1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25#ifndef _CMD_MEM_H
26#define	_CMD_MEM_H
27
28/*
29 * Support routines for managing state related to memory modules.
30 *
31 * Correctable errors generally cause changes to the DIMM-related state (see
32 * cmd_dimm.c), whereas uncorrectable errors tend to use the bank-related
33 * routines (see cmd_bank.c).  The primary exception to this division (though
34 * it eventually devolves to one of the two) is the RxE/FRx pair emitted by
35 * UltraSPARC-IIIi processors.  With these errors, a complete pair must be
36 * received and matched before we know whether we're dealing with a CE or a UE.
37 */
38
39#include <cmd.h>
40#include <cmd_state.h>
41#include <cmd_fmri.h>
42#include <sys/errclassify.h>
43#include <cmd_cpu.h>
44
45#ifdef __cplusplus
46extern "C" {
47#endif
48
49#define	CMD_MEM_F_FAULTING	0x1
50
51/*
52 * Used to store as-yet unmatched IOxEs, RxEs, and FRxs.  When a new IOxE,
53 * RxE or FRx arrives, we traverse the cmd.cmd_iorxefrx list, looking for
54 * matching entries.  Matching has a cpuid-based component, as well as a
55 * temporal one.  We can compare the cpuids directly, using the cmd_iorxefrx_t
56 * and the newly-received event. Temporal comparison isn't performed directly.
57 * Instead, we ensure that entries in the iorxefrx list are removed when they
58 * expire by means of timers. This frees the matching code from the need to
59 * worry about time.
60 */
61typedef struct cmd_iorxefrx {
62	cmd_list_t rf_list;		/* List of cmd_iorxefrx_t's */
63	cmd_errcl_t rf_errcl;		/* Error type (CMD_ERRCL_*) */
64	uint_t rf_afsr_agentid;		/* Remote Agent ID (from AFSR) */
65	uint_t rf_det_agentid;		/* Locat Agent ID (from detector) */
66	id_t rf_expid;			/* Timer ID for entry expiration */
67	uint64_t rf_afar;		/* Valid for RxE only */
68	uint8_t rf_afar_status;		/* Valid for RxE only */
69	ce_dispact_t rf_type;		/* Valid for RxE only */
70	uint16_t rf_synd;		/* Valid for FRx only */
71	uint8_t rf_synd_status;		/* Valid for FRx only */
72	uint64_t rf_afsr;		/* Valid for FRx only */
73	uint64_t rf_disp;		/* Valid for RCE only */
74} cmd_iorxefrx_t;
75
76typedef struct cmd_dimm cmd_dimm_t;
77typedef struct cmd_bank cmd_bank_t;
78#ifdef sun4v
79typedef struct cmd_branch cmd_branch_t;
80#endif
81
82/*
83 * Correctable and Uncorrectable memory errors
84 *
85 * CEs of "Unknown" or "Intermittent" classification are not used in diagnosis.
86 *
87 * "Persistent" CEs are added to per-DIMM SERD engines.  When the
88 * engine for a given DIMM fires, the page corresponding to the CE that
89 * caused the engine to fire is retired, and the SERD engine for that
90 * DIMM is reset.
91 *
92 * "Possibly Persistent" CEs are at least Persistent and so are treated
93 * as "Persistent" errors above, being added to the same SERD engines.
94 *
95 * "Leaky" CEs and "Sticky" CEs trigger immediate page retirement.
96 *
97 * "Possibly Sticky" CEs to which no valid partner test has been applied
98 * are not used in diagnosis.  Where a valid partner test has been applied
99 * but did not confirm "Sticky" status there is a _suggestion_ that the
100 * original cpu may be a bad reader or writer or suffering from other
101 * datapath issues.  To avoid retiring pages for such non-DIMM problems
102 * these classifications are also not used in diagnosis.
103 *
104 * UEs immediately trigger page retirements, but do not affect the CE SERD
105 * engines.  In addition, UEs are recorded in the UE caches of the detecting
106 * CPUs.  When a page is to be retired, a fault.memory.page fault is
107 * generated.
