1600			 * Threads which have been out for a long time,
1601			 * have high user mode priority and are associated
1602			 * with a small address space are more deserving
1603			 */
1604			epri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1605			ASSERT(epri >= 0 && epri <= ts_maxumdpri);
1606			epri += swapout_time - pp->p_swrss / nz(maxpgio)/2;
1607		}
1608		/*
1609		 * Scale epri so SHRT_MAX/2 represents zero priority.
1610		 */
1611		epri += SHRT_MAX/2;
1612		if (epri < 0)
1613			epri = 0;
1614		else if (epri > SHRT_MAX)
1615			epri = SHRT_MAX;
1616	}
1617	return ((pri_t)epri);
1618}
1619
1620/*
1621 * Return Values
1622 *	-1 if the thread isn't loaded or is not eligible to be swapped out.
1623 *
1624 *	effective priority of the specified thread based on if the swapper
1625 *		is in softswap or hardswap mode.
1626 *
1627 *		Softswap:  Return a low effective priority for threads
1628 *			   sleeping for more than maxslp secs.
1629 *
1630 *		Hardswap:  Return an effective priority such that threads
1631 *			   which have been in memory for a while and are
1632 *			   associated with a small address space are swapped
1633 *			   in before others.
1634 *
1635 *		(epri >= 0 , epri <= SHRT_MAX).
1636 */
1637time_t	ts_minrun = 2;		/* XXX - t_pri becomes 59 within 2 secs */
1638time_t	ts_minslp = 2;		/* min time on sleep queue for hardswap */
1639
1640static pri_t
1641ts_swapout(kthread_t *t, int flags)
1642{
1643	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1644	long		epri = -1;
1645	proc_t		*pp = ttoproc(t);
1646	time_t		swapin_time;
1647
1648	ASSERT(THREAD_LOCK_HELD(t));
1649
1650	if (INHERITED(t) || (tspp->ts_flags & (TSKPRI | TSIASET)) ||
1651	    (t->t_proc_flag & TP_LWPEXIT) ||
1652	    (t->t_state & (TS_ZOMB | TS_FREE | TS_STOPPED |
1653	    TS_ONPROC | TS_WAIT)) ||
1654	    !(t->t_schedflag & TS_LOAD) || !SWAP_OK(t))
1655		return (-1);
1656
1657	ASSERT(t->t_state & (TS_SLEEP | TS_RUN));
1658
1659	/*
1660	 * We know that pri_t is a short.
1661	 * Be sure not to overrun its range.
1662	 */
1663	swapin_time = (ddi_get_lbolt() - t->t_stime) / hz;
1664	if (flags == SOFTSWAP) {
1665		if (t->t_state == TS_SLEEP && swapin_time > maxslp) {
1666			epri = 0;
1667		} else {
1668			return ((pri_t)epri);
1669		}
1670	} else {
1671		pri_t pri;
1672
1673		if ((t->t_state == TS_SLEEP && swapin_time > ts_minslp) ||
1674		    (t->t_state == TS_RUN && swapin_time > ts_minrun)) {
1675			pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1676			ASSERT(pri >= 0 && pri <= ts_maxumdpri);
1677			epri = swapin_time -
1678			    (rm_asrss(pp->p_as) / nz(maxpgio)/2) - (long)pri;
1679		} else {
1680			return ((pri_t)epri);
1681		}
1682	}
1683
1684	/*
1685	 * Scale epri so SHRT_MAX/2 represents zero priority.
1686	 */
1687	epri += SHRT_MAX/2;
1688	if (epri < 0)
1689		epri = 0;
1690	else if (epri > SHRT_MAX)
1691		epri = SHRT_MAX;
1692
1693	return ((pri_t)epri);
1694}
1695
1696/*
1697 * Check for time slice expiration.  If time slice has expired
1698 * move thread to priority specified in tsdptbl for time slice expiration
1699 * and set runrun to cause preemption.
