1/*
2 * ---------------------------------------------------------------------------
3 * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
4 *
5 * LICENSE TERMS
6 *
7 * The free distribution and use of this software is allowed (with or without
8 * changes) provided that:
9 *
10 *  1. source code distributions include the above copyright notice, this
11 *	list of conditions and the following disclaimer;
12 *
13 *  2. binary distributions include the above copyright notice, this list
14 *	of conditions and the following disclaimer in their documentation;
15 *
16 *  3. the name of the copyright holder is not used to endorse products
17 *	built using this software without specific written permission.
18 *
19 * DISCLAIMER
20 *
21 * This software is provided 'as is' with no explicit or implied warranties
22 * in respect of its properties, including, but not limited to, correctness
23 * and/or fitness for purpose.
24 * ---------------------------------------------------------------------------
25 * Issue Date: 20/12/2007
26 *
27 * This file contains the compilation options for AES (Rijndael) and code
28 * that is common across encryption, key scheduling and table generation.
29 *
30 * OPERATION
31 *
32 * These source code files implement the AES algorithm Rijndael designed by
33 * Joan Daemen and Vincent Rijmen. This version is designed for the standard
34 * block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
35 * and 32 bytes).
36 *
37 * This version is designed for flexibility and speed using operations on
38 * 32-bit words rather than operations on bytes.  It can be compiled with
39 * either big or little endian internal byte order but is faster when the
40 * native byte order for the processor is used.
41 *
42 * THE CIPHER INTERFACE
43 *
44 * The cipher interface is implemented as an array of bytes in which lower
45 * AES bit sequence indexes map to higher numeric significance within bytes.
46 */
47
48/*
49 * OpenSolaris changes
50 * 1. Added __cplusplus and _AESTAB_H header guards
51 * 2. Added header files sys/types.h and aes_impl.h
52 * 3. Added defines for AES_ENCRYPT, AES_DECRYPT, AES_REV_DKS, and ASM_AMD64_C
53 * 4. Moved defines for IS_BIG_ENDIAN, IS_LITTLE_ENDIAN, PLATFORM_BYTE_ORDER
54 *    from brg_endian.h
55 * 5. Undefined VIA_ACE_POSSIBLE and ASSUME_VIA_ACE_PRESENT
56 * 6. Changed uint_8t and uint_32t to uint8_t and uint32_t
57 * 7. Defined aes_sw32 as htonl() for byte swapping
58 * 8. Cstyled and hdrchk code
59 *
60 */
61
62#ifndef _AESOPT_H
63#define	_AESOPT_H
64
65#ifdef	__cplusplus
66extern "C" {
67#endif
68
69#include <sys/types.h>
70#include <sys/byteorder.h>
71#include <aes_impl.h>
72
73/*  SUPPORT FEATURES */
74#define	AES_ENCRYPT /* if support for encryption is needed */
75#define	AES_DECRYPT /* if support for decryption is needed */
76
77/*  PLATFORM-SPECIFIC FEATURES */
78#define	IS_BIG_ENDIAN		4321 /* byte 0 is most significant (mc68k) */
79#define	IS_LITTLE_ENDIAN	1234 /* byte 0 is least significant (i386) */
80#define	PLATFORM_BYTE_ORDER	IS_LITTLE_ENDIAN
81#define	AES_REV_DKS /* define to reverse decryption key schedule */
82
83
84/*
85 *  CONFIGURATION - THE USE OF DEFINES
86 *	Later in this section there are a number of defines that control the
87 *	operation of the code.  In each section, the purpose of each define is
88 *	explained so that the relevant form can be included or excluded by
89 *	setting either 1's or 0's respectively on the branches of the related
90 *	#if clauses.  The following local defines should not be changed.