108 *
109 */
110
111typedef cmd_evdisp_t cmd_xe_handler_f(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
112    const char *, uint64_t, uint8_t, uint16_t, uint8_t, ce_dispact_t, uint64_t,
113    nvlist_t *);
114
115extern ce_dispact_t cmd_mem_name2type(const char *, int);
116extern int cmd_synd2upos(uint16_t);
117extern cmd_evdisp_t cmd_ce(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
118    const char *, cmd_errcl_t);
119extern cmd_evdisp_t cmd_ue(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
120    const char *, cmd_errcl_t);
121extern cmd_evdisp_t cmd_ce_common(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
122    const char *, uint64_t, uint8_t, uint16_t, uint8_t,
123    ce_dispact_t, uint64_t, nvlist_t *);
124extern cmd_evdisp_t cmd_ue_common(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
125    const char *, uint64_t, uint8_t, uint16_t, uint8_t,
126    ce_dispact_t, uint64_t, nvlist_t *);
127extern cmd_evdisp_t cmd_mem_synd_check(fmd_hdl_t *, uint64_t, uint8_t,
128    uint16_t, uint8_t, cmd_cpu_t *);
129extern void cmd_dimm_close(fmd_hdl_t *, void *);
130extern void cmd_bank_close(fmd_hdl_t *, void *);
131extern int cmd_same_datapath_dimms(cmd_dimm_t *, cmd_dimm_t *);
132extern void cmd_gen_datapath_fault(fmd_hdl_t *, cmd_dimm_t *, cmd_dimm_t *,
133    uint16_t, nvlist_t *);
134extern void cmd_to_hashed_addr(uint64_t *, uint64_t, const char *);
135
136#ifdef sun4u
137extern char *cmd_cpu_getfrustr_by_id(fmd_hdl_t *, uint32_t);
138#endif
139
140#ifdef sun4v
141extern void cmd_branch_close(fmd_hdl_t *, void *);
142extern cmd_evdisp_t cmd_fb(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
143    const char *, cmd_errcl_t);
144extern cmd_evdisp_t cmd_fw_defect(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
145    const char *, cmd_errcl_t);
146extern cmd_evdisp_t cmd_fb_train(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
147    const char *, cmd_errcl_t);
148extern cmd_evdisp_t cmd_ue_train(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
149    const char *, cmd_errcl_t);
150#endif
151
152/*
153 * US-IIIi I/O, Remote and Foreign Read memory errors
154 *
155 * When one processor or I/O bridge attempts to read memory local to
156 * another processor, one each of IOCE/IOUE/RCE/RUE and FRC/FRU will be
157 * generated, depending on the type of error.  Both the IOxE/RxE and the FRx
158 * are needed, as each contains data necessary to the diagnosis of the error.
159 * Upon receipt of one of the errors, we wait until we receive the other.
160 * When the pair has been successfully received and matched, a CE or UE,
161 * as appropriate, is synthesized from the data in the matched ereports.
162 * The synthesized ereports are handled by the normal CE and UE mechanisms.
163 */
164extern cmd_evdisp_t cmd_frx(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
165    const char *, cmd_errcl_t);
166extern cmd_evdisp_t cmd_rxe(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
167    const char *, cmd_errcl_t);
168extern cmd_evdisp_t cmd_ioxe(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
169    const char *, cmd_errcl_t);
170extern cmd_evdisp_t cmd_ioxe_sec(fmd_hdl_t *, fmd_event_t *, nvlist_t *,
171    const char *, cmd_errcl_t);
172extern cmd_evdisp_t cmd_rxefrx_common(fmd_hdl_t *hdl, fmd_event_t *ep,
173    nvlist_t *nvl, const char *class, cmd_errcl_t clcode,
174    cmd_errcl_t matchmask);
175
176/*
177 * A list of received IOxE/RxE/FRx ereports is maintained for correlation
178 * purposes (see above).  These two routines manage the addition of new
179 * ereports, and the retrieval of existing ones.  Pruning of the list is
180 * handled automatically.
181 */
182extern void cmd_iorxefrx_queue(fmd_hdl_t *, cmd_iorxefrx_t *);
183extern void cmd_iorxefrx_free(fmd_hdl_t *, cmd_iorxefrx_t *);
184
185extern const char *cmd_fmri_get_unum(nvlist_t *);
186extern nvlist_t *cmd_mem_fmri_create(const char *, char **, size_t);
187extern nvlist_t *cmd_mem_fmri_derive(fmd_hdl_t *, uint64_t, uint64_t, uint16_t);
188
189extern void cmd_mem_case_restore(fmd_hdl_t *, cmd_case_t *, fmd_case_t *,
190    const char *, const char *);
191extern char *cmd_mem_serdnm_create(fmd_hdl_t *, const char *, const char *);
192extern char *cmd_page_serdnm_create(fmd_hdl_t *, const char *, uint64_t);
193extern char *cmd_mq_serdnm_create(fmd_hdl_t *, const char *, uint64_t,
194    uint16_t, uint16_t);
195extern void cmd_mem_retirestat_create(fmd_hdl_t *, fmd_stat_t *, const char *,
196    uint64_t, const char *);
197extern int cmd_mem_thresh_check(fmd_hdl_t *, uint_t);
198extern ulong_t cmd_mem_get_phys_pages(fmd_hdl_t *);
199
200extern void cmd_mem_timeout(fmd_hdl_t *, id_t);
201extern void cmd_mem_gc(fmd_hdl_t *);
202extern void cmd_mem_fini(fmd_hdl_t *);
203
204#ifdef __cplusplus
205}
206#endif
207
208#endif /* _CMD_MEM_H */
209