1/*
2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4 *
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
9 *
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
14 *
15 * The Original Code is the elliptic curve math library for binary polynomial field curves.
16 *
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
21 *
22 * Contributor(s):
23 *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24 *   Stephen Fung <fungstep@hotmail.com>, and
25 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
26 *
27 * Alternatively, the contents of this file may be used under the terms of
28 * either the GNU General Public License Version 2 or later (the "GPL"), or
29 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
30 * in which case the provisions of the GPL or the LGPL are applicable instead
31 * of those above. If you wish to allow use of your version of this file only
32 * under the terms of either the GPL or the LGPL, and not to allow others to
33 * use your version of this file under the terms of the MPL, indicate your
34 * decision by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL or the LGPL. If you do not delete
36 * the provisions above, a recipient may use your version of this file under
37 * the terms of any one of the MPL, the GPL or the LGPL.
38 *
39 * ***** END LICENSE BLOCK ***** */
40/*
41 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
42 * Use is subject to license terms.
43 *
44 * Sun elects to use this software under the MPL license.
45 */
46
47#pragma ident	"%Z%%M%	%I%	%E% SMI"
48
49#include "ec2.h"
50#include "mplogic.h"
51#include "mp_gf2m.h"
52#ifndef _KERNEL
53#include <stdlib.h>
54#endif
55
56/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
57 * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J.
58 * and Dahab, R.  "Fast multiplication on elliptic curves over GF(2^m)
59 * without precomputation". modified to not require precomputation of
60 * c=b^{2^{m-1}}. */
61static mp_err
62gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group, int kmflag)
63{
64	mp_err res = MP_OKAY;
65	mp_int t1;
66
67	MP_DIGITS(&t1) = 0;
68	MP_CHECKOK(mp_init(&t1, kmflag));
69
70	MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
71	MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
72	MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
73	MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
74	MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
75	MP_CHECKOK(group->meth->
76			   field_mul(&group->curveb, &t1, &t1, group->meth));
77	MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));
78
79  CLEANUP:
80	mp_clear(&t1);
81	return res;
82}
83
84/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
85 * Montgomery projective coordinates. Uses algorithm Madd in appendix of
86 * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
87 * GF(2^m) without precomputation". */
88static mp_err
89gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
90		  const ECGroup *group, int kmflag)
91{
92	mp_err res = MP_OKAY;
93	mp_int t1, t2;
94
95	MP_DIGITS(&t1) = 0;
96	MP_DIGITS(&t2) = 0;
97	MP_CHECKOK(mp_init(&t1, kmflag));
98	MP_CHECKOK(mp_init(&t2, kmflag));
99
100	MP_CHECKOK(mp_copy(x, &t1));
101	MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
102	MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
103	MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
104	MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
105	MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
106	MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
107	MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));
108
109  CLEANUP:
110	mp_clear(&t1);
111	mp_clear(&t2);
112	return res;
113}
114
115/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
116 * using Montgomery point multiplication algorithm Mxy() in appendix of
117 * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
118 * GF(2^m) without precomputation". Returns: 0 on error 1 if return value
119 * should be the point at infinity 2 otherwise */
120static int
121gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
122		 mp_int *x2, mp_int *z2, const ECGroup *group)
123{
124	mp_err res = MP_OKAY;
125	int ret = 0;
126	mp_int t3, t4, t5;
127
128	MP_DIGITS(&t3) = 0;
129	MP_DIGITS(&t4) = 0;
130	MP_DIGITS(&t5) = 0;
131	MP_CHECKOK(mp_init(&t3, FLAG(x2)));
132	MP_CHECKOK(mp_init(&t4, FLAG(x2)));
133	MP_CHECKOK(mp_init(&t5, FLAG(x2)));
134
135	if (mp_cmp_z(z1) == 0) {