91 */
92
93#define	ENCRYPTION_IN_C	1
94#define	DECRYPTION_IN_C	2
95#define	ENC_KEYING_IN_C	4
96#define	DEC_KEYING_IN_C	8
97
98#define	NO_TABLES	0
99#define	ONE_TABLE	1
100#define	FOUR_TABLES	4
101#define	NONE		0
102#define	PARTIAL		1
103#define	FULL		2
104
105/*  --- START OF USER CONFIGURED OPTIONS --- */
106
107/*
108 *  1. BYTE ORDER WITHIN 32 BIT WORDS
109 *
110 *	The fundamental data processing units in Rijndael are 8-bit bytes. The
111 *	input, output and key input are all enumerated arrays of bytes in which
112 *	bytes are numbered starting at zero and increasing to one less than the
113 *	number of bytes in the array in question. This enumeration is only used
114 *	for naming bytes and does not imply any adjacency or order relationship
115 *	from one byte to another. When these inputs and outputs are considered
116 *	as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
117 *	byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
118 *	In this implementation bits are numbered from 0 to 7 starting at the
119 *	numerically least significant end of each byte.  Bit n represents 2^n.
120 *
121 *	However, Rijndael can be implemented more efficiently using 32-bit
122 *	words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
123 *	into word[n]. While in principle these bytes can be assembled into words
124 *	in any positions, this implementation only supports the two formats in
125 *	which bytes in adjacent positions within words also have adjacent byte
126 *	numbers. This order is called big-endian if the lowest numbered bytes
127 *	in words have the highest numeric significance and little-endian if the
128 *	opposite applies.
129 *
130 *	This code can work in either order irrespective of the order used by the
131 *	machine on which it runs. Normally the internal byte order will be set
132 *	to the order of the processor on which the code is to be run but this
133 *	define	can be used to reverse this in special situations
134 *
135 *	WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
136 *	This define will hence be redefined later (in section 4) if necessary
137 */
138
139#if 1
140#define	ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
141#elif 0
142#define	ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
143#elif 0
144#define	ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
145#else
146#error The algorithm byte order is not defined
147#endif
148
149/*  2. VIA ACE SUPPORT */
150
151#if defined(__GNUC__) && defined(__i386__) || \
152	defined(_WIN32) && defined(_M_IX86) && \
153	!(defined(_WIN64) || defined(_WIN32_WCE) || \
154	defined(_MSC_VER) && (_MSC_VER <= 800))
155#define	VIA_ACE_POSSIBLE
156#endif
157
158/*
159 *  Define this option if support for the VIA ACE is required. This uses
160 *  inline assembler instructions and is only implemented for the Microsoft,
161 *  Intel and GCC compilers.  If VIA ACE is known to be present, then defining
162 *  ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
163 *  code.  If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
164 *  it is detected (both present and enabled) but the normal AES code will
165 *  also be present.
166 *
167 *  When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
168 *  aligned; other input/output buffers do not need to be 16 byte aligned
169 *  but there are very large performance gains if this can be arranged.
170 *  VIA ACE also requires the decryption key schedule to be in reverse
171 *  order (which later checks below ensure).
172 */
173
174/*  VIA ACE is not used here for OpenSolaris: */
175#undef	VIA_ACE_POSSIBLE
176#undef	ASSUME_VIA_ACE_PRESENT
177
178#if 0 && defined(VIA_ACE_POSSIBLE) && !defined(USE_VIA_ACE_IF_PRESENT)
179#define	USE_VIA_ACE_IF_PRESENT
180#endif
181
182#if 0 && defined(VIA_ACE_POSSIBLE) && !defined(ASSUME_VIA_ACE_PRESENT)
183#define	ASSUME_VIA_ACE_PRESENT
184#endif
185
186
187/*
188 *  3. ASSEMBLER SUPPORT
189 *
190 *	This define (which can be on the command line) enables the use of the
191 *	assembler code routines for encryption, decryption and key scheduling
192 *	as follows:
193 *
194 *	ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
195 *		encryption and decryption and but with key scheduling in C
196 *	ASM_X86_V2  uses assembler (aes_x86_v2.asm) with compressed tables for
197 *		encryption, decryption and key scheduling
198 *	ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
199 *		encryption and decryption and but with key scheduling in C
200 *	ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
201 *		encryption and decryption and but with key scheduling in C
202 *
203 *	Change one 'if 0' below to 'if 1' to select the version or define
204 *	as a compilation option.
