1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 *
25 * tree.c -- routines for manipulating the prop tree
26 *
27 * the actions in escparse.y call these routines to construct
28 * the parse tree.  these routines, in turn, call the check_X()
29 * routines for semantic checking.
30 */
31
32#pragma ident	"%Z%%M%	%I%	%E% SMI"
33
34#include <stdio.h>
35#include <stdlib.h>
36#include <ctype.h>
37#include <strings.h>
38#include <alloca.h>
39#include "alloc.h"
40#include "out.h"
41#include "stats.h"
42#include "stable.h"
43#include "literals.h"
44#include "lut.h"
45#include "esclex.h"
46#include "tree.h"
47#include "check.h"
48#include "ptree.h"
49
50static struct node *Root;
51
52static char *Newname;
53
54static struct stats *Faultcount;
55static struct stats *Upsetcount;
56static struct stats *Defectcount;
57static struct stats *Errorcount;
58static struct stats *Ereportcount;
59static struct stats *SERDcount;
60static struct stats *STATcount;
61static struct stats *ASRUcount;
62static struct stats *FRUcount;
63static struct stats *Configcount;
64static struct stats *Propcount;
65static struct stats *Maskcount;
66static struct stats *Nodecount;
67static struct stats *Namecount;
68static struct stats *Nodesize;
69
70struct lut *Usedprops;
71
72void
73tree_init(void)
74{
75	Faultcount = stats_new_counter("parser.fault", "fault decls", 1);
76	Upsetcount = stats_new_counter("parser.upset", "upset decls", 1);
77	Defectcount = stats_new_counter("parser.defect", "defect decls", 1);
78	Errorcount = stats_new_counter("parser.error", "error decls", 1);
79	Ereportcount = stats_new_counter("parser.ereport", "ereport decls", 1);
80	SERDcount = stats_new_counter("parser.SERD", "SERD engine decls", 1);
81	STATcount = stats_new_counter("parser.STAT", "STAT engine decls", 1);
82	ASRUcount = stats_new_counter("parser.ASRU", "ASRU decls", 1);
83	FRUcount = stats_new_counter("parser.FRU", "FRU decls", 1);
84	Configcount = stats_new_counter("parser.config", "config stmts", 1);
85	Propcount = stats_new_counter("parser.prop", "prop stmts", 1);
86	Maskcount = stats_new_counter("parser.mask", "mask stmts", 1);
87	Nodecount = stats_new_counter("parser.node", "nodes created", 1);
88	Namecount = stats_new_counter("parser.name", "names created", 1);
89	Nodesize =
90	    stats_new_counter("parser.nodesize", "sizeof(struct node)", 1);
91	stats_counter_add(Nodesize, sizeof (struct node));
92}
93
94void
95tree_fini(void)
96{
97	stats_delete(Faultcount);
98	stats_delete(Upsetcount);
99	stats_delete(Defectcount);
100	stats_delete(Errorcount);
101	stats_delete(Ereportcount);
102	stats_delete(SERDcount);
103	stats_delete(STATcount);
104	stats_delete(ASRUcount);
105	stats_delete(FRUcount);
106	stats_delete(Configcount);
107	stats_delete(Propcount);
108	stats_delete(Maskcount);
109	stats_delete(Nodecount);
110	stats_delete(Namecount);
111	stats_delete(Nodesize);
112
113	/* free entire parse tree */
114	tree_free(Root);
115
116	/* free up the luts we keep for decls */
117	lut_free(Faults, NULL, NULL);
118	Faults = NULL;
119	lut_free(Upsets, NULL, NULL);
120	Upsets = NULL;
121	lut_free(Defects, NULL, NULL);
122	Defects = NULL;
123	lut_free(Errors, NULL, NULL);
124	Errors = NULL;
125	lut_free(Ereports, NULL, NULL);
126	Ereports = NULL;
127	lut_free(Ereportenames, NULL, NULL);
128	Ereportenames = NULL;
129	lut_free(Ereportenames_discard, NULL, NULL);
130	Ereportenames_discard = NULL;
131	lut_free(SERDs, NULL, NULL);
132	SERDs = NULL;
133	lut_free(STATs, NULL, NULL);
134	STATs = NULL;
135	lut_free(ASRUs, NULL, NULL);
136	ASRUs = NULL;
137	lut_free(FRUs, NULL, NULL);
138	FRUs = NULL;
139	lut_free(Configs, NULL, NULL);
140	Configs = NULL;
141	lut_free(Usedprops, NULL, NULL);
142	Usedprops = NULL;
143
144	Props = Lastprops = NULL;
145	Masks = Lastmasks = NULL;
146	Problems = Lastproblems = NULL;
147
148	if (Newname != NULL) {
149		FREE(Newname);
150		Newname = NULL;
151	}
152}
153
154/*ARGSUSED*/
155static int
156nodesize(enum nodetype t, struct node *ret)
157{
158	int size = sizeof (struct node);
159
160	switch (t) {
161	case T_NAME:
162		size += sizeof (ret->u.name) - sizeof (ret->u);
163		break;
164
165	case T_GLOBID:
166		size += sizeof (ret->u.globid) - sizeof (ret->u);
167		break;
168
169	case T_TIMEVAL:
170	case T_NUM:
171		size += sizeof (ret->u.ull) - sizeof (ret->u);
172		break;
173
174	case T_QUOTE:
175		size += sizeof (ret->u.quote) - sizeof (ret->u);
176		break;
177
178	case T_FUNC:
179		size += sizeof (ret->u.func) - sizeof (ret->u);
180		break;
181
182	case T_FAULT:
183	case T_UPSET:
184	case T_DEFECT:
185	case T_ERROR:
186	case T_EREPORT:
187	case T_ASRU:
188	case T_FRU:
189	case T_SERD:
190	case T_STAT:
191	case T_CONFIG:
192	case T_PROP:
193	case T_MASK:
194		size += sizeof (ret->u.stmt) - sizeof (ret->u);
195		break;
196
197	case T_EVENT:
198		size += sizeof (ret->u.event) - sizeof (ret->u);
199		break;
200
201	case T_ARROW:
202		size += sizeof (ret->u.arrow) - sizeof (ret->u);
203		break;
204
205	default:
206		size += sizeof (ret->u.expr) - sizeof (ret->u);
207		break;
208	}
209	return (size);
210}
211
212struct node *
213newnode(enum nodetype t, const char *file, int line)
214{
215	struct node *ret = NULL;
216	int size = nodesize(t, ret);
217
218	ret = alloc_xmalloc(size);
219	stats_counter_bump(Nodecount);
220	bzero(ret, size);
221	ret->t = t;
222	ret->file = (file == NULL) ? "<nofile>" : file;
223	ret->line = line;
224
225	return (ret);
226}
227
228/*ARGSUSED*/
229void
230tree_free(struct node *root)
231{
232	if (root == NULL)
233		return;
234
235	switch (root->t) {
236	case T_NAME:
237		tree_free(root->u.name.child);
238		tree_free(root->u.name.next);
239		break;
240	case T_FUNC:
241		tree_free(root->u.func.arglist);
242		break;
243	case T_AND:
244	case T_OR:
245	case T_EQ:
246	case T_NE:
247	case T_ADD:
248	case T_DIV:
249	case T_MOD:
250	case T_MUL:
251	case T_SUB:
252	case T_LT:
253	case T_LE:
254	case T_GT:
255	case T_GE:
256	case T_BITAND:
257	case T_BITOR:
258	case T_BITXOR:
259	case T_BITNOT:
260	case T_LSHIFT:
261	case T_RSHIFT:
262	case T_NVPAIR:
263	case T_ASSIGN:
264	case T_CONDIF:
265	case T_CONDELSE:
266	case T_LIST:
267		tree_free(root->u.expr.left);
268		tree_free(root->u.expr.right);
269		break;
270	case T_EVENT:
271		tree_free(root->u.event.ename);
272		tree_free(root->u.event.epname);
273		tree_free(root->u.event.eexprlist);
274		break;
275	case T_NOT:
276		tree_free(root->u.expr.left);
277		break;
278	case T_ARROW:
279		tree_free(root->u.arrow.lhs);
280		tree_free(root->u.arrow.nnp);
281		tree_free(root->u.arrow.knp);
282		tree_free(root->u.arrow.rhs);
283		break;
284	case T_PROP:
285	case T_MASK:
286		tree_free(root->u.stmt.np);
287		break;
288	case T_FAULT:
289	case T_UPSET:
290	case T_DEFECT:
291	case T_ERROR:
292	case T_EREPORT:
293	case T_ASRU:
294	case T_FRU:
295	case T_SERD:
296	case T_STAT:
297	case T_CONFIG:
298		tree_free(root->u.stmt.np);
299		if (root->u.stmt.nvpairs)
300			tree_free(root->u.stmt.nvpairs);
301		if (root->u.stmt.lutp)
302			lut_free(root->u.stmt.lutp, NULL, NULL);
303		break;
304	case T_TIMEVAL:
305	case T_NUM:
306	case T_QUOTE:
307	case T_GLOBID:
308	case T_NOTHING:
309		break;
310	default:
311		out(O_DIE,
312		    "internal error: tree_free unexpected nodetype: %d",
313		    root->t);
314		/*NOTREACHED*/
315	}
316	alloc_xfree((char *)root, nodesize(root->t, root));
317}
318
319static int
320tree_treecmp(struct node *np1, struct node *np2, enum nodetype t,
321	    lut_cmp cmp_func)
322{
323	if (np1 == NULL || np2 == NULL)
324		return (0);
325
326	if (np1->t != np2->t)
327		return (1);
328
329	ASSERT(cmp_func != NULL);
330
331	if (np1->t == t)
332		return ((*cmp_func)(np1, np2));
333
334	switch (np1->t) {
335	case T_NAME:
336		if (tree_treecmp(np1->u.name.child, np2->u.name.child, t,
337		    cmp_func))
338			return (1);
339		return (tree_treecmp(np1->u.name.next, np2->u.name.next, t,
340		    cmp_func));
341		/*NOTREACHED*/
342		break;
343	case T_FUNC:
344		return (tree_treecmp(np1->u.func.arglist, np2->u.func.arglist,
345		    t, cmp_func));
346		/*NOTREACHED*/
347		break;
348	case T_AND:
349	case T_OR:
350	case T_EQ:
351	case T_NE:
352	case T_ADD:
353	case T_DIV:
354	case T_MOD:
355	case T_MUL:
356	case T_SUB:
357	case T_LT:
358	case T_LE:
359	case T_GT:
360	case T_GE:
361	case T_BITAND:
362	case T_BITOR:
363	case T_BITXOR:
364	case T_BITNOT:
365	case T_LSHIFT:
366	case T_RSHIFT:
367	case T_NVPAIR:
368	case T_ASSIGN:
369	case T_CONDIF:
370	case T_CONDELSE:
371	case T_LIST:
372		if (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
373		    cmp_func))
374			return (1);
375		return (tree_treecmp(np1->u.expr.right, np2->u.expr.right, t,
376		    cmp_func));
377		/*NOTREACHED*/
378		break;
379	case T_EVENT:
380		if (tree_treecmp(np1->u.event.ename, np2->u.event.ename, t,
381		    cmp_func))
382			return (1);
383		if (tree_treecmp(np1->u.event.epname, np2->u.event.epname, t,
384		    cmp_func))
385			return (1);
386		return (tree_treecmp(np1->u.event.eexprlist,
387		    np2->u.event.eexprlist, t, cmp_func));
388		/*NOTREACHED*/
389		break;
390	case T_NOT:
391		return (tree_treecmp(np1->u.expr.left, np2->u.expr.left, t,
392		    cmp_func));
393		/*NOTREACHED*/
394		break;
395	case T_ARROW:
396		if (tree_treecmp(np1->u.arrow.lhs, np2->u.arrow.lhs, t,
397		    cmp_func))
398			return (1);
399		if (tree_treecmp(np1->u.arrow.nnp, np2->u.arrow.nnp, t,
400		    cmp_func))
401			return (1);
402		if (tree_treecmp(np1->u.arrow.knp, np2->u.arrow.knp, t,
403		    cmp_func))
404			return (1);
405		return (tree_treecmp(np1->u.arrow.rhs, np2->u.arrow.rhs, t,
406		    cmp_func));
407		/*NOTREACHED*/
408		break;
409	case T_PROP:
410	case T_MASK:
411		return (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t,
412		    cmp_func));
413		/*NOTREACHED*/
414		break;
415	case T_FAULT:
416	case T_UPSET:
417	case T_DEFECT:
418	case T_ERROR:
419	case T_EREPORT:
420	case T_ASRU:
421	case T_FRU:
422	case T_SERD:
423	case T_STAT:
424		if (tree_treecmp(np1->u.stmt.np, np2->u.stmt.np, t, cmp_func))
425			return (1);
426		return (tree_treecmp(np1->u.stmt.nvpairs, np2->u.stmt.nvpairs,
427		    t, cmp_func));
428		/*NOTREACHED*/
429		break;
430	case T_TIMEVAL:
431	case T_NUM:
432	case T_QUOTE:
433	case T_GLOBID:
434	case T_NOTHING:
435		break;
436	default:
437		out(O_DIE,
438		    "internal error: tree_treecmp unexpected nodetype: %d",
439		    np1->t);
440		/*NOTREACHED*/
441		break;
442	}
443
444	return (0);
445}
446
447struct node *
448tree_root(struct node *np)
449{
450	if (np)
451		Root = np;
452	return (Root);
453}
454
455struct node *
456tree_nothing(void)
457{
458	return (newnode(T_NOTHING, L_nofile, 0));
459}
460
461struct node *
462tree_expr(enum nodetype t, struct node *left, struct node *right)
463{
464	struct node *ret;
465
466	ASSERTinfo(left != NULL || right != NULL, ptree_nodetype2str(t));
467
468	ret = newnode(t,
469	    (left) ? left->file : right->file,
470	    (left) ? left->line : right->line);
471
472	ret->u.expr.left = left;
473	ret->u.expr.right = right;
474
475	check_expr(ret);
476
477	return (ret);
478}
479
480/*
481 * ename_compress -- convert event class name in to more space-efficient form
482 *
483 * this routine is called after the parser has completed an "ename", which
484 * is that part of an event that contains the class name (like ereport.x.y.z).
485 * after this routine gets done with the ename, two things are true:
486 *   1. the ename uses only a single struct node
487 *   2. ename->u.name.s contains the *complete* class name, dots and all,
488 *      entered into the string table.
489 *
490 * so in addition to saving space by using fewer struct nodes, this routine
491 * allows consumers of the fault tree to assume the ename is a single
492 * string, rather than a linked list of strings.
493 */
494static struct node *
495ename_compress(struct node *ename)
496{
497	char *buf;
498	char *cp;
499	int len = 0;
500	struct node *np;
501
502	if (ename == NULL)
503		return (ename);
504
505	ASSERT(ename->t == T_NAME);
506
507	if (ename->u.name.next == NULL)
508		return (ename);	/* no compression to be applied here */
509
510	for (np = ename; np != NULL; np = np->u.name.next) {
511		ASSERT(np->t == T_NAME);
512		len++;	/* room for '.' and final '\0' */
513		len += strlen(np->u.name.s);
514	}
515	cp = buf = alloca(len);
516	for (np = ename; np != NULL; np = np->u.name.next) {
517		ASSERT(np->t == T_NAME);
518		if (np != ename)
519			*cp++ = '.';
520		(void) strcpy(cp, np->u.name.s);
521		cp += strlen(cp);
522	}
523
524	ename->u.name.s = stable(buf);
525	tree_free(ename->u.name.next);
526	ename->u.name.next = NULL;
527	ename->u.name.last = ename;
528	return (ename);
529}
530
531struct node *
532tree_event(struct node *ename, struct node *epname, struct node *eexprlist)
533{
534	struct node *ret;
535
536	ASSERT(ename != NULL);
537
538	ret = newnode(T_EVENT, ename->file, ename->line);
539
540	ret->u.event.ename = ename_compress(ename);
541	ret->u.event.epname = epname;
542	ret->u.event.eexprlist = eexprlist;
543
544	check_event(ret);
545
546	return (ret);
547}
548
549struct node *
550tree_name(const char *s, enum itertype it, const char *file, int line)
551{
552	struct node *ret = newnode(T_NAME, file, line);
553
554	ASSERT(s != NULL);
555
556	stats_counter_bump(Namecount);
557	ret->u.name.t = N_UNSPEC;
558	ret->u.name.s = stable(s);
559	ret->u.name.it = it;
560	ret->u.name.last = ret;
561
562	if (it == IT_ENAME) {
563		/* PHASE2, possible optimization: convert to table driven */
564		if (s == L_fault)
565			ret->u.name.t = N_FAULT;
566		else if (s == L_upset)
567			ret->u.name.t = N_UPSET;
568		else if (s == L_defect)
569			ret->u.name.t = N_DEFECT;
570		else if (s == L_error)
571			ret->u.name.t = N_ERROR;
572		else if (s == L_ereport)
573			ret->u.name.t = N_EREPORT;
574		else if (s == L_serd)
575			ret->u.name.t = N_SERD;
576		else if (s == L_stat)
577			ret->u.name.t = N_STAT;
578		else
579			outfl(O_ERR, file, line, "unknown class: %s", s);
580	}
581	return (ret);
582}
583
584struct node *
585tree_iname(const char *s, const char *file, int line)
586{
587	struct node *ret;
588	char *ss;
589	char *ptr;
590
591	ASSERT(s != NULL && *s != '\0');
592
593	ss = STRDUP(s);
594
595	ptr = &ss[strlen(ss) - 1];
596	if (!isdigit(*ptr)) {
597		outfl(O_ERR, file, line,
598		    "instanced name expected (i.e. \"x0/y1\")");
599		FREE(ss);
600		return (tree_name(s, IT_NONE, file, line));
601	}
602	while (ptr > ss && isdigit(*(ptr - 1)))
603		ptr--;
604
605	ret = newnode(T_NAME, file, line);
606	stats_counter_bump(Namecount);
607	ret->u.name.child = tree_num(ptr, file, line);
608	*ptr = '\0';
609	ret->u.name.t = N_UNSPEC;
610	ret->u.name.s = stable(ss);
611	ret->u.name.it = IT_NONE;
612	ret->u.name.last = ret;
613	FREE(ss);
614
615	return (ret);
616}
617
618struct node *
619tree_globid(const char *s, const char *file, int line)
620{
621	struct node *ret = newnode(T_GLOBID, file, line);
622
623	ASSERT(s != NULL);
624
625	ret->u.globid.s = stable(s);
