1/*
2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4 *
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
9 *
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
14 *
15 * The Original Code is the elliptic curve math library for prime field curves.
16 *
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
21 *
22 * Contributor(s):
23 *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24 *   Stephen Fung <fungstep@hotmail.com>, and
25 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
26 *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
27 *   Nils Larsch <nla@trustcenter.de>, and
28 *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
29 *
30 * Alternatively, the contents of this file may be used under the terms of
31 * either the GNU General Public License Version 2 or later (the "GPL"), or
32 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
33 * in which case the provisions of the GPL or the LGPL are applicable instead
34 * of those above. If you wish to allow use of your version of this file only
35 * under the terms of either the GPL or the LGPL, and not to allow others to
36 * use your version of this file under the terms of the MPL, indicate your
37 * decision by deleting the provisions above and replace them with the notice
38 * and other provisions required by the GPL or the LGPL. If you do not delete
39 * the provisions above, a recipient may use your version of this file under
40 * the terms of any one of the MPL, the GPL or the LGPL.
41 *
42 * ***** END LICENSE BLOCK ***** */
43/*
44 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
45 * Use is subject to license terms.
46 *
47 * Sun elects to use this software under the MPL license.
48 */
49
50#pragma ident	"%Z%%M%	%I%	%E% SMI"
51
52#include "ecp.h"
53#include "mplogic.h"
54#ifndef _KERNEL
55#include <stdlib.h>
56#endif
57
58/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
59mp_err
60ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
61{
62
63	if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
64		return MP_YES;
65	} else {
66		return MP_NO;
67	}
68
69}
70
71/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
72mp_err
73ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
74{
75	mp_zero(px);
76	mp_zero(py);
77	return MP_OKAY;
78}
79
80/* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
81 * Q, and R can all be identical. Uses affine coordinates. Assumes input
82 * is already field-encoded using field_enc, and returns output that is
83 * still field-encoded. */
84mp_err
85ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
86				  const mp_int *qy, mp_int *rx, mp_int *ry,
87				  const ECGroup *group)
88{
89	mp_err res = MP_OKAY;
90	mp_int lambda, temp, tempx, tempy;
91
92	MP_DIGITS(&lambda) = 0;
93	MP_DIGITS(&temp) = 0;
94	MP_DIGITS(&tempx) = 0;
95	MP_DIGITS(&tempy) = 0;
96	MP_CHECKOK(mp_init(&lambda, FLAG(px)));
97	MP_CHECKOK(mp_init(&temp, FLAG(px)));
98	MP_CHECKOK(mp_init(&tempx, FLAG(px)));
99	MP_CHECKOK(mp_init(&tempy, FLAG(px)));
100	/* if P = inf, then R = Q */
101	if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
102		MP_CHECKOK(mp_copy(qx, rx));
103		MP_CHECKOK(mp_copy(qy, ry));
104		res = MP_OKAY;
105		goto CLEANUP;
106	}
107	/* if Q = inf, then R = P */
108	if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
109		MP_CHECKOK(mp_copy(px, rx));
110		MP_CHECKOK(mp_copy(py, ry));
111		res = MP_OKAY;
112		goto CLEANUP;
113	}
114	/* if px != qx, then lambda = (py-qy) / (px-qx) */
115	if (mp_cmp(px, qx) != 0) {
116		MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
117		MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
118		MP_CHECKOK(group->meth->
119				   field_div(&tempy, &tempx, &lambda, group->meth));
120	} else {
121		/* if py != qy or qy = 0, then R = inf */
122		if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
123			mp_zero(rx);
124			mp_zero(ry);
125			res = MP_OKAY;