1700 */
1701static void
1702ts_tick(kthread_t *t)
1703{
1704	tsproc_t *tspp = (tsproc_t *)(t->t_cldata);
1705	klwp_t *lwp;
1706	boolean_t call_cpu_surrender = B_FALSE;
1707	pri_t	oldpri = t->t_pri;
1708
1709	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
1710
1711	thread_lock(t);
1712
1713	/*
1714	 * Keep track of thread's project CPU usage.  Note that projects
1715	 * get charged even when threads are running in the kernel.
1716	 */
1717	if (CPUCAPS_ON()) {
1718		call_cpu_surrender = cpucaps_charge(t, &tspp->ts_caps,
1719		    CPUCAPS_CHARGE_ENFORCE) && !(tspp->ts_flags & TSKPRI);
1720	}
1721
1722	if ((tspp->ts_flags & TSKPRI) == 0) {
1723		if (--tspp->ts_timeleft <= 0) {
1724			pri_t	new_pri;
1725
1726			/*
1727			 * If we're doing preemption control and trying to
1728			 * avoid preempting this thread, just note that
1729			 * the thread should yield soon and let it keep
1730			 * running (unless it's been a while).
1731			 */
1732			if (t->t_schedctl && schedctl_get_nopreempt(t)) {
1733				if (tspp->ts_timeleft > -SC_MAX_TICKS) {
1734					DTRACE_SCHED1(schedctl__nopreempt,
1735					    kthread_t *, t);
1736					schedctl_set_yield(t, 1);
1737					thread_unlock_nopreempt(t);
1738					return;
1739				}
1740
1741				TNF_PROBE_2(schedctl_failsafe,
1742				    "schedctl TS ts_tick", /* CSTYLED */,
1743				    tnf_pid, pid, ttoproc(t)->p_pid,
1744				    tnf_lwpid, lwpid, t->t_tid);
1745			}
1746			tspp->ts_flags &= ~TSRESTORE;
1747			tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
1748			TS_NEWUMDPRI(tspp);
1749			tspp->ts_dispwait = 0;
1750			new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
1751			ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
1752			/*
1753			 * When the priority of a thread is changed,
1754			 * it may be necessary to adjust its position
1755			 * on a sleep queue or dispatch queue.
1756			 * The function thread_change_pri accomplishes
1757			 * this.
1758			 */
1759			if (thread_change_pri(t, new_pri, 0)) {
1760				if ((t->t_schedflag & TS_LOAD) &&
1761				    (lwp = t->t_lwp) &&
1762				    lwp->lwp_state == LWP_USER)
1763					t->t_schedflag &= ~TS_DONT_SWAP;
1764				tspp->ts_timeleft =
1765				    ts_dptbl[tspp->ts_cpupri].ts_quantum;
1766			} else {
1767				call_cpu_surrender = B_TRUE;
1768			}
1769			TRACE_2(TR_FAC_DISP, TR_TICK,
1770			    "tick:tid %p old pri %d", t, oldpri);
1771		} else if (t->t_state == TS_ONPROC &&
1772		    t->t_pri < t->t_disp_queue->disp_maxrunpri) {
1773			call_cpu_surrender = B_TRUE;
1774		}
1775	}
1776
1777	if (call_cpu_surrender) {
1778		tspp->ts_flags |= TSBACKQ;
1779		cpu_surrender(t);
1780	}
1781
1782	thread_unlock_nopreempt(t);	/* clock thread can't be preempted */
1783}
1784
1785
1786/*
1787 * If thread is currently at a kernel mode priority (has slept)
1788 * we assign it the appropriate user mode priority and time quantum
1789 * here.  If we are lowering the thread's priority below that of
1790 * other runnable threads we will normally set runrun via cpu_surrender() to
1791 * cause preemption.