205 */
206
207#if 0 && !defined(ASM_X86_V1C)
208#define	ASM_X86_V1C
209#elif 0 && !defined(ASM_X86_V2)
210#define	ASM_X86_V2
211#elif 0 && !defined(ASM_X86_V2C)
212#define	ASM_X86_V2C
213#elif 1 && !defined(ASM_AMD64_C)
214#define	ASM_AMD64_C
215#endif
216
217#if (defined(ASM_X86_V1C) || defined(ASM_X86_V2) || defined(ASM_X86_V2C)) && \
218	!defined(_M_IX86) || defined(ASM_AMD64_C) && !defined(_M_X64) && \
219	!defined(__amd64)
220#error Assembler code is only available for x86 and AMD64 systems
221#endif
222
223/*
224 *  4. FAST INPUT/OUTPUT OPERATIONS.
225 *
226 *	On some machines it is possible to improve speed by transferring the
227 *	bytes in the input and output arrays to and from the internal 32-bit
228 *	variables by addressing these arrays as if they are arrays of 32-bit
229 *	words.  On some machines this will always be possible but there may
230 *	be a large performance penalty if the byte arrays are not aligned on
231 *	the normal word boundaries. On other machines this technique will
232 *	lead to memory access errors when such 32-bit word accesses are not
233 *	properly aligned. The option SAFE_IO avoids such problems but will
234 *	often be slower on those machines that support misaligned access
235 *	(especially so if care is taken to align the input  and output byte
236 *	arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
237 *	assumed that access to byte arrays as if they are arrays of 32-bit
238 *	words will not cause problems when such accesses are misaligned.
239 */
240#if 1 && !defined(_MSC_VER)
241#define	SAFE_IO
242#endif
243
244/*
245 *  5. LOOP UNROLLING
246 *
247 *	The code for encryption and decryption cycles through a number of rounds
248 *	that can be implemented either in a loop or by expanding the code into a
249 *	long sequence of instructions, the latter producing a larger program but
250 *	one that will often be much faster. The latter is called loop unrolling.
251 *	There are also potential speed advantages in expanding two iterations in
252 *	a loop with half the number of iterations, which is called partial loop
253 *	unrolling.  The following options allow partial or full loop unrolling
254 *	to be set independently for encryption and decryption
255 */
256#if 1
257#define	ENC_UNROLL  FULL
258#elif 0
259#define	ENC_UNROLL  PARTIAL
260#else
261#define	ENC_UNROLL  NONE
262#endif
263
264#if 1
265#define	DEC_UNROLL  FULL
266#elif 0
267#define	DEC_UNROLL  PARTIAL
268#else
269#define	DEC_UNROLL  NONE
270#endif
271
272#if 1
273#define	ENC_KS_UNROLL
274#endif
275
276#if 1
277#define	DEC_KS_UNROLL
278#endif
279
280/*
281 *  6. FAST FINITE FIELD OPERATIONS
282 *
283 *	If this section is included, tables are used to provide faster finite
284 *	field arithmetic.  This has no effect if FIXED_TABLES is defined.
285 */
286#if 1
287#define	FF_TABLES
288#endif
289
290/*
291 *  7. INTERNAL STATE VARIABLE FORMAT
292 *
293 *	The internal state of Rijndael is stored in a number of local 32-bit
294 *	word variables which can be defined either as an array or as individual
295 *	names variables. Include this section if you want to store these local
296 *	variables in arrays. Otherwise individual local variables will be used.
297 */
298#if 1
299#define	ARRAYS
300#endif
301
302/*
303 *  8. FIXED OR DYNAMIC TABLES
304 *
305 *	When this section is included the tables used by the code are compiled
306 *	statically into the binary file.  Otherwise the subroutine aes_init()
307 *	must be called to compute them before the code is first used.
308 */
309#if 1 && !(defined(_MSC_VER) && (_MSC_VER <= 800))
310#define	FIXED_TABLES
311#endif
312
313/*
314 *  9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
315 *
316 *	In some systems it is better to mask longer values to extract bytes
317 *	rather than using a cast. This option allows this choice.
318 */
319#if 0
320#define	to_byte(x)  ((uint8_t)(x))
321#else
322#define	to_byte(x)  ((x) & 0xff)
323#endif
324
325/*
326 *  10. TABLE ALIGNMENT
327 *
328 *	On some systems speed will be improved by aligning the AES large lookup
329 *	tables on particular boundaries. This define should be set to a power of
330 *	two giving the desired alignment. It can be left undefined if alignment
331 *	is not needed.  This option is specific to the Micrsoft VC++ compiler -
332 *	it seems to sometimes cause trouble for the VC++ version 6 compiler.