126			goto CLEANUP;
127		}
128		/* lambda = (3qx^2+a) / (2qy) */
129		MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
130		MP_CHECKOK(mp_set_int(&temp, 3));
131		if (group->meth->field_enc) {
132			MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
133		}
134		MP_CHECKOK(group->meth->
135				   field_mul(&tempx, &temp, &tempx, group->meth));
136		MP_CHECKOK(group->meth->
137				   field_add(&tempx, &group->curvea, &tempx, group->meth));
138		MP_CHECKOK(mp_set_int(&temp, 2));
139		if (group->meth->field_enc) {
140			MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
141		}
142		MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
143		MP_CHECKOK(group->meth->
144				   field_div(&tempx, &tempy, &lambda, group->meth));
145	}
146	/* rx = lambda^2 - px - qx */
147	MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
148	MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
149	MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
150	/* ry = (x1-x2) * lambda - y1 */
151	MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
152	MP_CHECKOK(group->meth->
153			   field_mul(&tempy, &lambda, &tempy, group->meth));
154	MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
155	MP_CHECKOK(mp_copy(&tempx, rx));
156	MP_CHECKOK(mp_copy(&tempy, ry));
157
158  CLEANUP:
159	mp_clear(&lambda);
160	mp_clear(&temp);
161	mp_clear(&tempx);
162	mp_clear(&tempy);
163	return res;
164}
165
166/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
167 * identical. Uses affine coordinates. Assumes input is already
168 * field-encoded using field_enc, and returns output that is still
169 * field-encoded. */
170mp_err
171ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
172				  const mp_int *qy, mp_int *rx, mp_int *ry,
173				  const ECGroup *group)
174{
175	mp_err res = MP_OKAY;
176	mp_int nqy;
177
178	MP_DIGITS(&nqy) = 0;
179	MP_CHECKOK(mp_init(&nqy, FLAG(px)));
180	/* nqy = -qy */
181	MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
182	res = group->point_add(px, py, qx, &nqy, rx, ry, group);
183  CLEANUP:
184	mp_clear(&nqy);
185	return res;
186}
187
188/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
189 * affine coordinates. Assumes input is already field-encoded using
190 * field_enc, and returns output that is still field-encoded. */
191mp_err
192ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
193				  mp_int *ry, const ECGroup *group)
194{
195	return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
196}
197
198/* by default, this routine is unused and thus doesn't need to be compiled */
199#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
200/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
201 * R can be identical. Uses affine coordinates. Assumes input is already
202 * field-encoded using field_enc, and returns output that is still
203 * field-encoded. */
204mp_err
205ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
206				  mp_int *rx, mp_int *ry, const ECGroup *group)
207{
208	mp_err res = MP_OKAY;
209	mp_int k, k3, qx, qy, sx, sy;
210	int b1, b3, i, l;
211
212	MP_DIGITS(&k) = 0;
213	MP_DIGITS(&k3) = 0;
214	MP_DIGITS(&qx) = 0;
215	MP_DIGITS(&qy) = 0;
216	MP_DIGITS(&sx) = 0;
217	MP_DIGITS(&sy) = 0;
218	MP_CHECKOK(mp_init(&k));
219	MP_CHECKOK(mp_init(&k3));
220	MP_CHECKOK(mp_init(&qx));
221	MP_CHECKOK(mp_init(&qy));
222	MP_CHECKOK(mp_init(&sx));
223	MP_CHECKOK(mp_init(&sy));
224
225	/* if n = 0 then r = inf */
226	if (mp_cmp_z(n) == 0) {
227		mp_zero(rx);
228		mp_zero(ry);
229		res = MP_OKAY;
230		goto CLEANUP;
231	}
232	/* Q = P, k = n */
233	MP_CHECKOK(mp_copy(px, &qx));
234	MP_CHECKOK(mp_copy(py, &qy));
235	MP_CHECKOK(mp_copy(n, &k));
236	/* if n < 0 then Q = -Q, k = -k */
237	if (mp_cmp_z(n) < 0) {
238		MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
239		MP_CHECKOK(mp_neg(&k, &k));
240	}
241#ifdef ECL_DEBUG				/* basic double and add method */
