1/*
2 *  GRUB  --  GRand Unified Bootloader
3 *  Copyright (C) 1999,2000,2001,2002,2003,2004  Free Software Foundation, Inc.
4 *
5 *  This program is free software; you can redistribute it and/or modify
6 *  it under the terms of the GNU General Public License as published by
7 *  the Free Software Foundation; either version 2 of the License, or
8 *  (at your option) any later version.
9 *
10 *  This program is distributed in the hope that it will be useful,
11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 *  GNU General Public License for more details.
14 *
15 *  You should have received a copy of the GNU General Public License
16 *  along with this program; if not, write to the Free Software
17 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19/*
20 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
21 * Use is subject to license terms.
22 */
23
24/*
25 * The zfs plug-in routines for GRUB are:
26 *
27 * zfs_mount() - locates a valid uberblock of the root pool and reads
28 *		in its MOS at the memory address MOS.
29 *
30 * zfs_open() - locates a plain file object by following the MOS
31 *		and places its dnode at the memory address DNODE.
32 *
33 * zfs_read() - read in the data blocks pointed by the DNODE.
34 *
35 * ZFS_SCRATCH is used as a working area.
36 *
37 * (memory addr)   MOS      DNODE	ZFS_SCRATCH
38 *		    |         |          |
39 *	    +-------V---------V----------V---------------+
40 *   memory |       | dnode   | dnode    |  scratch      |
41 *	    |       | 512B    | 512B     |  area         |
42 *	    +--------------------------------------------+
43 */
44
45#ifdef	FSYS_ZFS
46
47#include "shared.h"
48#include "filesys.h"
49#include "fsys_zfs.h"
50
51/* cache for a file block of the currently zfs_open()-ed file */
52static void *file_buf = NULL;
53static uint64_t file_start = 0;
54static uint64_t file_end = 0;
55
56/* cache for a dnode block */
57static dnode_phys_t *dnode_buf = NULL;
58static dnode_phys_t *dnode_mdn = NULL;
59static uint64_t dnode_start = 0;
60static uint64_t dnode_end = 0;
61
62static uint64_t pool_guid = 0;
63static uberblock_t current_uberblock;
64static char *stackbase;
65
66decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] =
67{
68	{"inherit", 0},			/* ZIO_COMPRESS_INHERIT */
69	{"on", lzjb_decompress}, 	/* ZIO_COMPRESS_ON */
70	{"off", 0},			/* ZIO_COMPRESS_OFF */
71	{"lzjb", lzjb_decompress},	/* ZIO_COMPRESS_LZJB */
72	{"empty", 0}			/* ZIO_COMPRESS_EMPTY */
73};
74
75static int zio_read_data(blkptr_t *bp, void *buf, char *stack);
76
77/*
78 * Our own version of bcmp().
79 */
80static int
81zfs_bcmp(const void *s1, const void *s2, size_t n)
82{
83	const uchar_t *ps1 = s1;
84	const uchar_t *ps2 = s2;
85
86	if (s1 != s2 && n != 0) {
87		do {
88			if (*ps1++ != *ps2++)
89				return (1);
90		} while (--n != 0);
91	}
92
93	return (0);
94}
95
96/*
97 * Our own version of log2().  Same thing as highbit()-1.
98 */
99static int
100zfs_log2(uint64_t num)
101{
102	int i = 0;
103
104	while (num > 1) {
105		i++;
106		num = num >> 1;
107	}
108
109	return (i);
110}
111
112/* Checksum Functions */
113static void
114zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp)
115{
116	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
117}
118
119/* Checksum Table and Values */
120zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
121	NULL,			NULL,			0, 0,	"inherit",
122	NULL,			NULL,			0, 0,	"on",
123	zio_checksum_off,	zio_checksum_off,	0, 0,	"off",
124	zio_checksum_SHA256,	zio_checksum_SHA256,	1, 1,	"label",
125	zio_checksum_SHA256,	zio_checksum_SHA256,	1, 1,	"gang_header",
126	NULL,			NULL,			0, 0,	"zilog",
127	fletcher_2_native,	fletcher_2_byteswap,	0, 0,	"fletcher2",
128	fletcher_4_native,	fletcher_4_byteswap,	1, 0,	"fletcher4",
129	zio_checksum_SHA256,	zio_checksum_SHA256,	1, 0,	"SHA256",
130	NULL,			NULL,			0, 0,	"zilog2",
131};
132
133/*
134 * zio_checksum_verify: Provides support for checksum verification.
135 *
136 * Fletcher2, Fletcher4, and SHA256 are supported.
137 *
138 * Return:
139 * 	-1 = Failure
140 *	 0 = Success
141 */
142static int
143zio_checksum_verify(blkptr_t *bp, char *data, int size)
144{
145	zio_cksum_t zc = bp->blk_cksum;
146	uint32_t checksum = BP_GET_CHECKSUM(bp);
147	int byteswap = BP_SHOULD_BYTESWAP(bp);
148	zio_eck_t *zec = (zio_eck_t *)(data + size) - 1;
149	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
150	zio_cksum_t actual_cksum, expected_cksum;
151
152	/* byteswap is not supported */
153	if (byteswap)
154		return (-1);
155
156	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL)
157		return (-1);
158
159	if (ci->ci_eck) {
160		expected_cksum = zec->zec_cksum;
161		zec->zec_cksum = zc;
162		ci->ci_func[0](data, size, &actual_cksum);
163		zec->zec_cksum = expected_cksum;
164		zc = expected_cksum;
165
166	} else {
167		ci->ci_func[byteswap](data, size, &actual_cksum);
168	}
169
170	if ((actual_cksum.zc_word[0] - zc.zc_word[0]) |
171	    (actual_cksum.zc_word[1] - zc.zc_word[1]) |
172	    (actual_cksum.zc_word[2] - zc.zc_word[2]) |
173	    (actual_cksum.zc_word[3] - zc.zc_word[3]))
174		return (-1);
175
176	return (0);
177}
178
179/*
180 * vdev_label_start returns the physical disk offset (in bytes) of
181 * label "l".
182 */
183static uint64_t
184vdev_label_start(uint64_t psize, int l)
185{
186	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
187	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
188}
189
190/*
191 * vdev_uberblock_compare takes two uberblock structures and returns an integer
192 * indicating the more recent of the two.
193 * 	Return Value = 1 if ub2 is more recent
194 * 	Return Value = -1 if ub1 is more recent
195 * The most recent uberblock is determined using its transaction number and
196 * timestamp.  The uberblock with the highest transaction number is
197 * considered "newer".  If the transaction numbers of the two blocks match, the
198 * timestamps are compared to determine the "newer" of the two.