333 */
334
335#if 1 && defined(_MSC_VER) && (_MSC_VER >= 1300)
336#define	TABLE_ALIGN 32
337#endif
338
339/*
340 *  11.  REDUCE CODE AND TABLE SIZE
341 *
342 *	This replaces some expanded macros with function calls if AES_ASM_V2 or
343 *	AES_ASM_V2C are defined
344 */
345
346#if 1 && (defined(ASM_X86_V2) || defined(ASM_X86_V2C))
347#define	REDUCE_CODE_SIZE
348#endif
349
350/*
351 *  12. TABLE OPTIONS
352 *
353 *	This cipher proceeds by repeating in a number of cycles known as rounds
354 *	which are implemented by a round function which is optionally be speeded
355 *	up using tables.  The basic tables are 256 32-bit words, with either
356 *	one or four tables being required for each round function depending on
357 *	how much speed is required. Encryption and decryption round functions
358 *	are different and the last encryption and decryption round functions are
359 *	different again making four different round functions in all.
360 *
361 *	This means that:
362 *	1. Normal encryption and decryption rounds can each use either 0, 1
363 *		or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
364 *	2. The last encryption and decryption rounds can also use either 0, 1
365 *		or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
366 *
367 *	Include or exclude the appropriate definitions below to set the number
368 *	of tables used by this implementation.
369 */
370
371#if 1   /* set tables for the normal encryption round */
372#define	ENC_ROUND   FOUR_TABLES
373#elif 0
374#define	ENC_ROUND   ONE_TABLE
375#else
376#define	ENC_ROUND   NO_TABLES
377#endif
378
379#if 1   /* set tables for the last encryption round */
380#define	LAST_ENC_ROUND  FOUR_TABLES
381#elif 0
382#define	LAST_ENC_ROUND  ONE_TABLE
383#else
384#define	LAST_ENC_ROUND  NO_TABLES
385#endif
386
387#if 1   /* set tables for the normal decryption round */
388#define	DEC_ROUND   FOUR_TABLES
389#elif 0
390#define	DEC_ROUND   ONE_TABLE
391#else
392#define	DEC_ROUND   NO_TABLES
393#endif
394
395#if 1   /* set tables for the last decryption round */
396#define	LAST_DEC_ROUND  FOUR_TABLES
397#elif 0
398#define	LAST_DEC_ROUND  ONE_TABLE
399#else
400#define	LAST_DEC_ROUND  NO_TABLES
401#endif
402
403/*
404 *  The decryption key schedule can be speeded up with tables in the same
405 *	way that the round functions can.  Include or exclude the following
406 *	defines to set this requirement.
407 */
408#if 1
409#define	KEY_SCHED   FOUR_TABLES
410#elif 0
411#define	KEY_SCHED   ONE_TABLE
412#else
413#define	KEY_SCHED   NO_TABLES
414#endif
415
416/*  ---- END OF USER CONFIGURED OPTIONS ---- */
417
418/* VIA ACE support is only available for VC++ and GCC */
419
420#if !defined(_MSC_VER) && !defined(__GNUC__)
421#if defined(ASSUME_VIA_ACE_PRESENT)
422#undef ASSUME_VIA_ACE_PRESENT
423#endif
424#if defined(USE_VIA_ACE_IF_PRESENT)
425#undef USE_VIA_ACE_IF_PRESENT
426#endif
427#endif
428
429#if defined(ASSUME_VIA_ACE_PRESENT) && !defined(USE_VIA_ACE_IF_PRESENT)
430#define	USE_VIA_ACE_IF_PRESENT
431#endif
432
433#if defined(USE_VIA_ACE_IF_PRESENT) && !defined(AES_REV_DKS)
434#define	AES_REV_DKS
435#endif
436
437/* Assembler support requires the use of platform byte order */
438
439#if (defined(ASM_X86_V1C) || defined(ASM_X86_V2C) || defined(ASM_AMD64_C)) && \
440	(ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
441#undef  ALGORITHM_BYTE_ORDER
442#define	ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
443#endif
444
445/*
446 * In this implementation the columns of the state array are each held in
447 *	32-bit words. The state array can be held in various ways: in an array
448 *	of words, in a number of individual word variables or in a number of
449 *	processor registers. The following define maps a variable name x and
450 *	a column number c to the way the state array variable is to be held.