626
627	return (ret);
628}
629
630struct node *
631tree_name_append(struct node *np1, struct node *np2)
632{
633	ASSERT(np1 != NULL && np2 != NULL);
634
635	if (np1->t != T_NAME)
636		outfl(O_DIE, np1->file, np1->line,
637		    "tree_name_append: internal error (np1 type %d)", np1->t);
638	if (np2->t != T_NAME)
639		outfl(O_DIE, np2->file, np2->line,
640		    "tree_name_append: internal error (np2 type %d)", np2->t);
641
642	ASSERT(np1->u.name.last != NULL);
643
644	np1->u.name.last->u.name.next = np2;
645	np1->u.name.last = np2;
646	return (np1);
647}
648
649/*
650 * tree_name_repairdash -- repair a class name that contained a dash
651 *
652 * this routine is called by the parser when a dash is encountered
653 * in a class name.  the event protocol allows the dashes but our
654 * lexer considers them a separate token (arithmetic minus).  an extra
655 * rule in the parser catches this case and calls this routine to fixup
656 * the last component of the class name (so far) by constructing the
657 * new stable entry for a name including the dash.
658 */
659struct node *
660tree_name_repairdash(struct node *np, const char *s)
661{
662	int len;
663	char *buf;
664
665	ASSERT(np != NULL && s != NULL);
666
667	if (np->t != T_NAME)
668		outfl(O_DIE, np->file, np->line,
669		    "tree_name_repairdash: internal error (np type %d)",
670		    np->t);
671
672	ASSERT(np->u.name.last != NULL);
673
674	len = strlen(np->u.name.last->u.name.s) + 1 + strlen(s) + 1;
675	buf = MALLOC(len);
676	(void) snprintf(buf, len, "%s-%s", np->u.name.last->u.name.s, s);
677	np->u.name.last->u.name.s = stable(buf);
678	FREE(buf);
679	return (np);
680}
681
682struct node *
683tree_name_repairdash2(const char *s, struct node *np)
684{
685	int len;
686	char *buf;
687
688	ASSERT(np != NULL && s != NULL);
689
690	if (np->t != T_NAME)
691		outfl(O_DIE, np->file, np->line,
692		    "tree_name_repairdash: internal error (np type %d)",
693		    np->t);
694
695	ASSERT(np->u.name.last != NULL);
696
697	len = strlen(np->u.name.last->u.name.s) + 1 + strlen(s) + 1;
698	buf = MALLOC(len);
699	(void) snprintf(buf, len, "%s-%s", s, np->u.name.last->u.name.s);
700	np->u.name.last->u.name.s = stable(buf);
701	FREE(buf);
702	return (np);
703}
704
705struct node *
706tree_name_iterator(struct node *np1, struct node *np2)
707{
708	ASSERT(np1 != NULL);
709	ASSERT(np2 != NULL);
710	ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
711
712	np1->u.name.child = np2;
713
714	check_name_iterator(np1);
715
716	return (np1);
717}
718
719struct node *
720tree_timeval(const char *s, const char *suffix, const char *file, int line)
721{
722	struct node *ret = newnode(T_TIMEVAL, file, line);
723	const unsigned long long *ullp;
724
725	ASSERT(s != NULL);
726	ASSERT(suffix != NULL);
727
728	if ((ullp = lex_s2ullp_lut_lookup(Timesuffixlut, suffix)) == NULL) {
729		outfl(O_ERR, file, line,
730		    "unrecognized number suffix: %s", suffix);
731		/* still construct a valid timeval node so parsing continues */
732		ret->u.ull = 1;
733	} else {
734		ret->u.ull = (unsigned long long)strtoul(s, NULL, 0) * *ullp;
735	}
736
737	return (ret);
738}
739
740struct node *
741tree_num(const char *s, const char *file, int line)
742{
743	struct node *ret = newnode(T_NUM, file, line);
744
745	ret->u.ull = (unsigned long long)strtoul(s, NULL, 0);
746	return (ret);
747}
748
749struct node *
750tree_quote(const char *s, const char *file, int line)
751{
752	struct node *ret = newnode(T_QUOTE, file, line);
753
754	ret->u.quote.s = stable(s);
755	return (ret);
756}
757
758struct node *
759tree_func(const char *s, struct node *np, const char *file, int line)
760{
761	struct node *ret = newnode(T_FUNC, file, line);
762	const char *ptr;
763
764	ret->u.func.s = s;
765	ret->u.func.arglist = np;
766
767	check_func(ret);
768
769	/*
770	 * keep track of the properties we're interested in so we can ignore the
771	 * rest
772	 */
773	if (strcmp(s, L_confprop) == 0 || strcmp(s, L_confprop_defined) == 0) {
774		ptr = stable(np->u.expr.right->u.quote.s);
775		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
776	} else if (strcmp(s, L_is_connected) == 0) {
777		ptr = stable("connected");
778		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
779		ptr = stable("CONNECTED");
780		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
781	} else if (strcmp(s, L_is_type) == 0) {
782		ptr = stable("type");
783		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
784		ptr = stable("TYPE");
785		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
786	} else if (strcmp(s, L_is_on) == 0) {
787		ptr = stable("on");
788		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
789		ptr = stable("ON");
790		Usedprops = lut_add(Usedprops, (void *)ptr, (void *)ptr, NULL);
791	}
792
793	return (ret);
794}
795
796/*
797 * given a list from a prop or mask statement or a function argument,
798 * convert all iterators to explicit iterators by inventing appropriate
799 * iterator names.