199 */
200static int
201vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
202{
203	if (ub1->ub_txg < ub2->ub_txg)
204		return (-1);
205	if (ub1->ub_txg > ub2->ub_txg)
206		return (1);
207
208	if (ub1->ub_timestamp < ub2->ub_timestamp)
209		return (-1);
210	if (ub1->ub_timestamp > ub2->ub_timestamp)
211		return (1);
212
213	return (0);
214}
215
216/*
217 * Three pieces of information are needed to verify an uberblock: the magic
218 * number, the version number, and the checksum.
219 *
220 * Currently Implemented: version number, magic number
221 * Need to Implement: checksum
222 *
223 * Return:
224 *     0 - Success
225 *    -1 - Failure
226 */
227static int
228uberblock_verify(uberblock_phys_t *ub, uint64_t offset)
229{
230
231	uberblock_t *uber = &ub->ubp_uberblock;
232	blkptr_t bp;
233
234	BP_ZERO(&bp);
235	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
236	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
237	ZIO_SET_CHECKSUM(&bp.blk_cksum, offset, 0, 0, 0);
238
239	if (zio_checksum_verify(&bp, (char *)ub, UBERBLOCK_SIZE) != 0)
240		return (-1);
241
242	if (uber->ub_magic == UBERBLOCK_MAGIC &&
243	    uber->ub_version > 0 && uber->ub_version <= SPA_VERSION)
244		return (0);
245
246	return (-1);
247}
248
249/*
250 * Find the best uberblock.
251 * Return:
252 *    Success - Pointer to the best uberblock.
253 *    Failure - NULL
254 */
255static uberblock_phys_t *
256find_bestub(uberblock_phys_t *ub_array, uint64_t sector)
257{
258	uberblock_phys_t *ubbest = NULL;
259	uint64_t offset;
260	int i;
261
262	for (i = 0; i < (VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT); i++) {
263		offset = (sector << SPA_MINBLOCKSHIFT) +
264		    VDEV_UBERBLOCK_OFFSET(i);
265		if (uberblock_verify(&ub_array[i], offset) == 0) {
266			if (ubbest == NULL) {
267				ubbest = &ub_array[i];
268			} else if (vdev_uberblock_compare(
269			    &(ub_array[i].ubp_uberblock),
270			    &(ubbest->ubp_uberblock)) > 0) {
271				ubbest = &ub_array[i];
272			}
273		}
274	}
275
276	return (ubbest);
277}
278
279/*
280 * Read a block of data based on the gang block address dva,
281 * and put its data in buf.
282 *
283 * Return:
284 *	0 - success
285 *	1 - failure
286 */
287static int
288zio_read_gang(blkptr_t *bp, dva_t *dva, void *buf, char *stack)
289{
290	zio_gbh_phys_t *zio_gb;
291	uint64_t offset, sector;
292	blkptr_t tmpbp;
293	int i;
294
295	zio_gb = (zio_gbh_phys_t *)stack;
296	stack += SPA_GANGBLOCKSIZE;
297	offset = DVA_GET_OFFSET(dva);
298	sector =  DVA_OFFSET_TO_PHYS_SECTOR(offset);
299
300	/* read in the gang block header */
301	if (devread(sector, 0, SPA_GANGBLOCKSIZE, (char *)zio_gb) == 0) {
302		grub_printf("failed to read in a gang block header\n");
303		return (1);
304	}
305
306	/* self checksuming the gang block header */
307	BP_ZERO(&tmpbp);
308	BP_SET_CHECKSUM(&tmpbp, ZIO_CHECKSUM_GANG_HEADER);
309	BP_SET_BYTEORDER(&tmpbp, ZFS_HOST_BYTEORDER);
310	ZIO_SET_CHECKSUM(&tmpbp.blk_cksum, DVA_GET_VDEV(dva),
311	    DVA_GET_OFFSET(dva), bp->blk_birth, 0);
312	if (zio_checksum_verify(&tmpbp, (char *)zio_gb, SPA_GANGBLOCKSIZE)) {
313		grub_printf("failed to checksum a gang block header\n");
314		return (1);
315	}
316
317	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
318		if (zio_gb->zg_blkptr[i].blk_birth == 0)
319			continue;
320
321		if (zio_read_data(&zio_gb->zg_blkptr[i], buf, stack))
322			return (1);
323		buf += BP_GET_PSIZE(&zio_gb->zg_blkptr[i]);
324	}
325
326	return (0);
327}
328
329/*
330 * Read in a block of raw data to buf.
331 *
332 * Return:
333 *	0 - success
334 *	1 - failure
335 */
336static int
337zio_read_data(blkptr_t *bp, void *buf, char *stack)
338{
339	int i, psize;
340
341	psize = BP_GET_PSIZE(bp);
342
343	/* pick a good dva from the block pointer */
344	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
345		uint64_t offset, sector;
346
347		if (bp->blk_dva[i].dva_word[0] == 0 &&
348		    bp->blk_dva[i].dva_word[1] == 0)
349			continue;
350
351		if (DVA_GET_GANG(&bp->blk_dva[i])) {
352			if (zio_read_gang(bp, &bp->blk_dva[i], buf, stack) == 0)
353				return (0);
354		} else {
355			/* read in a data block */
356			offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
357			sector =  DVA_OFFSET_TO_PHYS_SECTOR(offset);
358			if (devread(sector, 0, psize, buf))
359				return (0);
360		}
361	}
362
363	return (1);
364}
365
366/*
367 * Read in a block of data, verify its checksum, decompress if needed,
368 * and put the uncompressed data in buf.