451 *	The first define below maps the state into an array x[c] whereas the
452 *	second form maps the state into a number of individual variables x0,
453 *	x1, etc.  Another form could map individual state columns to machine
454 *	register names.
455 */
456
457#if defined(ARRAYS)
458#define	s(x, c) x[c]
459#else
460#define	s(x, c) x##c
461#endif
462
463/*
464 *  This implementation provides subroutines for encryption, decryption
465 *	and for setting the three key lengths (separately) for encryption
466 *	and decryption. Since not all functions are needed, masks are set
467 *	up here to determine which will be implemented in C
468 */
469
470#if !defined(AES_ENCRYPT)
471#define	EFUNCS_IN_C   0
472#elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
473	defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
474#define	EFUNCS_IN_C   ENC_KEYING_IN_C
475#elif !defined(ASM_X86_V2)
476#define	EFUNCS_IN_C   (ENCRYPTION_IN_C | ENC_KEYING_IN_C)
477#else
478#define	EFUNCS_IN_C   0
479#endif
480
481#if !defined(AES_DECRYPT)
482#define	DFUNCS_IN_C   0
483#elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
484	defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
485#define	DFUNCS_IN_C   DEC_KEYING_IN_C
486#elif !defined(ASM_X86_V2)
487#define	DFUNCS_IN_C   (DECRYPTION_IN_C | DEC_KEYING_IN_C)
488#else
489#define	DFUNCS_IN_C   0
490#endif
491
492#define	FUNCS_IN_C  (EFUNCS_IN_C | DFUNCS_IN_C)
493
494/* END OF CONFIGURATION OPTIONS */
495
496/* Disable or report errors on some combinations of options */
497
498#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
499#undef  LAST_ENC_ROUND
500#define	LAST_ENC_ROUND  NO_TABLES
501#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
502#undef  LAST_ENC_ROUND
503#define	LAST_ENC_ROUND  ONE_TABLE
504#endif
505
506#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
507#undef  ENC_UNROLL
508#define	ENC_UNROLL  NONE
509#endif
510
511#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
512#undef  LAST_DEC_ROUND
513#define	LAST_DEC_ROUND  NO_TABLES
514#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
515#undef  LAST_DEC_ROUND
516#define	LAST_DEC_ROUND  ONE_TABLE
517#endif
518
519#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
520#undef  DEC_UNROLL
521#define	DEC_UNROLL  NONE
522#endif
523
524#if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
525#define	aes_sw32	htonl
526#elif defined(bswap32)
527#define	aes_sw32	bswap32
528#elif defined(bswap_32)
529#define	aes_sw32	bswap_32
530#else
531#define	brot(x, n)  (((uint32_t)(x) << (n)) | ((uint32_t)(x) >> (32 - (n))))
532#define	aes_sw32(x) ((brot((x), 8) & 0x00ff00ff) | (brot((x), 24) & 0xff00ff00))
533#endif
534
535
536/*
537 *	upr(x, n):  rotates bytes within words by n positions, moving bytes to
538 *		higher index positions with wrap around into low positions
539 *	ups(x, n):  moves bytes by n positions to higher index positions in
540 *		words but without wrap around
541 *	bval(x, n): extracts a byte from a word
542 *
543 *	WARNING:   The definitions given here are intended only for use with
544 *		unsigned variables and with shift counts that are compile
545 *		time constants
546 */
547
548#if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
549#define	upr(x, n)	(((uint32_t)(x) << (8 * (n))) | \
550			((uint32_t)(x) >> (32 - 8 * (n))))
551#define	ups(x, n)	((uint32_t)(x) << (8 * (n)))
552#define	bval(x, n)	to_byte((x) >> (8 * (n)))