1792 */
1793static void
1794ts_trapret(kthread_t *t)
1795{
1796	tsproc_t	*tspp = (tsproc_t *)t->t_cldata;
1797	cpu_t		*cp = CPU;
1798	pri_t		old_pri = curthread->t_pri;
1799
1800	ASSERT(THREAD_LOCK_HELD(t));
1801	ASSERT(t == curthread);
1802	ASSERT(cp->cpu_dispthread == t);
1803	ASSERT(t->t_state == TS_ONPROC);
1804
1805	t->t_kpri_req = 0;
1806	if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
1807		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
1808		TS_NEWUMDPRI(tspp);
1809		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
1810		tspp->ts_dispwait = 0;
1811
1812		/*
1813		 * If thread has blocked in the kernel (as opposed to
1814		 * being merely preempted), recompute the user mode priority.
1815		 */
1816		THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1817		cp->cpu_dispatch_pri = DISP_PRIO(t);
1818		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1819		tspp->ts_flags &= ~TSKPRI;
1820
1821		if (DISP_MUST_SURRENDER(t))
1822			cpu_surrender(t);
1823	} else if (tspp->ts_flags & TSKPRI) {
1824		/*
1825		 * If thread has blocked in the kernel (as opposed to
1826		 * being merely preempted), recompute the user mode priority.
1827		 */
1828		THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
1829		cp->cpu_dispatch_pri = DISP_PRIO(t);
1830		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
1831		tspp->ts_flags &= ~TSKPRI;
1832
1833		if (DISP_MUST_SURRENDER(t))
1834			cpu_surrender(t);
1835	}
1836
1837	/*
1838	 * Swapout lwp if the swapper is waiting for this thread to
1839	 * reach a safe point.
1840	 */
1841	if ((t->t_schedflag & TS_SWAPENQ) && !(tspp->ts_flags & TSIASET)) {
1842		thread_unlock(t);
1843		swapout_lwp(ttolwp(t));
1844		thread_lock(t);
1845	}
1846
1847	TRACE_2(TR_FAC_DISP, TR_TRAPRET,
1848	    "trapret:tid %p old pri %d", t, old_pri);
1849}
1850
1851
1852/*
1853 * Update the ts_dispwait values of all time sharing threads that
1854 * are currently runnable at a user mode priority and bump the priority
1855 * if ts_dispwait exceeds ts_maxwait.  Called once per second via
1856 * timeout which we reset here.
1857 *
1858 * There are several lists of time sharing threads broken up by a hash on
1859 * the thread pointer.  Each list has its own lock.  This avoids blocking
1860 * all ts_enterclass, ts_fork, and ts_exitclass operations while ts_update
1861 * runs.  ts_update traverses each list in turn.
1862 *
1863 * If multiple threads have their priorities updated to the same value,
1864 * the system implicitly favors the one that is updated first (since it
1865 * winds up first on the run queue).  To avoid this unfairness, the
1866 * traversal of threads starts at the list indicated by a marker.  When
1867 * threads in more than one list have their priorities updated, the marker
1868 * is moved.  This changes the order the threads will be placed on the run
1869 * queue the next time ts_update is called and preserves fairness over the
1870 * long run.  The marker doesn't need to be protected by a lock since it's
1871 * only accessed by ts_update, which is inherently single-threaded (only
1872 * one instance can be running at a time).
1873 */
1874static void
1875ts_update(void *arg)
1876{
1877	int		i;
1878	int		new_marker = -1;
1879	static int	ts_update_marker;
1880
1881	/*
1882	 * Start with the ts_update_marker list, then do the rest.
1883	 */
1884	i = ts_update_marker;
1885	do {
1886		/*
1887		 * If this is the first list after the current marker to
1888		 * have threads with priorities updated, advance the marker
1889		 * to this list for the next time ts_update runs.