369 *
370 * Return:
371 *	0 - success
372 *	errnum - failure
373 */
374static int
375zio_read(blkptr_t *bp, void *buf, char *stack)
376{
377	int lsize, psize, comp;
378	char *retbuf;
379
380	comp = BP_GET_COMPRESS(bp);
381	lsize = BP_GET_LSIZE(bp);
382	psize = BP_GET_PSIZE(bp);
383
384	if ((unsigned int)comp >= ZIO_COMPRESS_FUNCTIONS ||
385	    (comp != ZIO_COMPRESS_OFF &&
386	    decomp_table[comp].decomp_func == NULL)) {
387		grub_printf("compression algorithm not supported\n");
388		return (ERR_FSYS_CORRUPT);
389	}
390
391	if ((char *)buf < stack && ((char *)buf) + lsize > stack) {
392		grub_printf("not enough memory allocated\n");
393		return (ERR_WONT_FIT);
394	}
395
396	retbuf = buf;
397	if (comp != ZIO_COMPRESS_OFF) {
398		buf = stack;
399		stack += psize;
400	}
401
402	if (zio_read_data(bp, buf, stack)) {
403		grub_printf("zio_read_data failed\n");
404		return (ERR_FSYS_CORRUPT);
405	}
406
407	if (zio_checksum_verify(bp, buf, psize) != 0) {
408		grub_printf("checksum verification failed\n");
409		return (ERR_FSYS_CORRUPT);
410	}
411
412	if (comp != ZIO_COMPRESS_OFF)
413		decomp_table[comp].decomp_func(buf, retbuf, psize, lsize);
414
415	return (0);
416}
417
418/*
419 * Get the block from a block id.
420 * push the block onto the stack.
421 *
422 * Return:
423 * 	0 - success
424 * 	errnum - failure
425 */
426static int
427dmu_read(dnode_phys_t *dn, uint64_t blkid, void *buf, char *stack)
428{
429	int idx, level;
430	blkptr_t *bp_array = dn->dn_blkptr;
431	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
432	blkptr_t *bp, *tmpbuf;
433
434	bp = (blkptr_t *)stack;
435	stack += sizeof (blkptr_t);
436
437	tmpbuf = (blkptr_t *)stack;
438	stack += 1<<dn->dn_indblkshift;
439
440	for (level = dn->dn_nlevels - 1; level >= 0; level--) {
441		idx = (blkid >> (epbs * level)) & ((1<<epbs)-1);
442		*bp = bp_array[idx];
443		if (level == 0)
444			tmpbuf = buf;
445		if (BP_IS_HOLE(bp)) {
446			grub_memset(buf, 0,
447			    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
448			break;
449		} else if (errnum = zio_read(bp, tmpbuf, stack)) {
450			return (errnum);
451		}
452
453		bp_array = tmpbuf;
454	}
455
456	return (0);
457}
458
459/*
460 * mzap_lookup: Looks up property described by "name" and returns the value
461 * in "value".
462 *
463 * Return:
464 *	0 - success
465 *	errnum - failure
466 */
467static int
468mzap_lookup(mzap_phys_t *zapobj, int objsize, char *name,
469	uint64_t *value)
470{
471	int i, chunks;
472	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
473
474	chunks = objsize/MZAP_ENT_LEN - 1;
475	for (i = 0; i < chunks; i++) {
476		if (grub_strcmp(mzap_ent[i].mze_name, name) == 0) {
477			*value = mzap_ent[i].mze_value;
478			return (0);
479		}
480	}
481
482	return (ERR_FSYS_CORRUPT);
483}
484
485static uint64_t
486zap_hash(uint64_t salt, const char *name)
487{
488	static uint64_t table[256];
489	const uint8_t *cp;
490	uint8_t c;
491	uint64_t crc = salt;
492
493	if (table[128] == 0) {
494		uint64_t *ct;
495		int i, j;
496		for (i = 0; i < 256; i++) {
497			for (ct = table + i, *ct = i, j = 8; j > 0; j--)
498				*ct = (*ct >> 1) ^ (-(*ct & 1) &
499				    ZFS_CRC64_POLY);
500		}
501	}
502
503	if (crc == 0 || table[128] != ZFS_CRC64_POLY) {
504		errnum = ERR_FSYS_CORRUPT;
505		return (0);
506	}
507
508	for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++)
509		crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
510
511	/*
512	 * Only use 28 bits, since we need 4 bits in the cookie for the
513	 * collision differentiator.  We MUST use the high bits, since
514	 * those are the onces that we first pay attention to when
515	 * chosing the bucket.
516	 */
517	crc &= ~((1ULL << (64 - 28)) - 1);
518
519	return (crc);
520}
521
522/*
523 * Only to be used on 8-bit arrays.
524 * array_len is actual len in bytes (not encoded le_value_length).
525 * buf is null-terminated.
526 */
527static int
528zap_leaf_array_equal(zap_leaf_phys_t *l, int blksft, int chunk,
529    int array_len, const char *buf)
530{
531	int bseen = 0;
532
533	while (bseen < array_len) {
534		struct zap_leaf_array *la =
535		    &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
536		int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
537
538		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
539			return (0);
540
541		if (zfs_bcmp(la->la_array, buf + bseen, toread) != 0)
542			break;
543		chunk = la->la_next;
544		bseen += toread;
545	}
546	return (bseen == array_len);
547}
548
549/*
550 * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
551 * value for the property "name".
552 *
553 * Return:
554 *	0 - success
555 *	errnum - failure
556 */
557static int
558zap_leaf_lookup(zap_leaf_phys_t *l, int blksft, uint64_t h,
559    const char *name, uint64_t *value)
560{
561	uint16_t chunk;
562	struct zap_leaf_entry *le;
563
564	/* Verify if this is a valid leaf block */
565	if (l->l_hdr.lh_block_type != ZBT_LEAF)
566		return (ERR_FSYS_CORRUPT);
567	if (l->l_hdr.lh_magic != ZAP_LEAF_MAGIC)
568		return (ERR_FSYS_CORRUPT);
569
570	for (chunk = l->l_hash[LEAF_HASH(blksft, h)];
571	    chunk != CHAIN_END; chunk = le->le_next) {
572
573		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
574			return (ERR_FSYS_CORRUPT);
575
576		le = ZAP_LEAF_ENTRY(l, blksft, chunk);
577
578		/* Verify the chunk entry */
579		if (le->le_type != ZAP_CHUNK_ENTRY)
580			return (ERR_FSYS_CORRUPT);
581
582		if (le->le_hash != h)
583			continue;
584
585		if (zap_leaf_array_equal(l, blksft, le->le_name_chunk,
586		    le->le_name_length, name)) {
587
588			struct zap_leaf_array *la;
589			uint8_t *ip;
590
591			if (le->le_int_size != 8 || le->le_value_length != 1)
592				return (ERR_FSYS_CORRUPT);
593
594			/* get the uint64_t property value */
595			la = &ZAP_LEAF_CHUNK(l, blksft,
596			    le->le_value_chunk).l_array;
597			ip = la->la_array;
598
599			*value = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
600			    (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
601			    (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
602			    (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
603
604			return (0);
605		}
606	}
607
608	return (ERR_FSYS_CORRUPT);
609}
610
611/*
612 * Fat ZAP lookup
613 *
614 * Return:
615 *	0 - success
616 *	errnum - failure
617 */
618static int
619fzap_lookup(dnode_phys_t *zap_dnode, zap_phys_t *zap,
620    char *name, uint64_t *value, char *stack)
621{
622	zap_leaf_phys_t *l;
623	uint64_t hash, idx, blkid;
624	int blksft = zfs_log2(zap_dnode->dn_datablkszsec << DNODE_SHIFT);
625
626	/* Verify if this is a fat zap header block */
627	if (zap->zap_magic != (uint64_t)ZAP_MAGIC ||
628	    zap->zap_flags != 0)
629		return (ERR_FSYS_CORRUPT);
630
631	hash = zap_hash(zap->zap_salt, name);
632	if (errnum)
633		return (errnum);
634
635	/* get block id from index */
636	if (zap->zap_ptrtbl.zt_numblks != 0) {
637		/* external pointer tables not supported */
638		return (ERR_FSYS_CORRUPT);
639	}
640	idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
641	blkid = ((uint64_t *)zap)[idx + (1<<(blksft-3-1))];
642
643	/* Get the leaf block */
644	l = (zap_leaf_phys_t *)stack;
645	stack += 1<<blksft;
646	if ((1<<blksft) < sizeof (zap_leaf_phys_t))
647		return (ERR_FSYS_CORRUPT);
648	if (errnum = dmu_read(zap_dnode, blkid, l, stack))
649		return (errnum);
650
651	return (zap_leaf_lookup(l, blksft, hash, name, value));
652}
653
654/*
655 * Read in the data of a zap object and find the value for a matching
656 * property name.