800 */
801static void
802make_explicit(struct node *np, int eventonly)
803{
804	struct node *pnp;	/* component of pathname */
805	struct node *pnp2;
806	int count;
807	static size_t namesz;
808
809	if (Newname == NULL) {
810		namesz = 200;
811		Newname = MALLOC(namesz);
812	}
813
814	if (np == NULL)
815		return;		/* all done */
816
817	switch (np->t) {
818		case T_ASSIGN:
819		case T_CONDIF:
820		case T_CONDELSE:
821		case T_NE:
822		case T_EQ:
823		case T_LT:
824		case T_LE:
825		case T_GT:
826		case T_GE:
827		case T_BITAND:
828		case T_BITOR:
829		case T_BITXOR:
830		case T_BITNOT:
831		case T_LSHIFT:
832		case T_RSHIFT:
833		case T_LIST:
834		case T_AND:
835		case T_OR:
836		case T_NOT:
837		case T_ADD:
838		case T_SUB:
839		case T_MUL:
840		case T_DIV:
841		case T_MOD:
842			make_explicit(np->u.expr.left, eventonly);
843			make_explicit(np->u.expr.right, eventonly);
844			break;
845
846		case T_EVENT:
847			make_explicit(np->u.event.epname, 0);
848			make_explicit(np->u.event.eexprlist, 1);
849			break;
850
851		case T_FUNC:
852			make_explicit(np->u.func.arglist, eventonly);
853			break;
854
855		case T_NAME:
856			if (eventonly)
857				return;
858			for (pnp = np; pnp != NULL; pnp = pnp->u.name.next)
859				if (pnp->u.name.child == NULL) {
860					/*
861					 * found implicit iterator.  convert
862					 * it to an explicit iterator by
863					 * using the name of the component
864					 * appended with '#' and the number
865					 * of times we've seen this same
866					 * component name in this path so far.
867					 */
868					count = 0;
869					for (pnp2 = np; pnp2 != NULL;
870					    pnp2 = pnp2->u.name.next)
871						if (pnp2 == pnp)
872							break;
873						else if (pnp2->u.name.s ==
874						    pnp->u.name.s)
875							count++;
876
877					if (namesz < strlen(pnp->u.name.s) +
878					    100) {
879						namesz = strlen(pnp->u.name.s) +
880						    100;
881						FREE(Newname);
882						Newname = MALLOC(namesz);
883					}
884					/*
885					 * made up interator name is:
886					 *	name#ordinal
887					 * or
888					 *	name##ordinal
889					 * the first one is used for vertical
890					 * expansion, the second for horizontal.
891					 * either way, the '#' embedded in
892					 * the name makes it impossible to
893					 * collide with an actual iterator
894					 * given to us in the eversholt file.
895					 */
896					(void) snprintf(Newname, namesz,
897					    "%s#%s%d", pnp->u.name.s,
898					    (pnp->u.name.it == IT_HORIZONTAL) ?