1890		 */
1891		if (ts_update_list(i) && new_marker == -1 &&
1892		    i != ts_update_marker) {
1893			new_marker = i;
1894		}
1895	} while ((i = TS_LIST_NEXT(i)) != ts_update_marker);
1896
1897	/* advance marker for next ts_update call */
1898	if (new_marker != -1)
1899		ts_update_marker = new_marker;
1900
1901	(void) timeout(ts_update, arg, hz);
1902}
1903
1904/*
1905 * Updates priority for a list of threads.  Returns 1 if the priority of
1906 * one of the threads was actually updated, 0 if none were for various
1907 * reasons (thread is no longer in the TS or IA class, isn't runnable,
1908 * hasn't waited long enough, has the preemption control no-preempt bit
1909 * set, etc.)
1910 */
1911static int
1912ts_update_list(int i)
1913{
1914	tsproc_t *tspp;
1915	kthread_t *tx;
1916	int updated = 0;
1917
1918	mutex_enter(&ts_list_lock[i]);
1919	for (tspp = ts_plisthead[i].ts_next; tspp != &ts_plisthead[i];
1920	    tspp = tspp->ts_next) {
1921		tx = tspp->ts_tp;
1922		/*
1923		 * Lock the thread and verify state.
1924		 */
1925		thread_lock(tx);
1926		/*
1927		 * Skip the thread if it is no longer in the TS (or IA) class.
1928		 */
1929		if (tx->t_clfuncs != &ts_classfuncs.thread &&
1930		    tx->t_clfuncs != &ia_classfuncs.thread)
1931			goto next;
1932		tspp->ts_dispwait++;
1933		if ((tspp->ts_flags & TSKPRI) != 0)
1934			goto next;
1935		if (tspp->ts_dispwait <= ts_dptbl[tspp->ts_umdpri].ts_maxwait)
1936			goto next;
1937		if (tx->t_schedctl && schedctl_get_nopreempt(tx))
1938			goto next;
1939		if (tx->t_state != TS_RUN && tx->t_state != TS_WAIT &&
1940		    (tx->t_state != TS_SLEEP || !ts_sleep_promote)) {
1941			/* make next syscall/trap do CL_TRAPRET */
1942			tx->t_trapret = 1;
1943			aston(tx);
1944			goto next;
1945		}
1946		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_lwait;
1947		TS_NEWUMDPRI(tspp);
1948		tspp->ts_dispwait = 0;
1949		updated = 1;
1950
1951		/*
1952		 * Only dequeue it if needs to move; otherwise it should
1953		 * just round-robin here.
1954		 */
1955		if (tx->t_pri != ts_dptbl[tspp->ts_umdpri].ts_globpri) {
1956			pri_t oldpri = tx->t_pri;
1957			ts_change_priority(tx, tspp);
1958			TRACE_2(TR_FAC_DISP, TR_UPDATE,
1959			    "update:tid %p old pri %d", tx, oldpri);
1960		}
1961next:
1962		thread_unlock(tx);
1963	}
1964	mutex_exit(&ts_list_lock[i]);
1965
1966	return (updated);
1967}
1968
1969/*
1970 * Processes waking up go to the back of their queue.  We don't
1971 * need to assign a time quantum here because thread is still
1972 * at a kernel mode priority and the time slicing is not done
1973 * for threads running in the kernel after sleeping.  The proper
1974 * time quantum will be assigned by ts_trapret before the thread
1975 * returns to user mode.
1976 */
1977static void
1978ts_wakeup(kthread_t *t)
1979{
1980	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
1981
1982	ASSERT(THREAD_LOCK_HELD(t));
1983
1984	t->t_stime = ddi_get_lbolt();		/* time stamp for the swapper */
1985
1986	if (tspp->ts_flags & TSKPRI) {
1987		tspp->ts_flags &= ~TSBACKQ;
1988		if (tspp->ts_flags & TSIASET)
1989			setfrontdq(t);
1990		else
1991			setbackdq(t);
1992	} else if (t->t_kpri_req) {
1993		/*
1994		 * Give thread a priority boost if we were asked.