657 *
658 * Return:
659 *	0 - success
660 *	errnum - failure
661 */
662static int
663zap_lookup(dnode_phys_t *zap_dnode, char *name, uint64_t *val, char *stack)
664{
665	uint64_t block_type;
666	int size;
667	void *zapbuf;
668
669	/* Read in the first block of the zap object data. */
670	zapbuf = stack;
671	size = zap_dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
672	stack += size;
673
674	if (errnum = dmu_read(zap_dnode, 0, zapbuf, stack))
675		return (errnum);
676
677	block_type = *((uint64_t *)zapbuf);
678
679	if (block_type == ZBT_MICRO) {
680		return (mzap_lookup(zapbuf, size, name, val));
681	} else if (block_type == ZBT_HEADER) {
682		/* this is a fat zap */
683		return (fzap_lookup(zap_dnode, zapbuf, name,
684		    val, stack));
685	}
686
687	return (ERR_FSYS_CORRUPT);
688}
689
690/*
691 * Get the dnode of an object number from the metadnode of an object set.
692 *
693 * Input
694 *	mdn - metadnode to get the object dnode
695 *	objnum - object number for the object dnode
696 *	buf - data buffer that holds the returning dnode
697 *	stack - scratch area
698 *
699 * Return:
700 *	0 - success
701 *	errnum - failure
702 */
703static int
704dnode_get(dnode_phys_t *mdn, uint64_t objnum, uint8_t type, dnode_phys_t *buf,
705	char *stack)
706{
707	uint64_t blkid, blksz; /* the block id this object dnode is in */
708	int epbs; /* shift of number of dnodes in a block */
709	int idx; /* index within a block */
710	dnode_phys_t *dnbuf;
711
712	blksz = mdn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
713	epbs = zfs_log2(blksz) - DNODE_SHIFT;
714	blkid = objnum >> epbs;
715	idx = objnum & ((1<<epbs)-1);
716
717	if (dnode_buf != NULL && dnode_mdn == mdn &&
718	    objnum >= dnode_start && objnum < dnode_end) {
719		grub_memmove(buf, &dnode_buf[idx], DNODE_SIZE);
720		VERIFY_DN_TYPE(buf, type);
721		return (0);
722	}
723
724	if (dnode_buf && blksz == 1<<DNODE_BLOCK_SHIFT) {
725		dnbuf = dnode_buf;
726		dnode_mdn = mdn;
727		dnode_start = blkid << epbs;
728		dnode_end = (blkid + 1) << epbs;
729	} else {
730		dnbuf = (dnode_phys_t *)stack;
731		stack += blksz;
732	}
733
734	if (errnum = dmu_read(mdn, blkid, (char *)dnbuf, stack))
735		return (errnum);
736
737	grub_memmove(buf, &dnbuf[idx], DNODE_SIZE);
738	VERIFY_DN_TYPE(buf, type);
739
740	return (0);
741}
742
743/*
744 * Check if this is a special file that resides at the top
745 * dataset of the pool. Currently this is the GRUB menu,
746 * boot signature and boot signature backup.
747 * str starts with '/'.
748 */
749static int
750is_top_dataset_file(char *str)
751{
752	char *tptr;
753
754	if ((tptr = grub_strstr(str, "menu.lst")) &&
755	    (tptr[8] == '\0' || tptr[8] == ' ') &&
756	    *(tptr-1) == '/')
757		return (1);
758
759	if (grub_strncmp(str, BOOTSIGN_DIR"/",
760	    grub_strlen(BOOTSIGN_DIR) + 1) == 0)
761		return (1);
762
763	if (grub_strcmp(str, BOOTSIGN_BACKUP) == 0)
764		return (1);
765
766	return (0);
767}
768
769/*
770 * Get the file dnode for a given file name where mdn is the meta dnode
771 * for this ZFS object set. When found, place the file dnode in dn.
772 * The 'path' argument will be mangled.
773 *
774 * Return:
775 *	0 - success
776 *	errnum - failure
777 */
778static int
779dnode_get_path(dnode_phys_t *mdn, char *path, dnode_phys_t *dn,
780    char *stack)
781{
782	uint64_t objnum, version;
783	char *cname, ch;
784
785	if (errnum = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
786	    dn, stack))
787		return (errnum);
788
789	if (errnum = zap_lookup(dn, ZPL_VERSION_STR, &version, stack))
790		return (errnum);
791	if (version > ZPL_VERSION)
792		return (-1);
793
794	if (errnum = zap_lookup(dn, ZFS_ROOT_OBJ, &objnum, stack))
795		return (errnum);
796
797	if (errnum = dnode_get(mdn, objnum, DMU_OT_DIRECTORY_CONTENTS,
798	    dn, stack))
799		return (errnum);
800
801	/* skip leading slashes */
802	while (*path == '/')
803		path++;
804
805	while (*path && !isspace(*path)) {
806
807		/* get the next component name */
808		cname = path;
809		while (*path && !isspace(*path) && *path != '/')
810			path++;
811		ch = *path;
812		*path = 0;   /* ensure null termination */
813
814		if (errnum = zap_lookup(dn, cname, &objnum, stack))
815			return (errnum);
816
817		objnum = ZFS_DIRENT_OBJ(objnum);
818		if (errnum = dnode_get(mdn, objnum, 0, dn, stack))
819			return (errnum);
820
821		*path = ch;
822		while (*path == '/')
823			path++;
824	}
825
826	/* We found the dnode for this file. Verify if it is a plain file. */
827	VERIFY_DN_TYPE(dn, DMU_OT_PLAIN_FILE_CONTENTS);
828
829	return (0);
830}
831
832/*
833 * Get the default 'bootfs' property value from the rootpool.