553#define	bytes2word(b0, b1, b2, b3)  \
554		(((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | \
555		((uint32_t)(b1) << 8) | (b0))
556#endif
557
558#if (ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN)
559#define	upr(x, n)	(((uint32_t)(x) >> (8 * (n))) | \
560			((uint32_t)(x) << (32 - 8 * (n))))
561#define	ups(x, n)	((uint32_t)(x) >> (8 * (n)))
562#define	bval(x, n)	to_byte((x) >> (24 - 8 * (n)))
563#define	bytes2word(b0, b1, b2, b3)  \
564		(((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | \
565		((uint32_t)(b2) << 8) | (b3))
566#endif
567
568#if defined(SAFE_IO)
569#define	word_in(x, c)	bytes2word(((const uint8_t *)(x) + 4 * c)[0], \
570				((const uint8_t *)(x) + 4 * c)[1], \
571				((const uint8_t *)(x) + 4 * c)[2], \
572				((const uint8_t *)(x) + 4 * c)[3])
573#define	word_out(x, c, v) { ((uint8_t *)(x) + 4 * c)[0] = bval(v, 0); \
574			((uint8_t *)(x) + 4 * c)[1] = bval(v, 1); \
575			((uint8_t *)(x) + 4 * c)[2] = bval(v, 2); \
576			((uint8_t *)(x) + 4 * c)[3] = bval(v, 3); }
577#elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
578#define	word_in(x, c)	(*((uint32_t *)(x) + (c)))
579#define	word_out(x, c, v) (*((uint32_t *)(x) + (c)) = (v))
580#else
581#define	word_in(x, c)	aes_sw32(*((uint32_t *)(x) + (c)))
582#define	word_out(x, c, v) (*((uint32_t *)(x) + (c)) = aes_sw32(v))
583#endif
584
585/* the finite field modular polynomial and elements */
586
587#define	WPOLY   0x011b
588#define	BPOLY	0x1b
589
590/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
591
592#define	m1  0x80808080
593#define	m2  0x7f7f7f7f
594#define	gf_mulx(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
595
596/*
597 * The following defines provide alternative definitions of gf_mulx that might
598 * give improved performance if a fast 32-bit multiply is not available. Note
599 * that a temporary variable u needs to be defined where gf_mulx is used.
600 *
601 * #define	gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ \
602 *			((u >> 3) | (u >> 6))
603 * #define	m4  (0x01010101 * BPOLY)
604 * #define	gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) \
605 *			& m4)
606 */
607
608/* Work out which tables are needed for the different options   */
609
610#if defined(ASM_X86_V1C)
611#if defined(ENC_ROUND)
612#undef  ENC_ROUND
613#endif
614#define	ENC_ROUND   FOUR_TABLES
615#if defined(LAST_ENC_ROUND)
616#undef  LAST_ENC_ROUND
617#endif
618#define	LAST_ENC_ROUND  FOUR_TABLES
619#if defined(DEC_ROUND)
620#undef  DEC_ROUND
621#endif
622#define	DEC_ROUND   FOUR_TABLES
623#if defined(LAST_DEC_ROUND)
624#undef  LAST_DEC_ROUND
625#endif
626#define	LAST_DEC_ROUND  FOUR_TABLES
627#if defined(KEY_SCHED)
628#undef  KEY_SCHED
629#define	KEY_SCHED   FOUR_TABLES
630#endif
631#endif
632
633#if (FUNCS_IN_C & ENCRYPTION_IN_C) || defined(ASM_X86_V1C)
634#if ENC_ROUND == ONE_TABLE
635#define	FT1_SET
636#elif ENC_ROUND == FOUR_TABLES
637#define	FT4_SET
638#else
639#define	SBX_SET
640#endif
641#if LAST_ENC_ROUND == ONE_TABLE
642#define	FL1_SET
643#elif LAST_ENC_ROUND == FOUR_TABLES
644#define	FL4_SET
645#elif !defined(SBX_SET)
646#define	SBX_SET
647#endif
648#endif
649
650#if (FUNCS_IN_C & DECRYPTION_IN_C) || defined(ASM_X86_V1C)
651#if DEC_ROUND == ONE_TABLE
652#define	IT1_SET
653#elif DEC_ROUND == FOUR_TABLES
654#define	IT4_SET
655#else
656#define	ISB_SET
657#endif
658#if LAST_DEC_ROUND == ONE_TABLE
