1/*
2 * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26// This file is available under and governed by the GNU General Public
27// License version 2 only, as published by the Free Software Foundation.
28// However, the following notice accompanied the original version of this
29// file:
30//
31// Copyright 2010 the V8 project authors. All rights reserved.
32// Redistribution and use in source and binary forms, with or without
33// modification, are permitted provided that the following conditions are
34// met:
35//
36//     * Redistributions of source code must retain the above copyright
37//       notice, this list of conditions and the following disclaimer.
38//     * Redistributions in binary form must reproduce the above
39//       copyright notice, this list of conditions and the following
40//       disclaimer in the documentation and/or other materials provided
41//       with the distribution.
42//     * Neither the name of Google Inc. nor the names of its
43//       contributors may be used to endorse or promote products derived
44//       from this software without specific prior written permission.
45//
46// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
47// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
48// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
49// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
50// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
51// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
52// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
53// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
54// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
55// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
56// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57
58package jdk.nashorn.internal.runtime.doubleconv;
59
60class FixedDtoa {
61
62    // Represents a 128bit type. This class should be replaced by a native type on
63    // platforms that support 128bit integers.
64    static class UInt128 {
65
66        private static final long kMask32 = 0xFFFFFFFFL;
67        // Value == (high_bits_ << 64) + low_bits_
68        private long high_bits_;
69        private long low_bits_;
70
71        UInt128(final long high_bits, final long low_bits) {
72            this.high_bits_ = high_bits;
73            this.low_bits_ = low_bits;
74        }
75
76        void multiply(final int multiplicand) {
77            long accumulator;
78
79            accumulator = (low_bits_ & kMask32) * multiplicand;
80            long part = accumulator & kMask32;
81            accumulator >>>= 32;
82            accumulator = accumulator + (low_bits_ >>> 32) * multiplicand;
83            low_bits_ = (accumulator << 32) + part;
84            accumulator >>>= 32;
85            accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
86            part = accumulator & kMask32;
87            accumulator >>>= 32;
88            accumulator = accumulator + (high_bits_ >>> 32) * multiplicand;
89            high_bits_ = (accumulator << 32) + part;
90            assert ((accumulator >>> 32) == 0);
91        }
92
93        void shift(final int shift_amount) {
94            assert (-64 <= shift_amount && shift_amount <= 64);
95            if (shift_amount == 0) {
96                return;
97            } else if (shift_amount == -64) {
98                high_bits_ = low_bits_;
99                low_bits_ = 0;
100            } else if (shift_amount == 64) {
101                low_bits_ = high_bits_;
102                high_bits_ = 0;
103            } else if (shift_amount <= 0) {
104                high_bits_ <<= -shift_amount;
105                high_bits_ += low_bits_ >>> (64 + shift_amount);
106                low_bits_ <<= -shift_amount;
107            } else {
108                low_bits_ >>>= shift_amount;
109                low_bits_ += high_bits_ << (64 - shift_amount);
110                high_bits_ >>>= shift_amount;
111            }
112        }
113
114        // Modifies *this to *this MOD (2^power).
115        // Returns *this DIV (2^power).
116        int divModPowerOf2(final int power) {
117            if (power >= 64) {
118                final int result = (int) (high_bits_ >>> (power - 64));
119                high_bits_ -= (long) (result) << (power - 64);
120                return result;
121            } else {
122                final long part_low = low_bits_ >>> power;
123                final long part_high = high_bits_ << (64 - power);
124                final int result = (int) (part_low + part_high);
125                high_bits_ = 0;
126                low_bits_ -= part_low << power;
127                return result;
128            }
129        }
130
131        boolean isZero() {
132            return high_bits_ == 0 && low_bits_ == 0;
133        }
134
135        int bitAt(final int position) {
136            if (position >= 64) {
137                return (int) (high_bits_ >>> (position - 64)) & 1;
138            } else {
139                return (int) (low_bits_ >>> position) & 1;
140            }
141        }
142
143    };
144
145
146    static final  int kDoubleSignificandSize = 53;  // Includes the hidden bit.
147
148
149    static void fillDigits32FixedLength(int number, final int requested_length,
150                                        final DtoaBuffer buffer) {
151        for (int i = requested_length - 1; i >= 0; --i) {
152            buffer.chars[buffer.length + i] = (char) ('0' + Integer.remainderUnsigned(number, 10));
153            number = Integer.divideUnsigned(number, 10);
154        }
155        buffer.length += requested_length;
156    }
157
158
159    static void fillDigits32(int number, final DtoaBuffer buffer) {
160        int number_length = 0;
161        // We fill the digits in reverse order and exchange them afterwards.
162        while (number != 0) {
163            final int digit = Integer.remainderUnsigned(number, 10);
164            number = Integer.divideUnsigned(number, 10);
165            buffer.chars[buffer.length + number_length] = (char) ('0' + digit);
166            number_length++;
167        }
168        // Exchange the digits.