834 *
835 * Return:
836 *	0 - success
837 *	errnum -failure
838 */
839static int
840get_default_bootfsobj(dnode_phys_t *mosmdn, uint64_t *obj, char *stack)
841{
842	uint64_t objnum = 0;
843	dnode_phys_t *dn = (dnode_phys_t *)stack;
844	stack += DNODE_SIZE;
845
846	if (errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
847	    DMU_OT_OBJECT_DIRECTORY, dn, stack))
848		return (errnum);
849
850	/*
851	 * find the object number for 'pool_props', and get the dnode
852	 * of the 'pool_props'.
853	 */
854	if (zap_lookup(dn, DMU_POOL_PROPS, &objnum, stack))
855		return (ERR_FILESYSTEM_NOT_FOUND);
856
857	if (errnum = dnode_get(mosmdn, objnum, DMU_OT_POOL_PROPS, dn, stack))
858		return (errnum);
859
860	if (zap_lookup(dn, ZPOOL_PROP_BOOTFS, &objnum, stack))
861		return (ERR_FILESYSTEM_NOT_FOUND);
862
863	if (!objnum)
864		return (ERR_FILESYSTEM_NOT_FOUND);
865
866	*obj = objnum;
867	return (0);
868}
869
870/*
871 * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
872 * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
873 * of pool/rootfs.
874 *
875 * If no fsname and no obj are given, return the DSL_DIR metadnode.
876 * If fsname is given, return its metadnode and its matching object number.
877 * If only obj is given, return the metadnode for this object number.
878 *
879 * Return:
880 *	0 - success
881 *	errnum - failure
882 */
883static int
884get_objset_mdn(dnode_phys_t *mosmdn, char *fsname, uint64_t *obj,
885    dnode_phys_t *mdn, char *stack)
886{
887	uint64_t objnum, headobj;
888	char *cname, ch;
889	blkptr_t *bp;
890	objset_phys_t *osp;
891	int issnapshot = 0;
892	char *snapname;
893
894	if (fsname == NULL && obj) {
895		headobj = *obj;
896		goto skip;
897	}
898
899	if (errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
900	    DMU_OT_OBJECT_DIRECTORY, mdn, stack))
901		return (errnum);
902
903	if (errnum = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum,
904	    stack))
905		return (errnum);
906
907	if (errnum = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, stack))
908		return (errnum);
909
910	if (fsname == NULL) {
911		headobj =
912		    ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_head_dataset_obj;
913		goto skip;
914	}
915
916	/* take out the pool name */
917	while (*fsname && !isspace(*fsname) && *fsname != '/')
918		fsname++;
919
920	while (*fsname && !isspace(*fsname)) {
921		uint64_t childobj;
922
923		while (*fsname == '/')
924			fsname++;
925
926		cname = fsname;
927		while (*fsname && !isspace(*fsname) && *fsname != '/')
928			fsname++;
929		ch = *fsname;
930		*fsname = 0;
931
932		snapname = cname;
933		while (*snapname && !isspace(*snapname) && *snapname != '@')
934			snapname++;
935		if (*snapname == '@') {
936			issnapshot = 1;
937			*snapname = 0;
938		}
939		childobj =
940		    ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_child_dir_zapobj;
941		if (errnum = dnode_get(mosmdn, childobj,
942		    DMU_OT_DSL_DIR_CHILD_MAP, mdn, stack))
943			return (errnum);
944
945		if (zap_lookup(mdn, cname, &objnum, stack))
946			return (ERR_FILESYSTEM_NOT_FOUND);
947
948		if (errnum = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR,
949		    mdn, stack))
950			return (errnum);
951
952		*fsname = ch;
953		if (issnapshot)
954			*snapname = '@';
955	}
956	headobj = ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_head_dataset_obj;
957	if (obj)
958		*obj = headobj;
959
960skip:
961	if (errnum = dnode_get(mosmdn, headobj, DMU_OT_DSL_DATASET, mdn, stack))
962		return (errnum);
963	if (issnapshot) {
964		uint64_t snapobj;
965
966		snapobj = ((dsl_dataset_phys_t *)DN_BONUS(mdn))->
967		    ds_snapnames_zapobj;
968
969		if (errnum = dnode_get(mosmdn, snapobj,
970		    DMU_OT_DSL_DS_SNAP_MAP, mdn, stack))
971			return (errnum);
972		if (zap_lookup(mdn, snapname + 1, &headobj, stack))
973			return (ERR_FILESYSTEM_NOT_FOUND);
974		if (errnum = dnode_get(mosmdn, headobj,
975		    DMU_OT_DSL_DATASET, mdn, stack))
976			return (errnum);
977		if (obj)
978			*obj = headobj;
979	}
980
981	bp = &((dsl_dataset_phys_t *)DN_BONUS(mdn))->ds_bp;
982	osp = (objset_phys_t *)stack;
983	stack += sizeof (objset_phys_t);
984	if (errnum = zio_read(bp, osp, stack))
985		return (errnum);
986
987	grub_memmove((char *)mdn, (char *)&osp->os_meta_dnode, DNODE_SIZE);
988
989	return (0);
990}
991
992/*
993 * For a given XDR packed nvlist, verify the first 4 bytes and move on.