242	l = mpl_significant_bits(&k) - 1;
243	MP_CHECKOK(mp_copy(&qx, &sx));
244	MP_CHECKOK(mp_copy(&qy, &sy));
245	for (i = l - 1; i >= 0; i--) {
246		/* S = 2S */
247		MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
248		/* if k_i = 1, then S = S + Q */
249		if (mpl_get_bit(&k, i) != 0) {
250			MP_CHECKOK(group->
251					   point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
252		}
253	}
254#else							/* double and add/subtract method from
255								 * standard */
256	/* k3 = 3 * k */
257	MP_CHECKOK(mp_set_int(&k3, 3));
258	MP_CHECKOK(mp_mul(&k, &k3, &k3));
259	/* S = Q */
260	MP_CHECKOK(mp_copy(&qx, &sx));
261	MP_CHECKOK(mp_copy(&qy, &sy));
262	/* l = index of high order bit in binary representation of 3*k */
263	l = mpl_significant_bits(&k3) - 1;
264	/* for i = l-1 downto 1 */
265	for (i = l - 1; i >= 1; i--) {
266		/* S = 2S */
267		MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
268		b3 = MP_GET_BIT(&k3, i);
269		b1 = MP_GET_BIT(&k, i);
270		/* if k3_i = 1 and k_i = 0, then S = S + Q */
271		if ((b3 == 1) && (b1 == 0)) {
272			MP_CHECKOK(group->
273					   point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
274			/* if k3_i = 0 and k_i = 1, then S = S - Q */
275		} else if ((b3 == 0) && (b1 == 1)) {
276			MP_CHECKOK(group->
277					   point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
278		}
279	}
280#endif
281	/* output S */
282	MP_CHECKOK(mp_copy(&sx, rx));
283	MP_CHECKOK(mp_copy(&sy, ry));
284
285  CLEANUP:
286	mp_clear(&k);
287	mp_clear(&k3);
288	mp_clear(&qx);
289	mp_clear(&qy);
290	mp_clear(&sx);
291	mp_clear(&sy);
292	return res;
293}
294#endif
295
296/* Validates a point on a GFp curve. */
297mp_err
298ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
299{
300	mp_err res = MP_NO;
301	mp_int accl, accr, tmp, pxt, pyt;
302
303	MP_DIGITS(&accl) = 0;
304	MP_DIGITS(&accr) = 0;
305	MP_DIGITS(&tmp) = 0;
306	MP_DIGITS(&pxt) = 0;
307	MP_DIGITS(&pyt) = 0;
308	MP_CHECKOK(mp_init(&accl, FLAG(px)));
309	MP_CHECKOK(mp_init(&accr, FLAG(px)));
310	MP_CHECKOK(mp_init(&tmp, FLAG(px)));
311	MP_CHECKOK(mp_init(&pxt, FLAG(px)));
312	MP_CHECKOK(mp_init(&pyt, FLAG(px)));
313
314    /* 1: Verify that publicValue is not the point at infinity */
315	if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
316		res = MP_NO;
317		goto CLEANUP;
318	}
319    /* 2: Verify that the coordinates of publicValue are elements
320     *    of the field.
321     */
322	if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
323		(MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
324		res = MP_NO;
325		goto CLEANUP;
326	}
327    /* 3: Verify that publicValue is on the curve. */
328	if (group->meth->field_enc) {
329		group->meth->field_enc(px, &pxt, group->meth);
330		group->meth->field_enc(py, &pyt, group->meth);
331	} else {
332		mp_copy(px, &pxt);
333		mp_copy(py, &pyt);
334	}
335	/* left-hand side: y^2  */
336	MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
337	/* right-hand side: x^3 + a*x + b */
338	MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
339	MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
340	MP_CHECKOK( group->meth->field_mul(&group->curvea, &pxt, &tmp, group->meth) );
341	MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
342	MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
343	/* check LHS - RHS == 0 */
344	MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
345	if (mp_cmp_z(&accr) != 0) {
346		res = MP_NO;
347		goto CLEANUP;
348	}
349    /* 4: Verify that the order of the curve times the publicValue
350     *    is the point at infinity.
351     */
352	MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt) );
353	if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
354		res = MP_NO;
355		goto CLEANUP;
356	}
357
358	res = MP_YES;
359
360CLEANUP:
361	mp_clear(&accl);
362	mp_clear(&accr);
363	mp_clear(&tmp);
364	mp_clear(&pxt);
365	mp_clear(&pyt);
366	return res;
367}
368