1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26#ifndef _LIBINETUTIL_H
27#define	_LIBINETUTIL_H
28
29/*
30 * Contains SMI-private API for general Internet functionality
31 */
32
33#ifdef	__cplusplus
34extern "C" {
35#endif
36
37#include <netinet/inetutil.h>
38#include <sys/types.h>
39#include <sys/socket.h>
40#include <netinet/in.h>
41#include <net/if.h>
42
43#if !defined(_KERNEL) && !defined(_BOOT)
44
45typedef struct {
46	uint_t		ifsp_ppa;	/* Physical Point of Attachment */
47	uint_t		ifsp_lun;	/* Logical Unit number */
48	boolean_t	ifsp_lunvalid;	/* TRUE if lun is valid */
49	char		ifsp_devnm[LIFNAMSIZ];	/* only the device name */
50} ifspec_t;
51
52extern boolean_t	ifparse_ifspec(const char *, ifspec_t *);
53extern void		get_netmask4(const struct in_addr *, struct in_addr *);
54extern boolean_t	sockaddrcmp(const struct sockaddr_storage *,
55			    const struct sockaddr_storage *);
56extern int		plen2mask(uint_t, sa_family_t, struct sockaddr *);
57extern int		mask2plen(const struct sockaddr *);
58extern boolean_t	sockaddrunspec(const struct sockaddr *);
59
60/*
61 * Extended version of the classic BSD ifaddrlist() interface:
62 *
63 *    int ifaddrlist(struct ifaddrlist **addrlistp, int af, uint_t flags,
64 *	             char *errbuf);
65 *
66 * 	* addrlistp: Upon success, ifaddrlist() sets *addrlistp to a
67 *	  dynamically-allocated array of addresses.
68 *
69 *	* af: Either AF_INET to obtain IPv4 addresses, or AF_INET6 to
70 *	  obtain IPv6 addresses.
71 *
72 *	* flags: LIFC_* flags that control the classes of interfaces that
73 *	  will be visible.
74 *
75 *	* errbuf: A caller-supplied buffer of ERRBUFSIZE.  Upon failure,
76 *	  provides the reason for the failure.
77 *
78 * Upon success, ifaddrlist() returns the number of addresses in the array
79 * pointed to by `addrlistp'.  If the count is 0, then `addrlistp' is NULL.
80 */
81union any_in_addr {
82	struct in6_addr	addr6;
83	struct in_addr	addr;
84};
85
86struct ifaddrlist {
87	int		index;			/* interface index */
88	union any_in_addr addr;			/* interface address */
89	char		device[LIFNAMSIZ + 1];	/* interface name */
90	uint64_t	flags;			/* interface flags */
91};
92
93#define	ERRBUFSIZE 128			/* expected size of fourth argument */
94
95extern int ifaddrlist(struct ifaddrlist **, int, uint_t, char *);
96
97/*
98 * Similar to ifaddrlist(), but returns a linked-list of addresses for a
99 * *specific* interface name, and allows specific address flags to be matched
100 * against.  A linked list is used rather than an array so that information
101 * can grow over time without affecting binary compatibility.  Also, leaves
102 * error-handling up to the caller.  Returns the number of ifaddrlistx's
103 * chained through ifaddrp.
104 *
105 *    int ifaddrlistx(const char *ifname, uint64_t set, uint64_t clear,
106 *        ifaddrlistx_t **ifaddrp);
107 *
108 *	* ifname: Interface name to match against.
109 *
110 *	* set: One or more flags that must be set on the address for
111 *	  it to be returned.
112 *
113 *	* clear: Flags that must be clear on the address for it to be
114 *	  returned.
115 *
116 * 	* ifaddrp: Upon success, ifaddrlistx() sets *ifaddrp to the head
117 *	  of a dynamically-allocated array of ifaddrlistx structures.
118 *
119 * Once done, the caller must free `ifaddrp' by calling ifaddrlistx_free().
120 */
121typedef struct ifaddrlistx {
122	struct ifaddrlistx	*ia_next;
123	char			ia_name[LIFNAMSIZ];
124	uint64_t		ia_flags;
125	struct sockaddr_storage	ia_addr;
126} ifaddrlistx_t;
127
128extern int ifaddrlistx(const char *, uint64_t, uint64_t, ifaddrlistx_t **);
129extern void ifaddrlistx_free(ifaddrlistx_t *);
130
131/*
132 * Timer queues
133 *
134 * timer queues are a facility for managing timeouts in unix.  in the
135 * event driven model, unix provides us with poll(2)/select(3C), which
136 * allow us to coordinate waiting on multiple descriptors with an
137 * optional timeout.  however, often (as is the case with the DHCP
138 * agent), we want to manage multiple independent timeouts (say, one
139 * for waiting for an OFFER to come back from a server in response to
140 * a DISCOVER sent out on one interface, and another for waiting for
141 * the T1 time on another interface).  timer queues allow us to do
142 * this in the event-driven model.