136		mp_zero(x2);
137		mp_zero(z2);
138		ret = 1;
139		goto CLEANUP;
140	}
141
142	if (mp_cmp_z(z2) == 0) {
143		MP_CHECKOK(mp_copy(x, x2));
144		MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
145		ret = 2;
146		goto CLEANUP;
147	}
148
149	MP_CHECKOK(mp_set_int(&t5, 1));
150	if (group->meth->field_enc) {
151		MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
152	}
153
154	MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));
155
156	MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
157	MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
158	MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
159	MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
160	MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));
161
162	MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
163	MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
164	MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
165	MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
166	MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));
167
168	MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
169	MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
170	MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
171	MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
172	MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));
173
174	MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
175	MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));
176
177	ret = 2;
178
179  CLEANUP:
180	mp_clear(&t3);
181	mp_clear(&t4);
182	mp_clear(&t5);
183	if (res == MP_OKAY) {
184		return ret;
185	} else {
186		return 0;
187	}
188}
189
190/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R.  "Fast
191 * multiplication on elliptic curves over GF(2^m) without
192 * precomputation". Elliptic curve points P and R can be identical. Uses
193 * Montgomery projective coordinates. */
194mp_err
195ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
196					mp_int *rx, mp_int *ry, const ECGroup *group)
197{
198	mp_err res = MP_OKAY;
199	mp_int x1, x2, z1, z2;
200	int i, j;
201	mp_digit top_bit, mask;
202
203	MP_DIGITS(&x1) = 0;
204	MP_DIGITS(&x2) = 0;
205	MP_DIGITS(&z1) = 0;
206	MP_DIGITS(&z2) = 0;
207	MP_CHECKOK(mp_init(&x1, FLAG(n)));
208	MP_CHECKOK(mp_init(&x2, FLAG(n)));
209	MP_CHECKOK(mp_init(&z1, FLAG(n)));
210	MP_CHECKOK(mp_init(&z2, FLAG(n)));
211
212	/* if result should be point at infinity */
213	if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
214		MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
215		goto CLEANUP;
216	}
217
218	MP_CHECKOK(mp_copy(px, &x1));	/* x1 = px */
219	MP_CHECKOK(mp_set_int(&z1, 1));	/* z1 = 1 */
220	MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth));	/* z2 =
221																 * x1^2 =
222																 * px^2 */
223	MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
224	MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth));	/* x2
225																				 * =
226																				 * px^4
227																				 * +
228																				 * b
229																				 */
230
231	/* find top-most bit and go one past it */
232	i = MP_USED(n) - 1;
233	j = MP_DIGIT_BIT - 1;
234	top_bit = 1;
235	top_bit <<= MP_DIGIT_BIT - 1;
236	mask = top_bit;
237	while (!(MP_DIGITS(n)[i] & mask)) {
238		mask >>= 1;
239		j--;
240	}
241	mask >>= 1;
242	j--;
243
244	/* if top most bit was at word break, go to next word */
245	if (!mask) {
246		i--;
247		j = MP_DIGIT_BIT - 1;
248		mask = top_bit;
249	}
250
251	for (; i >= 0; i--) {
252		for (; j >= 0; j--) {
253			if (MP_DIGITS(n)[i] & mask) {
254				MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n)));
255				MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n)));
256			} else {
257				MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n)));
258				MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n)));
259			}
260			mask >>= 1;
261		}
262		j = MP_DIGIT_BIT - 1;
263		mask = top_bit;
264	}
265
266	/* convert out of "projective" coordinates */
267	i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
268	if (i == 0) {
269		res = MP_BADARG;
270		goto CLEANUP;
271	} else if (i == 1) {
272		MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
273	} else {
274		MP_CHECKOK(mp_copy(&x2, rx));
275		MP_CHECKOK(mp_copy(&z2, ry));
276	}
277
278  CLEANUP:
279	mp_clear(&x1);
280	mp_clear(&x2);
281	mp_clear(&z1);
282	mp_clear(&z2);
283	return res;
284}
285