899					    "#" : "", count);
900
901					pnp->u.name.child = tree_name(Newname,
902					    IT_NONE, pnp->file, pnp->line);
903					pnp->u.name.childgen = 1;
904				}
905			break;
906	}
907}
908
909struct node *
910tree_pname(struct node *np)
911{
912	make_explicit(np, 0);
913	return (np);
914}
915
916struct node *
917tree_arrow(struct node *lhs, struct node *nnp, struct node *knp,
918    struct node *rhs)
919{
920	struct node *ret;
921
922	ASSERT(lhs != NULL || rhs != NULL);
923
924	ret = newnode(T_ARROW,
925	    (lhs) ? lhs->file : rhs->file,
926	    (lhs) ? lhs->line : rhs->line);
927
928	ret->u.arrow.lhs = lhs;
929	ret->u.arrow.nnp = nnp;
930	ret->u.arrow.knp = knp;
931	ret->u.arrow.rhs = rhs;
932
933	make_explicit(lhs, 0);
934	make_explicit(rhs, 0);
935
936	check_arrow(ret);
937
938	return (ret);
939}
940
941static struct lut *
942nvpair2lut(struct node *np, struct lut *lutp, enum nodetype t)
943{
944	if (np) {
945		if (np->t == T_NVPAIR) {
946			ASSERTeq(np->u.expr.left->t, T_NAME,
947			    ptree_nodetype2str);
948			check_stmt_allowed_properties(t, np, lutp);
949			lutp = tree_s2np_lut_add(lutp,
950			    np->u.expr.left->u.name.s, np->u.expr.right);
951		} else if (np->t == T_LIST) {
952			lutp = nvpair2lut(np->u.expr.left, lutp, t);
953			lutp = nvpair2lut(np->u.expr.right, lutp, t);
954		} else
955			outfl(O_DIE, np->file, np->line,
956			    "internal error: nvpair2lut type %s",
957			    ptree_nodetype2str(np->t));
958	}
959
960	return (lutp);
961}
962
963struct lut *
964tree_s2np_lut_add(struct lut *root, const char *s, struct node *np)
965{
966	return (lut_add(root, (void *)s, (void *)np, NULL));
967}
968
969struct node *
970tree_s2np_lut_lookup(struct lut *root, const char *s)
971{
972	return (struct node *)lut_lookup(root, (void *)s, NULL);
973}
974
975struct lut *
976tree_name2np_lut_add(struct lut *root, struct node *namep, struct node *np)
977{
978	return (lut_add(root, (void *)namep, (void *)np,
979	    (lut_cmp)tree_namecmp));
980}
981
982struct node *
983tree_name2np_lut_lookup(struct lut *root, struct node *namep)
984{
985	return (struct node *)
986	    lut_lookup(root, (void *)namep, (lut_cmp)tree_namecmp);
987}
988
989struct node *
990tree_name2np_lut_lookup_name(struct lut *root, struct node *namep)
991{
992	return (struct node *)
993	    lut_lookup_lhs(root, (void *)namep, (lut_cmp)tree_namecmp);
994}
995
996struct lut *
997tree_event2np_lut_add(struct lut *root, struct node *enp, struct node *np)
998{
999	return (lut_add(root, (void *)enp, (void *)np, (lut_cmp)tree_eventcmp));
1000}
1001
1002struct node *
1003tree_event2np_lut_lookup(struct lut *root, struct node *enp)
1004{
1005	return ((struct node *)
1006	    lut_lookup(root, (void *)enp, (lut_cmp)tree_eventcmp));
1007}
1008
1009struct node *
1010tree_event2np_lut_lookup_event(struct lut *root, struct node *enp)
1011{
1012	return ((struct node *)
1013	    lut_lookup_lhs(root, (void *)enp, (lut_cmp)tree_eventcmp));
1014}
1015
1016static struct node *
1017dodecl(enum nodetype t, const char *file, int line,
1018    struct node *np, struct node *nvpairs, struct lut **lutpp,
1019    struct stats *countp, int justpath)
1020{
1021	struct node *ret;
1022	struct node *decl;
1023
1024	/* allocate parse tree node */
1025	ret = newnode(t, file, line);
1026	ret->u.stmt.np = np;
1027	ret->u.stmt.nvpairs = nvpairs;
1028
1029	/*
1030	 * the global lut pointed to by lutpp (Faults, Defects, Upsets,
1031	 * Errors, Ereports, Serds, FRUs, or ASRUs) keeps the first decl.
1032	 * if this isn't the first declr, we merge the
1033	 * nvpairs into the first decl so we have a
1034	 * merged table to look up properties from.
1035	 * if this is the first time we've seen this fault,
1036	 * we add it to the global lut and start lutp
1037	 * off with any nvpairs from this declaration statement.
1038	 */
1039	if (justpath && (decl = tree_name2np_lut_lookup(*lutpp, np)) == NULL) {
1040		/* this is the first time name is declared */
1041		stats_counter_bump(countp);
1042		*lutpp = tree_name2np_lut_add(*lutpp, np, ret);
1043		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
1044	} else if (!justpath &&
1045	    (decl = tree_event2np_lut_lookup(*lutpp, np)) == NULL) {
1046		/* this is the first time event is declared */
1047		stats_counter_bump(countp);
1048		*lutpp = tree_event2np_lut_add(*lutpp, np, ret);
1049		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, t);
1050	} else {
1051		/* was declared before, just add new nvpairs to its lutp */
1052		decl->u.stmt.lutp = nvpair2lut(nvpairs, decl->u.stmt.lutp, t);
1053	}
1054
1055	return (ret);
1056}
1057
1058/*ARGSUSED*/
1059static void
1060update_serd_refstmt(void *lhs, void *rhs, void *arg)
1061{
1062	struct node *serd;
1063
1064	ASSERT(rhs != NULL);
1065
1066	serd = tree_s2np_lut_lookup(((struct node *)rhs)->u.stmt.lutp,
1067	    L_engine);
1068	if (serd == NULL)
1069		return;
1070
1071	ASSERT(serd->t == T_EVENT);
1072	if (arg != NULL && tree_eventcmp(serd, (struct node *)arg) != 0)
1073		return;
1074
1075	serd = tree_event2np_lut_lookup(SERDs, serd);
1076	if (serd != NULL)
1077		serd->u.stmt.flags |= STMT_REF;
1078}
1079
1080struct node *
1081tree_decl(enum nodetype t, struct node *np, struct node *nvpairs,
1082    const char *file, int line)
1083{
1084	struct node *decl;
1085	struct node *ret;
1086
1087	ASSERT(np != NULL);
1088
1089	check_type_iterator(np);
1090
1091	switch (t) {
1092	case T_EVENT:
1093		/* determine the type of event being declared */
1094		ASSERT(np->u.event.ename->t == T_NAME);
1095		switch (np->u.event.ename->u.name.t) {
1096		case N_FAULT:
1097			ret = dodecl(T_FAULT, file, line, np, nvpairs,
1098			    &Faults, Faultcount, 0);
1099
1100			/* increment serd statement reference */
1101			decl = tree_event2np_lut_lookup(Faults, np);
1102			update_serd_refstmt(NULL, decl, NULL);
1103			break;
1104
1105		case N_UPSET:
1106			ret = dodecl(T_UPSET, file, line, np, nvpairs,
1107			    &Upsets, Upsetcount, 0);
1108
1109			/* increment serd statement reference */
1110			decl = tree_event2np_lut_lookup(Upsets, np);
1111			update_serd_refstmt(NULL, decl, NULL);
1112			break;
1113
1114		case N_DEFECT:
1115			ret = dodecl(T_DEFECT, file, line, np, nvpairs,
1116			    &Defects, Defectcount, 0);
1117
1118			/* increment serd statement reference */
1119			decl = tree_event2np_lut_lookup(Defects, np);
1120			update_serd_refstmt(NULL, decl, NULL);
1121			break;
1122
1123		case N_ERROR:
1124			ret = dodecl(T_ERROR, file, line, np, nvpairs,
1125			    &Errors, Errorcount, 0);
1126			break;
1127
1128		case N_EREPORT:
1129			ret = dodecl(T_EREPORT, file, line, np, nvpairs,
1130			    &Ereports, Ereportcount, 0);
1131			/*
1132			 * Keep a lut of just the enames, so that the DE
1133			 * can subscribe to a uniqified list of event
1134			 * classes.