169        int i = buffer.length;
170        int j = buffer.length + number_length - 1;
171        while (i < j) {
172            final char tmp = buffer.chars[i];
173            buffer.chars[i] = buffer.chars[j];
174            buffer.chars[j] = tmp;
175            i++;
176            j--;
177        }
178        buffer.length += number_length;
179    }
180
181
182    static void fillDigits64FixedLength(long number, final DtoaBuffer buffer) {
183        final int kTen7 = 10000000;
184        // For efficiency cut the number into 3 uint32_t parts, and print those.
185        final int part2 = (int) Long.remainderUnsigned(number, kTen7);
186        number = Long.divideUnsigned(number, kTen7);
187        final int part1 = (int) Long.remainderUnsigned(number, kTen7);
188        final int part0 = (int) Long.divideUnsigned(number, kTen7);
189
190        fillDigits32FixedLength(part0, 3, buffer);
191        fillDigits32FixedLength(part1, 7, buffer);
192        fillDigits32FixedLength(part2, 7, buffer);
193    }
194
195
196    static void FillDigits64(long number, final DtoaBuffer buffer) {
197        final int kTen7 = 10000000;
198        // For efficiency cut the number into 3 uint32_t parts, and print those.
199        final int part2 = (int) Long.remainderUnsigned(number, kTen7);
200        number = Long.divideUnsigned(number, kTen7);
201        final int part1 = (int) Long.remainderUnsigned(number, kTen7);
202        final int part0 = (int) Long.divideUnsigned(number, kTen7);
203
204        if (part0 != 0) {
205            fillDigits32(part0, buffer);
206            fillDigits32FixedLength(part1, 7, buffer);
207            fillDigits32FixedLength(part2, 7, buffer);
208        } else if (part1 != 0) {
209            fillDigits32(part1, buffer);
210            fillDigits32FixedLength(part2, 7, buffer);
211        } else {
212            fillDigits32(part2, buffer);
213        }
214    }
215
216
217    static void roundUp(final DtoaBuffer buffer) {
218        // An empty buffer represents 0.
219        if (buffer.length == 0) {
220            buffer.chars[0] = '1';
221            buffer.decimalPoint = 1;
222            buffer.length = 1;
223            return;
224        }
225        // Round the last digit until we either have a digit that was not '9' or until
226        // we reached the first digit.
227        buffer.chars[buffer.length - 1]++;
228        for (int i = buffer.length - 1; i > 0; --i) {
229            if (buffer.chars[i] != '0' + 10) {
230                return;
231            }
232            buffer.chars[i] = '0';
233            buffer.chars[i - 1]++;
234        }
235        // If the first digit is now '0' + 10, we would need to set it to '0' and add
236        // a '1' in front. However we reach the first digit only if all following
237        // digits had been '9' before rounding up. Now all trailing digits are '0' and
238        // we simply switch the first digit to '1' and update the decimal-point
239        // (indicating that the point is now one digit to the right).
240        if (buffer.chars[0] == '0' + 10) {
241            buffer.chars[0] = '1';
242            buffer.decimalPoint++;
243        }
244    }
245
246
247    // The given fractionals number represents a fixed-point number with binary
248    // point at bit (-exponent).
249    // Preconditions:
250    //   -128 <= exponent <= 0.
251    //   0 <= fractionals * 2^exponent < 1
252    //   The buffer holds the result.
253    // The function will round its result. During the rounding-process digits not
254    // generated by this function might be updated, and the decimal-point variable
255    // might be updated. If this function generates the digits 99 and the buffer
256    // already contained "199" (thus yielding a buffer of "19999") then a
257    // rounding-up will change the contents of the buffer to "20000".
258    static void fillFractionals(long fractionals, final int exponent,
259                                final int fractional_count, final DtoaBuffer buffer) {
260        assert (-128 <= exponent && exponent <= 0);
261        // 'fractionals' is a fixed-decimalPoint number, with binary decimalPoint at bit
262        // (-exponent). Inside the function the non-converted remainder of fractionals
263        // is a fixed-decimalPoint number, with binary decimalPoint at bit 'decimalPoint'.
264        if (-exponent <= 64) {
265            // One 64 bit number is sufficient.
266            assert (fractionals >>> 56 == 0);
267            int point = -exponent;
268            for (int i = 0; i < fractional_count; ++i) {
269                if (fractionals == 0) break;
270                // Instead of multiplying by 10 we multiply by 5 and adjust the point
271                // location. This way the fractionals variable will not overflow.
272                // Invariant at the beginning of the loop: fractionals < 2^point.
273                // Initially we have: point <= 64 and fractionals < 2^56
274                // After each iteration the point is decremented by one.
275                // Note that 5^3 = 125 < 128 = 2^7.
276                // Therefore three iterations of this loop will not overflow fractionals
277                // (even without the subtraction at the end of the loop body). At this
278                // time point will satisfy point <= 61 and therefore fractionals < 2^point
279                // and any further multiplication of fractionals by 5 will not overflow.
280                fractionals *= 5;
281                point--;
282                final int digit = (int) (fractionals >>> point);
283                assert (digit <= 9);
284                buffer.chars[buffer.length] = (char) ('0' + digit);
285                buffer.length++;
286                fractionals -= (long) (digit) << point;
287            }
288            // If the first bit after the point is set we have to round up.