1995		 */
1996		tspp->ts_flags |= TSKPRI;
1997		THREAD_CHANGE_PRI(t, ts_kmdpris[0]);
1998		setbackdq(t);
1999		t->t_trapret = 1;	/* so that ts_trapret will run */
2000		aston(t);
2001	} else {
2002		if (tspp->ts_dispwait > ts_dptbl[tspp->ts_umdpri].ts_maxwait) {
2003			tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_slpret;
2004			TS_NEWUMDPRI(tspp);
2005			tspp->ts_timeleft =
2006			    ts_dptbl[tspp->ts_cpupri].ts_quantum;
2007			tspp->ts_dispwait = 0;
2008			THREAD_CHANGE_PRI(t,
2009			    ts_dptbl[tspp->ts_umdpri].ts_globpri);
2010			ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
2011		}
2012
2013		tspp->ts_flags &= ~TSBACKQ;
2014
2015		if (tspp->ts_flags & TSIA) {
2016			if (tspp->ts_flags & TSIASET)
2017				setfrontdq(t);
2018			else
2019				setbackdq(t);
2020		} else {
2021			if (t->t_disp_time != ddi_get_lbolt())
2022				setbackdq(t);
2023			else
2024				setfrontdq(t);
2025		}
2026	}
2027}
2028
2029
2030/*
2031 * When a thread yields, put it on the back of the run queue.
2032 */
2033static void
2034ts_yield(kthread_t *t)
2035{
2036	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
2037
2038	ASSERT(t == curthread);
2039	ASSERT(THREAD_LOCK_HELD(t));
2040
2041	/*
2042	 * Collect CPU usage spent before yielding
2043	 */
2044	(void) CPUCAPS_CHARGE(t, &tspp->ts_caps, CPUCAPS_CHARGE_ENFORCE);
2045
2046	/*
2047	 * Clear the preemption control "yield" bit since the user is
2048	 * doing a yield.
2049	 */
2050	if (t->t_schedctl)
2051		schedctl_set_yield(t, 0);
2052	/*
2053	 * If ts_preempt() artifically increased the thread's priority
2054	 * to avoid preemption, restore the original priority now.
2055	 */
2056	if (tspp->ts_flags & TSRESTORE) {
2057		THREAD_CHANGE_PRI(t, tspp->ts_scpri);
2058		tspp->ts_flags &= ~TSRESTORE;
2059	}
2060	if (tspp->ts_timeleft <= 0) {
2061		/*
2062		 * Time slice was artificially extended to avoid
2063		 * preemption, so pretend we're preempting it now.
2064		 */
2065		DTRACE_SCHED1(schedctl__yield, int, -tspp->ts_timeleft);
2066		tspp->ts_cpupri = ts_dptbl[tspp->ts_cpupri].ts_tqexp;
2067		TS_NEWUMDPRI(tspp);
2068		tspp->ts_timeleft = ts_dptbl[tspp->ts_cpupri].ts_quantum;
2069		tspp->ts_dispwait = 0;
2070		THREAD_CHANGE_PRI(t, ts_dptbl[tspp->ts_umdpri].ts_globpri);
2071		ASSERT(t->t_pri >= 0 && t->t_pri <= ts_maxglobpri);
2072	}
2073	tspp->ts_flags &= ~TSBACKQ;
2074	setbackdq(t);
2075}
2076
2077
2078/*
2079 * Increment the nice value of the specified thread by incr and
2080 * return the new value in *retvalp.
2081 */
2082static int
2083ts_donice(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2084{
2085	int		newnice;
2086	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
2087	tsparms_t	tsparms;
2088
2089	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2090
2091	/* If there's no change to priority, just return current setting */
2092	if (incr == 0) {
2093		if (retvalp) {
2094			*retvalp = tspp->ts_nice - NZERO;
2095		}
2096		return (0);
2097	}
2098
2099	if ((incr < 0 || incr > 2 * NZERO) &&
2100	    secpolicy_setpriority(cr) != 0)
2101		return (EPERM);
2102
2103	/*
2104	 * Specifying a nice increment greater than the upper limit of
2105	 * 2 * NZERO - 1 will result in the thread's nice value being
2106	 * set to the upper limit.  We check for this before computing
2107	 * the new value because otherwise we could get overflow
2108	 * if a privileged process specified some ridiculous increment.