659#define	IL1_SET
660#elif LAST_DEC_ROUND == FOUR_TABLES
661#define	IL4_SET
662#elif !defined(ISB_SET)
663#define	ISB_SET
664#endif
665#endif
666
667
668#if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
669	defined(ASM_X86_V2C)))
670#if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
671#if KEY_SCHED == ONE_TABLE
672#if !defined(FL1_SET) && !defined(FL4_SET)
673#define	LS1_SET
674#endif
675#elif KEY_SCHED == FOUR_TABLES
676#if !defined(FL4_SET)
677#define	LS4_SET
678#endif
679#elif !defined(SBX_SET)
680#define	SBX_SET
681#endif
682#endif
683#if (FUNCS_IN_C & DEC_KEYING_IN_C)
684#if KEY_SCHED == ONE_TABLE
685#define	IM1_SET
686#elif KEY_SCHED == FOUR_TABLES
687#define	IM4_SET
688#elif !defined(SBX_SET)
689#define	SBX_SET
690#endif
691#endif
692#endif
693
694/* generic definitions of Rijndael macros that use tables */
695
696#define	no_table(x, box, vf, rf, c) bytes2word(\
697	box[bval(vf(x, 0, c), rf(0, c))], \
698	box[bval(vf(x, 1, c), rf(1, c))], \
699	box[bval(vf(x, 2, c), rf(2, c))], \
700	box[bval(vf(x, 3, c), rf(3, c))])
701
702#define	one_table(x, op, tab, vf, rf, c) \
703	(tab[bval(vf(x, 0, c), rf(0, c))] \
704	^ op(tab[bval(vf(x, 1, c), rf(1, c))], 1) \
705	^ op(tab[bval(vf(x, 2, c), rf(2, c))], 2) \
706	^ op(tab[bval(vf(x, 3, c), rf(3, c))], 3))
707
708#define	four_tables(x, tab, vf, rf, c) \
709	(tab[0][bval(vf(x, 0, c), rf(0, c))] \
710	^ tab[1][bval(vf(x, 1, c), rf(1, c))] \
711	^ tab[2][bval(vf(x, 2, c), rf(2, c))] \
712	^ tab[3][bval(vf(x, 3, c), rf(3, c))])
713
714#define	vf1(x, r, c)	(x)
715#define	rf1(r, c)	(r)
716#define	rf2(r, c)	((8+r-c)&3)
717
718/*
719 * Perform forward and inverse column mix operation on four bytes in long word
720 * x in parallel. NOTE: x must be a simple variable, NOT an expression in
721 * these macros.
722 */
723
724#if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
725	defined(ASM_X86_V2C)))
726
727#if defined(FM4_SET)	/* not currently used */
728#define	fwd_mcol(x)	four_tables(x, t_use(f, m), vf1, rf1, 0)
729#elif defined(FM1_SET)	/* not currently used */
730#define	fwd_mcol(x)	one_table(x, upr, t_use(f, m), vf1, rf1, 0)
731#else
732#define	dec_fmvars	uint32_t g2
733#define	fwd_mcol(x)	(g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ \
734				upr((x), 2) ^ upr((x), 1))
735#endif
736
737#if defined(IM4_SET)
738#define	inv_mcol(x)	four_tables(x, t_use(i, m), vf1, rf1, 0)
739#elif defined(IM1_SET)
740#define	inv_mcol(x)	one_table(x, upr, t_use(i, m), vf1, rf1, 0)
741#else
742#define	dec_imvars	uint32_t g2, g4, g9
743#define	inv_mcol(x)	(g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = \
744				(x) ^ gf_mulx(g4), g4 ^= g9, \
745				(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ \
746				upr(g4, 2) ^ upr(g9, 1))
747#endif
748
749#if defined(FL4_SET)
750#define	ls_box(x, c)	four_tables(x, t_use(f, l), vf1, rf2, c)
751#elif defined(LS4_SET)
752#define	ls_box(x, c)	four_tables(x, t_use(l, s), vf1, rf2, c)
753#elif defined(FL1_SET)
754#define	ls_box(x, c)	one_table(x, upr, t_use(f, l), vf1, rf2, c)
755#elif defined(LS1_SET)
756#define	ls_box(x, c)	one_table(x, upr, t_use(l, s), vf1, rf2, c)
757#else
758#define	ls_box(x, c)	no_table(x, t_use(s, box), vf1, rf2, c)
759#endif
760
761#endif
762
763#if defined(ASM_X86_V1C) && defined(AES_DECRYPT) && !defined(ISB_SET)
764#define	ISB_SET
765#endif
766
767#ifdef	__cplusplus
768}
769#endif
770
771#endif	/* _AESOPT_H */
772