994 *
995 * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
996 *
997 *      encoding method/host endian     (4 bytes)
998 *      nvl_version                     (4 bytes)
999 *      nvl_nvflag                      (4 bytes)
1000 *	encoded nvpairs:
1001 *		encoded size of the nvpair      (4 bytes)
1002 *		decoded size of the nvpair      (4 bytes)
1003 *		name string size                (4 bytes)
1004 *		name string data                (sizeof(NV_ALIGN4(string))
1005 *		data type                       (4 bytes)
1006 *		# of elements in the nvpair     (4 bytes)
1007 *		data
1008 *      2 zero's for the last nvpair
1009 *		(end of the entire list)	(8 bytes)
1010 *
1011 * Return:
1012 *	0 - success
1013 *	1 - failure
1014 */
1015static int
1016nvlist_unpack(char *nvlist, char **out)
1017{
1018	/* Verify if the 1st and 2nd byte in the nvlist are valid. */
1019	if (nvlist[0] != NV_ENCODE_XDR || nvlist[1] != HOST_ENDIAN)
1020		return (1);
1021
1022	nvlist += 4;
1023	*out = nvlist;
1024	return (0);
1025}
1026
1027static char *
1028nvlist_array(char *nvlist, int index)
1029{
1030	int i, encode_size;
1031
1032	for (i = 0; i < index; i++) {
1033		/* skip the header, nvl_version, and nvl_nvflag */
1034		nvlist = nvlist + 4 * 2;
1035
1036		while (encode_size = BSWAP_32(*(uint32_t *)nvlist))
1037			nvlist += encode_size; /* goto the next nvpair */
1038
1039		nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
1040	}
1041
1042	return (nvlist);
1043}
1044
1045static int
1046nvlist_lookup_value(char *nvlist, char *name, void *val, int valtype,
1047    int *nelmp)
1048{
1049	int name_len, type, slen, encode_size;
1050	char *nvpair, *nvp_name, *strval = val;
1051	uint64_t *intval = val;
1052
1053	/* skip the header, nvl_version, and nvl_nvflag */
1054	nvlist = nvlist + 4 * 2;
1055
1056	/*
1057	 * Loop thru the nvpair list
1058	 * The XDR representation of an integer is in big-endian byte order.
1059	 */
1060	while (encode_size = BSWAP_32(*(uint32_t *)nvlist))  {
1061
1062		nvpair = nvlist + 4 * 2; /* skip the encode/decode size */
1063
1064		name_len = BSWAP_32(*(uint32_t *)nvpair);
1065		nvpair += 4;
1066
1067		nvp_name = nvpair;
1068		nvpair = nvpair + ((name_len + 3) & ~3); /* align */
1069
1070		type = BSWAP_32(*(uint32_t *)nvpair);
1071		nvpair += 4;
1072
1073		if ((grub_strncmp(nvp_name, name, name_len) == 0) &&
1074		    type == valtype) {
1075			int nelm;
1076
1077			if ((nelm = BSWAP_32(*(uint32_t *)nvpair)) < 1)
1078				return (1);
1079			nvpair += 4;
1080
1081			switch (valtype) {
1082			case DATA_TYPE_STRING:
1083				slen = BSWAP_32(*(uint32_t *)nvpair);
1084				nvpair += 4;
1085				grub_memmove(strval, nvpair, slen);
1086				strval[slen] = '\0';
1087				return (0);
1088
1089			case DATA_TYPE_UINT64:
1090				*intval = BSWAP_64(*(uint64_t *)nvpair);
1091				return (0);
1092
1093			case DATA_TYPE_NVLIST:
1094				*(void **)val = (void *)nvpair;
1095				return (0);
1096
1097			case DATA_TYPE_NVLIST_ARRAY:
1098				*(void **)val = (void *)nvpair;
1099				if (nelmp)
1100					*nelmp = nelm;
1101				return (0);
1102			}
1103		}
1104
1105		nvlist += encode_size; /* goto the next nvpair */
1106	}
1107
1108	return (1);
1109}
1110
1111/*
1112 * Check if this vdev is online and is in a good state.
1113 */
1114static int
1115vdev_validate(char *nv)
1116{
1117	uint64_t ival;
1118
1119	if (nvlist_lookup_value(nv, ZPOOL_CONFIG_OFFLINE, &ival,
1120	    DATA_TYPE_UINT64, NULL) == 0 ||
1121	    nvlist_lookup_value(nv, ZPOOL_CONFIG_FAULTED, &ival,
1122	    DATA_TYPE_UINT64, NULL) == 0 ||
1123	    nvlist_lookup_value(nv, ZPOOL_CONFIG_REMOVED, &ival,
1124	    DATA_TYPE_UINT64, NULL) == 0)
1125		return (ERR_DEV_VALUES);
1126
1127	return (0);
1128}
1129
1130/*
1131 * Get a valid vdev pathname/devid from the boot device.
1132 * The caller should already allocate MAXPATHLEN memory for bootpath and devid.
1133 */
1134static int
1135vdev_get_bootpath(char *nv, uint64_t inguid, char *devid, char *bootpath,
1136    int is_spare)
1137{
1138	char type[16];
1139
1140	if (nvlist_lookup_value(nv, ZPOOL_CONFIG_TYPE, &type, DATA_TYPE_STRING,
1141	    NULL))
1142		return (ERR_FSYS_CORRUPT);
1143
1144	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
1145		uint64_t guid;
1146
1147		if (vdev_validate(nv) != 0)
1148			return (ERR_NO_BOOTPATH);
1149
1150		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_GUID,
1151		    &guid, DATA_TYPE_UINT64, NULL) != 0)
1152			return (ERR_NO_BOOTPATH);
1153
1154		if (guid != inguid)
1155			return (ERR_NO_BOOTPATH);
1156
1157		/* for a spare vdev, pick the disk labeled with "is_spare" */
1158		if (is_spare) {
1159			uint64_t spare = 0;
1160			(void) nvlist_lookup_value(nv, ZPOOL_CONFIG_IS_SPARE,
1161			    &spare, DATA_TYPE_UINT64, NULL);
1162			if (!spare)
1163				return (ERR_NO_BOOTPATH);
1164		}
1165
1166		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_PHYS_PATH,
1167		    bootpath, DATA_TYPE_STRING, NULL) != 0)
1168			bootpath[0] = '\0';
1169
1170		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_DEVID,
1171		    devid, DATA_TYPE_STRING, NULL) != 0)
1172			devid[0] = '\0';
1173
1174		if (strlen(bootpath) >= MAXPATHLEN ||
1175		    strlen(devid) >= MAXPATHLEN)
1176			return (ERR_WONT_FIT);
1177
1178		return (0);
1179
1180	} else if (strcmp(type, VDEV_TYPE_MIRROR) == 0 ||
1181	    strcmp(type, VDEV_TYPE_REPLACING) == 0 ||
1182	    (is_spare = (strcmp(type, VDEV_TYPE_SPARE) == 0))) {
1183		int nelm, i;
1184		char *child;
1185
1186		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_CHILDREN, &child,
1187		    DATA_TYPE_NVLIST_ARRAY, &nelm))
1188			return (ERR_FSYS_CORRUPT);
1189
1190		for (i = 0; i < nelm; i++) {
1191			char *child_i;
1192
1193			child_i = nvlist_array(child, i);
1194			if (vdev_get_bootpath(child_i, inguid, devid,
1195			    bootpath, is_spare) == 0)
1196				return (0);
1197		}
1198	}
1199
1200	return (ERR_NO_BOOTPATH);
1201}
1202
1203/*
1204 * Check the disk label information and retrieve needed vdev name-value pairs.