2109	 */
2110	if (incr > 2 * NZERO - 1)
2111		incr = 2 * NZERO - 1;
2112
2113	newnice = tspp->ts_nice + incr;
2114	if (newnice >= 2 * NZERO)
2115		newnice = 2 * NZERO - 1;
2116	else if (newnice < 0)
2117		newnice = 0;
2118
2119	tsparms.ts_uprilim = tsparms.ts_upri =
2120	    -((newnice - NZERO) * ts_maxupri) / NZERO;
2121	/*
2122	 * Reset the uprilim and upri values of the thread.
2123	 * Call ts_parmsset even if thread is interactive since we're
2124	 * not changing mode.
2125	 */
2126	(void) ts_parmsset(t, (void *)&tsparms, (id_t)0, (cred_t *)NULL);
2127
2128	/*
2129	 * Although ts_parmsset already reset ts_nice it may
2130	 * not have been set to precisely the value calculated above
2131	 * because ts_parmsset determines the nice value from the
2132	 * user priority and we may have truncated during the integer
2133	 * conversion from nice value to user priority and back.
2134	 * We reset ts_nice to the value we calculated above.
2135	 */
2136	tspp->ts_nice = (char)newnice;
2137
2138	if (retvalp)
2139		*retvalp = newnice - NZERO;
2140	return (0);
2141}
2142
2143/*
2144 * Increment the priority of the specified thread by incr and
2145 * return the new value in *retvalp.
2146 */
2147static int
2148ts_doprio(kthread_t *t, cred_t *cr, int incr, int *retvalp)
2149{
2150	int		newpri;
2151	tsproc_t	*tspp = (tsproc_t *)(t->t_cldata);
2152	tsparms_t	tsparms;
2153
2154	ASSERT(MUTEX_HELD(&(ttoproc(t))->p_lock));
2155
2156	/* If there's no change to the priority, just return current setting */
2157	if (incr == 0) {
2158		*retvalp = tspp->ts_upri;
2159		return (0);
2160	}
2161
2162	newpri = tspp->ts_upri + incr;
2163	if (newpri > ts_maxupri || newpri < -ts_maxupri)
2164		return (EINVAL);
2165
2166	*retvalp = newpri;
2167	tsparms.ts_uprilim = tsparms.ts_upri = newpri;
2168	/*
2169	 * Reset the uprilim and upri values of the thread.
2170	 * Call ts_parmsset even if thread is interactive since we're
2171	 * not changing mode.
2172	 */
2173	return (ts_parmsset(t, &tsparms, 0, cr));
2174}
2175
2176/*
2177 * ia_set_process_group marks foreground processes as interactive
2178 * and background processes as non-interactive iff the session
2179 * leader is interactive.  This routine is called from two places:
2180 *	strioctl:SPGRP when a new process group gets
2181 * 		control of the tty.
2182 *	ia_parmsset-when the process in question is a session leader.
2183 * ia_set_process_group assumes that pidlock is held by the caller,
2184 * either strioctl or priocntlsys.  If the caller is priocntlsys
2185 * (via ia_parmsset) then the p_lock of the session leader is held
2186 * and the code needs to be careful about acquiring other p_locks.
2187 */
2188static void
2189ia_set_process_group(pid_t sid, pid_t bg_pgid, pid_t fg_pgid)
2190{
2191	proc_t 		*leader, *fg, *bg;
2192	tsproc_t	*tspp;
2193	kthread_t	*tx;
2194	int		plocked = 0;
2195
2196	ASSERT(MUTEX_HELD(&pidlock));
2197
2198	/*
2199	 * see if the session leader is interactive AND
2200	 * if it is currently "on" AND controlling a tty
2201	 * iff it is then make the processes in the foreground
2202	 * group interactive and the processes in the background
2203	 * group non-interactive.