143 *
144 * note that timer queues do not in and of themselves provide the
145 * event driven model (for instance, there is no handle_events()
146 * routine).  they merely provide the hooks to support multiple
147 * independent timeouts.  this is done for both simplicity and
148 * applicability (for instance, while one approach would be to use
149 * this timer queue with poll(2), another one would be to use SIGALRM
150 * to wake up periodically, and then process all the expired timers.)
151 */
152
153typedef struct iu_timer_queue iu_tq_t;
154
155/*
156 * a iu_timer_id_t refers to a given timer.  its value should not be
157 * interpreted by the interface consumer.  it is a signed arithmetic
158 * type, and no valid iu_timer_id_t has the value `-1'.
159 */
160
161typedef int iu_timer_id_t;
162
163#define	IU_TIMER_ID_MAX	4096	/* max number of concurrent timers */
164
165/*
166 * a iu_tq_callback_t is a function that is called back in response to a
167 * timer expiring.  it may then carry out any necessary work,
168 * including rescheduling itself for callback or scheduling /
169 * cancelling other timers.  the `void *' argument is the same value
170 * that was passed into iu_schedule_timer(), and if it is dynamically
171 * allocated, it is the callback's responsibility to know that, and to
172 * free it.
173 */
174
175typedef void	iu_tq_callback_t(iu_tq_t *, void *);
176
177iu_tq_t		*iu_tq_create(void);
178void		iu_tq_destroy(iu_tq_t *);
179iu_timer_id_t	iu_schedule_timer(iu_tq_t *, uint32_t, iu_tq_callback_t *,
180		    void *);
181iu_timer_id_t	iu_schedule_timer_ms(iu_tq_t *, uint64_t, iu_tq_callback_t *,
182		    void *);
183int		iu_adjust_timer(iu_tq_t *, iu_timer_id_t, uint32_t);
184int		iu_cancel_timer(iu_tq_t *, iu_timer_id_t, void **);
185int		iu_expire_timers(iu_tq_t *);
186int		iu_earliest_timer(iu_tq_t *);
187
188/*
189 * Event Handler
190 *
191 * an event handler is an object-oriented "wrapper" for select(3C) /
192 * poll(2), aimed to make the event demultiplexing system calls easier
193 * to use and provide a generic reusable component.  instead of
194 * applications directly using select(3C) / poll(2), they register
195 * events that should be received with the event handler, providing a
196 * callback function to call when the event occurs.  they then call
197 * iu_handle_events() to wait and callback the registered functions
198 * when events occur.  also called a `reactor'.
199 */
200
201typedef struct iu_event_handler iu_eh_t;
202
203/*
204 * an iu_event_id_t refers to a given event.  its value should not be
205 * interpreted by the interface consumer.  it is a signed arithmetic
206 * type, and no valid iu_event_id_t has the value `-1'.
207 */
208
209typedef int iu_event_id_t;
210
211/*
212 * an iu_eh_callback_t is a function that is called back in response to
213 * an event occurring.  it may then carry out any work necessary in
214 * response to the event.  it receives the file descriptor upon which
215 * the event occurred, a bit array of events that occurred (the same
216 * array used as the revents by poll(2)), and its context through the
217 * `void *' that was originally passed into iu_register_event().
218 *
219 * NOTE: the same descriptor may not be registered multiple times for
220 * different callbacks.  if this behavior is desired, either use dup(2)
221 * to get a unique descriptor, or demultiplex in the callback function
222 * based on the events.
223 */
224
225typedef void	iu_eh_callback_t(iu_eh_t *, int, short, iu_event_id_t, void *);
226typedef void	iu_eh_sighandler_t(iu_eh_t *, int, void *);
227typedef boolean_t iu_eh_shutdown_t(iu_eh_t *, void *);
228
229iu_eh_t		*iu_eh_create(void);
230void		iu_eh_destroy(iu_eh_t *);
231iu_event_id_t	iu_register_event(iu_eh_t *, int, short, iu_eh_callback_t *,
232		    void *);
233int		iu_unregister_event(iu_eh_t *, iu_event_id_t, void **);
234int		iu_handle_events(iu_eh_t *, iu_tq_t *);
235void		iu_stop_handling_events(iu_eh_t *, unsigned int,
236		    iu_eh_shutdown_t *, void *);
237int		iu_eh_register_signal(iu_eh_t *, int, iu_eh_sighandler_t *,
238		    void *);
239int		iu_eh_unregister_signal(iu_eh_t *, int, void **);
240
241#endif	/* !defined(_KERNEL) && !defined(_BOOT) */
242
243#ifdef	__cplusplus
244}
245#endif
246
247#endif	/* !_LIBINETUTIL_H */
248