1205 *
1206 * Return:
1207 *	0 - success
1208 *	ERR_* - failure
1209 */
1210int
1211check_pool_label(uint64_t sector, char *stack, char *outdevid,
1212    char *outpath, uint64_t *outguid)
1213{
1214	vdev_phys_t *vdev;
1215	uint64_t pool_state, txg = 0;
1216	char *nvlist, *nv;
1217	uint64_t diskguid;
1218	uint64_t version;
1219
1220	sector += (VDEV_SKIP_SIZE >> SPA_MINBLOCKSHIFT);
1221
1222	/* Read in the vdev name-value pair list (112K). */
1223	if (devread(sector, 0, VDEV_PHYS_SIZE, stack) == 0)
1224		return (ERR_READ);
1225
1226	vdev = (vdev_phys_t *)stack;
1227	stack += sizeof (vdev_phys_t);
1228
1229	if (nvlist_unpack(vdev->vp_nvlist, &nvlist))
1230		return (ERR_FSYS_CORRUPT);
1231
1232	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_STATE, &pool_state,
1233	    DATA_TYPE_UINT64, NULL))
1234		return (ERR_FSYS_CORRUPT);
1235
1236	if (pool_state == POOL_STATE_DESTROYED)
1237		return (ERR_FILESYSTEM_NOT_FOUND);
1238
1239	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_NAME,
1240	    current_rootpool, DATA_TYPE_STRING, NULL))
1241		return (ERR_FSYS_CORRUPT);
1242
1243	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_TXG, &txg,
1244	    DATA_TYPE_UINT64, NULL))
1245		return (ERR_FSYS_CORRUPT);
1246
1247	/* not an active device */
1248	if (txg == 0)
1249		return (ERR_NO_BOOTPATH);
1250
1251	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_VERSION, &version,
1252	    DATA_TYPE_UINT64, NULL))
1253		return (ERR_FSYS_CORRUPT);
1254	if (version > SPA_VERSION)
1255		return (ERR_NEWER_VERSION);
1256	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_VDEV_TREE, &nv,
1257	    DATA_TYPE_NVLIST, NULL))
1258		return (ERR_FSYS_CORRUPT);
1259	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_GUID, &diskguid,
1260	    DATA_TYPE_UINT64, NULL))
1261		return (ERR_FSYS_CORRUPT);
1262	if (vdev_get_bootpath(nv, diskguid, outdevid, outpath, 0))
1263		return (ERR_NO_BOOTPATH);
1264	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_GUID, outguid,
1265	    DATA_TYPE_UINT64, NULL))
1266		return (ERR_FSYS_CORRUPT);
1267	return (0);
1268}
1269
1270/*
1271 * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1272 * to the memory address MOS.
1273 *
1274 * Return:
1275 *	1 - success
1276 *	0 - failure
1277 */
1278int
1279zfs_mount(void)
1280{
1281	char *stack;
1282	int label = 0;
1283	uberblock_phys_t *ub_array, *ubbest;
1284	objset_phys_t *osp;
1285	char tmp_bootpath[MAXNAMELEN];
1286	char tmp_devid[MAXNAMELEN];
1287	uint64_t tmp_guid;
1288	uint64_t adjpl = (uint64_t)part_length << SPA_MINBLOCKSHIFT;
1289	int err = errnum; /* preserve previous errnum state */
1290
1291	/* if it's our first time here, zero the best uberblock out */
1292	if (best_drive == 0 && best_part == 0 && find_best_root) {
1293		grub_memset(&current_uberblock, 0, sizeof (uberblock_t));
1294		pool_guid = 0;
1295	}
1296
1297	stackbase = ZFS_SCRATCH;
1298	stack = stackbase;
1299	ub_array = (uberblock_phys_t *)stack;
1300	stack += VDEV_UBERBLOCK_RING;
1301
1302	osp = (objset_phys_t *)stack;
1303	stack += sizeof (objset_phys_t);
1304	adjpl = P2ALIGN(adjpl, (uint64_t)sizeof (vdev_label_t));
1305
1306	for (label = 0; label < VDEV_LABELS; label++) {
1307
1308		/*
1309		 * some eltorito stacks don't give us a size and
1310		 * we end up setting the size to MAXUINT, further
1311		 * some of these devices stop working once a single
1312		 * read past the end has been issued. Checking
1313		 * for a maximum part_length and skipping the backup
1314		 * labels at the end of the slice/partition/device
1315		 * avoids breaking down on such devices.
1316		 */
1317		if (part_length == MAXUINT && label == 2)
1318			break;
1319
1320		uint64_t sector = vdev_label_start(adjpl,
1321		    label) >> SPA_MINBLOCKSHIFT;
1322
1323		/* Read in the uberblock ring (128K). */
1324		if (devread(sector  +
1325		    ((VDEV_SKIP_SIZE + VDEV_PHYS_SIZE) >>
1326		    SPA_MINBLOCKSHIFT), 0, VDEV_UBERBLOCK_RING,
1327		    (char *)ub_array) == 0)
1328			continue;
1329
1330		if ((ubbest = find_bestub(ub_array, sector)) != NULL &&
1331		    zio_read(&ubbest->ubp_uberblock.ub_rootbp, osp, stack)
1332		    == 0) {
1333
1334			VERIFY_OS_TYPE(osp, DMU_OST_META);
1335
1336			if (check_pool_label(sector, stack, tmp_devid,
1337			    tmp_bootpath, &tmp_guid))
1338				continue;
1339			if (pool_guid == 0)
1340				pool_guid = tmp_guid;
1341
1342			if (find_best_root && ((pool_guid != tmp_guid) ||
1343			    vdev_uberblock_compare(&ubbest->ubp_uberblock,
1344			    &(current_uberblock)) <= 0))
1345				continue;
1346
1347			/* Got the MOS. Save it at the memory addr MOS. */
1348			grub_memmove(MOS, &osp->os_meta_dnode, DNODE_SIZE);
1349			grub_memmove(&current_uberblock,
1350			    &ubbest->ubp_uberblock, sizeof (uberblock_t));
1351			grub_memmove(current_bootpath, tmp_bootpath,
1352			    MAXNAMELEN);
1353			grub_memmove(current_devid, tmp_devid,
1354			    grub_strlen(tmp_devid));
1355			is_zfs_mount = 1;
1356			return (1);
1357		}
1358	}
1359
1360	/*
1361	 * While some fs impls. (tftp) rely on setting and keeping
1362	 * global errnums set, others won't reset it and will break
1363	 * when issuing rawreads. The goal here is to simply not
1364	 * have zfs mount attempts impact the previous state.