2204	 */
2205	if ((leader = (proc_t *)prfind(sid)) == NULL) {
2206		return;
2207	}
2208	if (leader->p_stat == SIDL) {
2209		return;
2210	}
2211	if ((tx = proctot(leader)) == NULL) {
2212		return;
2213	}
2214	/*
2215	 * XXX do all the threads in the leader
2216	 */
2217	if (tx->t_cid != ia_cid) {
2218		return;
2219	}
2220	tspp = tx->t_cldata;
2221	/*
2222	 * session leaders that are not interactive need not have
2223	 * any processing done for them.  They are typically shells
2224	 * that do not have focus and are changing the process group
2225	 * attatched to the tty, e.g. a process that is exiting
2226	 */
2227	mutex_enter(&leader->p_sessp->s_lock);
2228	if (!(tspp->ts_flags & TSIASET) ||
2229	    (leader->p_sessp->s_vp == NULL) ||
2230	    (leader->p_sessp->s_vp->v_stream == NULL)) {
2231		mutex_exit(&leader->p_sessp->s_lock);
2232		return;
2233	}
2234	mutex_exit(&leader->p_sessp->s_lock);
2235
2236	/*
2237	 * If we're already holding the leader's p_lock, we should use
2238	 * mutex_tryenter instead of mutex_enter to avoid deadlocks from
2239	 * lock ordering violations.
2240	 */
2241	if (mutex_owned(&leader->p_lock))
2242		plocked = 1;
2243
2244	if (fg_pgid == 0)
2245		goto skip;
2246	/*
2247	 * now look for all processes in the foreground group and
2248	 * make them interactive
2249	 */
2250	for (fg = (proc_t *)pgfind(fg_pgid); fg != NULL; fg = fg->p_pglink) {
2251		/*
2252		 * if the process is SIDL it's begin forked, ignore it
2253		 */
2254		if (fg->p_stat == SIDL) {
2255			continue;
2256		}
2257		/*
2258		 * sesssion leaders must be turned on/off explicitly
2259		 * not implicitly as happens to other members of
2260		 * the process group.
2261		 */
2262		if (fg->p_pid  == fg->p_sessp->s_sid) {
2263			continue;
2264		}
2265
2266		TRACE_1(TR_FAC_IA, TR_GROUP_ON,
2267		    "group on:proc %p", fg);
2268
2269		if (plocked) {
2270			if (mutex_tryenter(&fg->p_lock) == 0)
2271				continue;
2272		} else {
2273			mutex_enter(&fg->p_lock);
2274		}
2275
2276		if ((tx = proctot(fg)) == NULL) {
2277			mutex_exit(&fg->p_lock);
2278			continue;
2279		}
2280		do {
2281			thread_lock(tx);
2282			/*
2283			 * if this thread is not interactive continue
2284			 */
2285			if (tx->t_cid != ia_cid) {
2286				thread_unlock(tx);
2287				continue;
2288			}
2289			tspp = tx->t_cldata;
2290			tspp->ts_flags |= TSIASET;
2291			tspp->ts_boost = ia_boost;
2292			TS_NEWUMDPRI(tspp);
2293			if ((tspp->ts_flags & TSKPRI) != 0) {
2294				thread_unlock(tx);
2295				continue;
2296			}
2297			tspp->ts_dispwait = 0;
2298			ts_change_priority(tx, tspp);
2299			thread_unlock(tx);
2300		} while ((tx = tx->t_forw) != fg->p_tlist);
2301		mutex_exit(&fg->p_lock);
2302	}
2303skip:
2304	if (bg_pgid == 0)
2305		return;
2306	for (bg = (proc_t *)pgfind(bg_pgid); bg != NULL; bg = bg->p_pglink) {
2307		if (bg->p_stat == SIDL) {
2308			continue;
2309		}
2310		/*
2311		 * sesssion leaders must be turned off explicitly
2312		 * not implicitly as happens to other members of
2313		 * the process group.