1135			 */
1136			Ereportenames =
1137			    tree_name2np_lut_add(Ereportenames,
1138			    np->u.event.ename, np);
1139
1140			/*
1141			 * Keep a lut of the enames (event classes) to
1142			 * silently discard if we can't find a matching
1143			 * configuration node when an ereport of of a given
1144			 * class is received.  Such events are declaired
1145			 * with 'discard_if_config_unknown=1'.
1146			 */
1147			if (tree_s2np_lut_lookup(ret->u.stmt.lutp,
1148			    L_discard_if_config_unknown)) {
1149				Ereportenames_discard = lut_add(
1150				    Ereportenames_discard,
1151				    (void *)np->u.event.ename->u.name.s,
1152				    (void *)np->u.event.ename->u.name.s, NULL);
1153			}
1154			break;
1155
1156		default:
1157			outfl(O_ERR, file, line,
1158			    "tree_decl: internal error, event name type %s",
1159			    ptree_nametype2str(np->u.event.ename->u.name.t));
1160		}
1161		break;
1162
1163	case T_ENGINE:
1164		/* determine the type of engine being declared */
1165		ASSERT(np->u.event.ename->t == T_NAME);
1166		switch (np->u.event.ename->u.name.t) {
1167		case N_SERD:
1168			ret = dodecl(T_SERD, file, line, np, nvpairs,
1169			    &SERDs, SERDcount, 0);
1170			lut_walk(Upsets, update_serd_refstmt, np);
1171			break;
1172
1173		case N_STAT:
1174			ret = dodecl(T_STAT, file, line, np, nvpairs,
1175			    &STATs, STATcount, 0);
1176			break;
1177
1178		default:
1179			outfl(O_ERR, file, line,
1180			    "tree_decl: internal error, engine name type %s",
1181			    ptree_nametype2str(np->u.event.ename->u.name.t));
1182		}
1183		break;
1184	case T_ASRU:
1185		ret = dodecl(T_ASRU, file, line, np, nvpairs,
1186		    &ASRUs, ASRUcount, 1);
1187		break;
1188
1189	case T_FRU:
1190		ret = dodecl(T_FRU, file, line, np, nvpairs,
1191		    &FRUs, FRUcount, 1);
1192		break;
1193
1194	case T_CONFIG:
1195		/*
1196		 * config statements are different from above: they
1197		 * are not merged at all (until the configuration cache
1198		 * code does its own style of merging.  and the properties
1199		 * are a free-for-all -- we don't check for allowed or
1200		 * required config properties.
1201		 */
1202		ret = newnode(T_CONFIG, file, line);
1203		ret->u.stmt.np = np;
1204		ret->u.stmt.nvpairs = nvpairs;
1205		ret->u.stmt.lutp = nvpair2lut(nvpairs, NULL, T_CONFIG);
1206
1207		if (lut_lookup(Configs, np, (lut_cmp)tree_namecmp) == NULL)
1208			stats_counter_bump(Configcount);
1209
1210		Configs = lut_add(Configs, (void *)np, (void *)ret, NULL);
1211		break;
1212
1213	default:
1214		out(O_DIE, "tree_decl: internal error, type %s",
1215		    ptree_nodetype2str(t));
1216	}
1217
1218	return (ret);
1219}
1220
1221/* keep backpointers in arrows to the prop they belong to (used for scoping) */
1222static void
1223set_arrow_prop(struct node *prop, struct node *np)
1224{
1225	if (np == NULL)
1226		return;
1227
1228	if (np->t == T_ARROW) {
1229		np->u.arrow.prop = prop;
1230		set_arrow_prop(prop, np->u.arrow.lhs);
1231		/*
1232		 * no need to recurse right or handle T_LIST since
1233		 * T_ARROWs always cascade left and are at the top
1234		 * of the parse tree.  (you can see this in the rule
1235		 * for "propbody" in escparse.y.)