1365	 */
1366	errnum = err;
1367	return (0);
1368}
1369
1370/*
1371 * zfs_open() locates a file in the rootpool by following the
1372 * MOS and places the dnode of the file in the memory address DNODE.
1373 *
1374 * Return:
1375 *	1 - success
1376 *	0 - failure
1377 */
1378int
1379zfs_open(char *filename)
1380{
1381	char *stack;
1382	dnode_phys_t *mdn;
1383
1384	file_buf = NULL;
1385	stackbase = ZFS_SCRATCH;
1386	stack = stackbase;
1387
1388	mdn = (dnode_phys_t *)stack;
1389	stack += sizeof (dnode_phys_t);
1390
1391	dnode_mdn = NULL;
1392	dnode_buf = (dnode_phys_t *)stack;
1393	stack += 1<<DNODE_BLOCK_SHIFT;
1394
1395	/*
1396	 * menu.lst is placed at the root pool filesystem level,
1397	 * do not goto 'current_bootfs'.
1398	 */
1399	if (is_top_dataset_file(filename)) {
1400		if (errnum = get_objset_mdn(MOS, NULL, NULL, mdn, stack))
1401			return (0);
1402
1403		current_bootfs_obj = 0;
1404	} else {
1405		if (current_bootfs[0] == '\0') {
1406			/* Get the default root filesystem object number */
1407			if (errnum = get_default_bootfsobj(MOS,
1408			    &current_bootfs_obj, stack))
1409				return (0);
1410
1411			if (errnum = get_objset_mdn(MOS, NULL,
1412			    &current_bootfs_obj, mdn, stack))
1413				return (0);
1414		} else {
1415			if (errnum = get_objset_mdn(MOS, current_bootfs,
1416			    &current_bootfs_obj, mdn, stack)) {
1417				grub_memset(current_bootfs, 0, MAXNAMELEN);
1418				return (0);
1419			}
1420		}
1421	}
1422
1423	if (dnode_get_path(mdn, filename, DNODE, stack)) {
1424		errnum = ERR_FILE_NOT_FOUND;
1425		return (0);
1426	}
1427
1428	/* get the file size and set the file position to 0 */
1429
1430	/*
1431	 * For DMU_OT_SA we will need to locate the SIZE attribute
1432	 * attribute, which could be either in the bonus buffer
1433	 * or the "spill" block.
1434	 */
1435	if (DNODE->dn_bonustype == DMU_OT_SA) {
1436		sa_hdr_phys_t *sahdrp;
1437		int hdrsize;
1438
1439		if (DNODE->dn_bonuslen != 0) {
1440			sahdrp = (sa_hdr_phys_t *)DN_BONUS(DNODE);
1441		} else {
1442			if (DNODE->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1443				blkptr_t *bp = &DNODE->dn_spill;
1444				void *buf;
1445
1446				buf = (void *)stack;
1447				stack += BP_GET_LSIZE(bp);
1448
1449				/* reset errnum to rawread() failure */
1450				errnum = 0;
1451				if (zio_read(bp, buf, stack) != 0) {
1452					return (0);
1453				}
1454				sahdrp = buf;
1455			} else {
1456				errnum = ERR_FSYS_CORRUPT;
1457				return (0);
1458			}
1459		}
1460		hdrsize = SA_HDR_SIZE(sahdrp);
1461		filemax = *(uint64_t *)((char *)sahdrp + hdrsize +
1462		    SA_SIZE_OFFSET);
1463	} else {
1464		filemax = ((znode_phys_t *)DN_BONUS(DNODE))->zp_size;
1465	}
1466	filepos = 0;
1467
1468	dnode_buf = NULL;
1469	return (1);
1470}
1471
1472/*
1473 * zfs_read reads in the data blocks pointed by the DNODE.
1474 *
1475 * Return:
1476 *	len - the length successfully read in to the buffer
1477 *	0   - failure
1478 */
1479int
1480zfs_read(char *buf, int len)
1481{
1482	char *stack;
1483	char *tmpbuf;
1484	int blksz, length, movesize;
1485
1486	if (file_buf == NULL) {
1487		file_buf = stackbase;
1488		stackbase += SPA_MAXBLOCKSIZE;
1489		file_start = file_end = 0;
1490	}
1491	stack = stackbase;
1492
1493	/*
1494	 * If offset is in memory, move it into the buffer provided and return.
1495	 */
1496	if (filepos >= file_start && filepos+len <= file_end) {
1497		grub_memmove(buf, file_buf + filepos - file_start, len);
1498		filepos += len;
1499		return (len);
1500	}
1501
1502	blksz = DNODE->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1503
1504	/*
1505	 * Entire Dnode is too big to fit into the space available.  We
1506	 * will need to read it in chunks.  This could be optimized to
1507	 * read in as large a chunk as there is space available, but for
1508	 * now, this only reads in one data block at a time.
1509	 */
1510	length = len;
1511	while (length) {
1512		/*
1513		 * Find requested blkid and the offset within that block.
1514		 */
1515		uint64_t blkid = filepos / blksz;
1516
1517		if (errnum = dmu_read(DNODE, blkid, file_buf, stack))
1518			return (0);
1519
1520		file_start = blkid * blksz;
1521		file_end = file_start + blksz;
1522
1523		movesize = MIN(length, file_end - filepos);
1524
1525		grub_memmove(buf, file_buf + filepos - file_start,
1526		    movesize);
1527		buf += movesize;
1528		length -= movesize;
1529		filepos += movesize;
1530	}
1531
1532	return (len);
1533}
1534
1535/*
1536 * No-Op
1537 */
1538int
1539zfs_embed(int *start_sector, int needed_sectors)
1540{
1541	return (1);
1542}
1543
1544#endif /* FSYS_ZFS */
1545