2314		 */
2315		if (bg->p_pid == bg->p_sessp->s_sid) {
2316			continue;
2317		}
2318
2319		TRACE_1(TR_FAC_IA, TR_GROUP_OFF,
2320		    "group off:proc %p", bg);
2321
2322		if (plocked) {
2323			if (mutex_tryenter(&bg->p_lock) == 0)
2324				continue;
2325		} else {
2326			mutex_enter(&bg->p_lock);
2327		}
2328
2329		if ((tx = proctot(bg)) == NULL) {
2330			mutex_exit(&bg->p_lock);
2331			continue;
2332		}
2333		do {
2334			thread_lock(tx);
2335			/*
2336			 * if this thread is not interactive continue
2337			 */
2338			if (tx->t_cid != ia_cid) {
2339				thread_unlock(tx);
2340				continue;
2341			}
2342			tspp = tx->t_cldata;
2343			tspp->ts_flags &= ~TSIASET;
2344			tspp->ts_boost = -ia_boost;
2345			TS_NEWUMDPRI(tspp);
2346			if ((tspp->ts_flags & TSKPRI) != 0) {
2347				thread_unlock(tx);
2348				continue;
2349			}
2350
2351			tspp->ts_dispwait = 0;
2352			ts_change_priority(tx, tspp);
2353			thread_unlock(tx);
2354		} while ((tx = tx->t_forw) != bg->p_tlist);
2355		mutex_exit(&bg->p_lock);
2356	}
2357}
2358
2359
2360static void
2361ts_change_priority(kthread_t *t, tsproc_t *tspp)
2362{
2363	pri_t	new_pri;
2364
2365	ASSERT(THREAD_LOCK_HELD(t));
2366	new_pri = ts_dptbl[tspp->ts_umdpri].ts_globpri;
2367	ASSERT(new_pri >= 0 && new_pri <= ts_maxglobpri);
2368	tspp->ts_flags &= ~TSRESTORE;
2369	t->t_cpri = tspp->ts_upri;
2370	if (t == curthread || t->t_state == TS_ONPROC) {
2371		/* curthread is always onproc */
2372		cpu_t	*cp = t->t_disp_queue->disp_cpu;
2373		THREAD_CHANGE_PRI(t, new_pri);
2374		if (t == cp->cpu_dispthread)
2375			cp->cpu_dispatch_pri = DISP_PRIO(t);
2376		if (DISP_MUST_SURRENDER(t)) {
2377			tspp->ts_flags |= TSBACKQ;
2378			cpu_surrender(t);
2379		} else {
2380			tspp->ts_timeleft =
2381			    ts_dptbl[tspp->ts_cpupri].ts_quantum;
2382		}
2383	} else {
2384		int	frontq;
2385
2386		frontq = (tspp->ts_flags & TSIASET) != 0;
2387		/*
2388		 * When the priority of a thread is changed,
2389		 * it may be necessary to adjust its position
2390		 * on a sleep queue or dispatch queue.
2391		 * The function thread_change_pri accomplishes
2392		 * this.
2393		 */
2394		if (thread_change_pri(t, new_pri, frontq)) {
2395			/*
2396			 * The thread was on a run queue. Reset
2397			 * its CPU timeleft from the quantum
2398			 * associated with the new priority.
2399			 */
2400			tspp->ts_timeleft =
2401			    ts_dptbl[tspp->ts_cpupri].ts_quantum;
2402		} else {
2403			tspp->ts_flags |= TSBACKQ;
2404		}
2405	}
2406}
2407
2408static int
2409ts_alloc(void **p, int flag)
2410{
2411	void *bufp;
2412	bufp = kmem_alloc(sizeof (tsproc_t), flag);
2413	if (bufp == NULL) {
2414		return (ENOMEM);
2415	} else {
2416		*p = bufp;
2417		return (0);
2418	}
2419}
2420
2421static void
2422ts_free(void *bufp)
2423{
2424	if (bufp)
2425		kmem_free(bufp, sizeof (tsproc_t));
2426}
2427