1236		 */
1237	}
1238}
1239
1240struct node *
1241tree_stmt(enum nodetype t, struct node *np, const char *file, int line)
1242{
1243	struct node *ret = newnode(t, file, line);
1244	struct node *pp;
1245	int inlist = 0;
1246
1247	ret->u.stmt.np = np;
1248
1249	switch (t) {
1250	case T_PROP:
1251		check_proplists(t, np);
1252		check_propnames(t, np, 0, 0);
1253		check_propscope(np);
1254		set_arrow_prop(ret, np);
1255
1256		for (pp = Props; pp; pp = pp->u.stmt.next) {
1257			if (tree_treecmp(pp, ret, T_NAME,
1258			    (lut_cmp)tree_namecmp) == 0) {
1259				inlist = 1;
1260				break;
1261			}
1262		}
1263		if (inlist == 0)
1264			stats_counter_bump(Propcount);
1265
1266		/* "Props" is a linked list of all prop statements */
1267		if (Lastprops)
1268			Lastprops->u.stmt.next = ret;
1269		else
1270			Props = ret;
1271		Lastprops = ret;
1272		break;
1273
1274	case T_MASK:
1275		check_proplists(t, np);
1276		check_propnames(t, np, 0, 0);
1277		check_propscope(np);
1278		set_arrow_prop(ret, np);
1279
1280		for (pp = Masks; pp; pp = pp->u.stmt.next) {
1281			if (tree_treecmp(pp, ret, T_NAME,
1282			    (lut_cmp)tree_namecmp) == 0) {
1283				inlist = 1;
1284				break;
1285			}
1286		}
1287		if (inlist == 0)
1288			stats_counter_bump(Maskcount);
1289
1290		/* "Masks" is a linked list of all mask statements */
1291		if (Lastmasks)
1292			Lastmasks->u.stmt.next = ret;
1293		else
1294			Masks = ret;
1295		Lastmasks = ret;
1296		stats_counter_bump(Maskcount);
1297		break;
1298
1299	default:
1300		outfl(O_DIE, np->file, np->line,
1301		    "tree_stmt: internal error (t %d)", t);
1302	}
1303
1304	return (ret);
1305}
1306
1307void
1308tree_report()
1309{
1310	/*
1311	 * The only declarations with required properties
1312	 * currently are faults and serds. Make sure the
1313	 * the declarations have the required properties.
1314	 */
1315	lut_walk(Faults, (lut_cb)check_required_props, (void *)T_FAULT);
1316	lut_walk(Upsets, (lut_cb)check_required_props, (void *)T_UPSET);
1317	lut_walk(Errors, (lut_cb)check_required_props, (void *)T_ERROR);
1318	lut_walk(Ereports, (lut_cb)check_required_props, (void *)T_EREPORT);
1319	lut_walk(SERDs, (lut_cb)check_required_props, (void *)T_SERD);
1320	lut_walk(STATs, (lut_cb)check_required_props, (void *)T_STAT);
1321
1322	/*
1323	 * we do this now rather than while building the parse
1324	 * tree because it is inconvenient for the user if we
1325	 * require SERD engines to be declared before used in
1326	 * an upset "engine" property.
1327	 */
1328	lut_walk(Faults, (lut_cb)check_refcount, (void *)T_FAULT);
1329	lut_walk(Faults, (lut_cb)check_upset_engine, (void *)T_FAULT);
1330	lut_walk(Defects, (lut_cb)check_upset_engine, (void *)T_DEFECT);
1331	lut_walk(Upsets, (lut_cb)check_upset_engine, (void *)T_UPSET);
1332	lut_walk(Upsets, (lut_cb)check_refcount, (void *)T_UPSET);
1333	lut_walk(Errors, (lut_cb)check_refcount, (void *)T_ERROR);
1334	lut_walk(Ereports, (lut_cb)check_refcount, (void *)T_EREPORT);
1335	lut_walk(SERDs, (lut_cb)check_refcount, (void *)T_SERD);
1336
1337	/* check for cycles */
1338	lut_walk(Errors, (lut_cb)check_cycle, (void *)0);
1339}
1340
1341/* compare two T_NAMES by only looking at components, not iterators */
1342int
1343tree_namecmp(struct node *np1, struct node *np2)
1344{
1345	ASSERT(np1 != NULL);
1346	ASSERT(np2 != NULL);
1347	ASSERTinfo(np1->t == T_NAME, ptree_nodetype2str(np1->t));
1348	ASSERTinfo(np2->t == T_NAME, ptree_nodetype2str(np1->t));
1349
1350	while (np1 && np2 && np1->u.name.s == np2->u.name.s) {
1351		np1 = np1->u.name.next;
1352		np2 = np2->u.name.next;
1353	}
1354	if (np1 == NULL)
1355		if (np2 == NULL)
1356			return (0);
1357		else
1358			return (-1);
1359	else if (np2 == NULL)
1360		return (1);
1361	else
1362		return (np2->u.name.s - np1->u.name.s);
1363}
1364
1365int
1366tree_eventcmp(struct node *np1, struct node *np2)
1367{
1368	int ret;
1369
1370	ASSERT(np1 != NULL);
1371	ASSERT(np2 != NULL);
1372	ASSERTinfo(np1->t == T_EVENT, ptree_nodetype2str(np1->t));
1373	ASSERTinfo(np2->t == T_EVENT, ptree_nodetype2str(np2->t));
1374
1375	if ((ret = tree_namecmp(np1->u.event.ename,
1376	    np2->u.event.ename)) == 0) {
1377			if (np1->u.event.epname == NULL &&
1378			    np2->u.event.epname == NULL)
1379				return (0);
1380			else if (np1->u.event.epname == NULL)
1381				return (-1);
1382			else if (np2->u.event.epname == NULL)
1383				return (1);
1384			else
1385				return tree_namecmp(np1->u.event.epname,
1386				    np2->u.event.epname);
1387	} else
1388	return (ret);
1389}
1390