289            if (((fractionals >>> (point - 1)) & 1) == 1) {
290                roundUp(buffer);
291            }
292        } else {  // We need 128 bits.
293            assert (64 < -exponent && -exponent <= 128);
294            final UInt128 fractionals128 = new UInt128(fractionals, 0);
295            fractionals128.shift(-exponent - 64);
296            int point = 128;
297            for (int i = 0; i < fractional_count; ++i) {
298                if (fractionals128.isZero()) break;
299                // As before: instead of multiplying by 10 we multiply by 5 and adjust the
300                // point location.
301                // This multiplication will not overflow for the same reasons as before.
302                fractionals128.multiply(5);
303                point--;
304                final int digit = fractionals128.divModPowerOf2(point);
305                assert (digit <= 9);
306                buffer.chars[buffer.length] = (char) ('0' + digit);
307                buffer.length++;
308            }
309            if (fractionals128.bitAt(point - 1) == 1) {
310                roundUp(buffer);
311            }
312        }
313    }
314
315
316    // Removes leading and trailing zeros.
317    // If leading zeros are removed then the decimal point position is adjusted.
318    static void trimZeros(final DtoaBuffer buffer) {
319        while (buffer.length > 0 && buffer.chars[buffer.length - 1] == '0') {
320            buffer.length--;
321        }
322        int first_non_zero = 0;
323        while (first_non_zero < buffer.length && buffer.chars[first_non_zero] == '0') {
324            first_non_zero++;
325        }
326        if (first_non_zero != 0) {
327            for (int i = first_non_zero; i < buffer.length; ++i) {
328                buffer.chars[i - first_non_zero] = buffer.chars[i];
329            }
330            buffer.length -= first_non_zero;
331            buffer.decimalPoint -= first_non_zero;
332        }
333    }
334
335
336    static boolean fastFixedDtoa(final double v,
337                                 final int fractional_count,
338                                 final DtoaBuffer buffer) {
339        final long kMaxUInt32 = 0xFFFFFFFFL;
340        final long l = IeeeDouble.doubleToLong(v);
341        long significand = IeeeDouble.significand(l);
342        final int exponent = IeeeDouble.exponent(l);
343        // v = significand * 2^exponent (with significand a 53bit integer).
344        // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
345        // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
346        // If necessary this limit could probably be increased, but we don't need
347        // more.
348        if (exponent > 20) return false;
349        if (fractional_count > 20) return false;
350        // At most kDoubleSignificandSize bits of the significand are non-zero.
351        // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
352        // bits:  0..11*..0xxx..53*..xx
353        if (exponent + kDoubleSignificandSize > 64) {
354            // The exponent must be > 11.
355            //
356            // We know that v = significand * 2^exponent.
357            // And the exponent > 11.
358            // We simplify the task by dividing v by 10^17.
359            // The quotient delivers the first digits, and the remainder fits into a 64
360            // bit number.
361            // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
362            final long kFive17 = 0xB1A2BC2EC5L;  // 5^17
363            long divisor = kFive17;
364            final int divisor_power = 17;
365            long dividend = significand;
366            final int quotient;
367            final long remainder;
368            // Let v = f * 2^e with f == significand and e == exponent.
369            // Then need q (quotient) and r (remainder) as follows:
370            //   v            = q * 10^17       + r
371            //   f * 2^e      = q * 10^17       + r
372            //   f * 2^e      = q * 5^17 * 2^17 + r
373            // If e > 17 then
374            //   f * 2^(e-17) = q * 5^17        + r/2^17
375            // else
376            //   f  = q * 5^17 * 2^(17-e) + r/2^e
377            if (exponent > divisor_power) {
378                // We only allow exponents of up to 20 and therefore (17 - e) <= 3
379                dividend <<= exponent - divisor_power;
380                quotient = (int) Long.divideUnsigned(dividend, divisor);
381                remainder = Long.remainderUnsigned(dividend, divisor) << divisor_power;
382            } else {
383                divisor <<= divisor_power - exponent;
384                quotient = (int) Long.divideUnsigned(dividend, divisor);
385                remainder = Long.remainderUnsigned(dividend, divisor) << exponent;
386            }
387            fillDigits32(quotient, buffer);
388            fillDigits64FixedLength(remainder, buffer);
389            buffer.decimalPoint = buffer.length;
390        } else if (exponent >= 0) {
391            // 0 <= exponent <= 11
392            significand <<= exponent;
393            FillDigits64(significand, buffer);
394            buffer.decimalPoint = buffer.length;
395        } else if (exponent > -kDoubleSignificandSize) {
396            // We have to cut the number.
397            final long integrals = significand >>> -exponent;
398            final long fractionals = significand - (integrals << -exponent);
399            if (Long.compareUnsigned(integrals, kMaxUInt32) > 0) {
400                FillDigits64(integrals, buffer);
401            } else {
402                fillDigits32((int) (integrals), buffer);
403            }
404            buffer.decimalPoint = buffer.length;
405            fillFractionals(fractionals, exponent, fractional_count, buffer);
406        } else if (exponent < -128) {
407            // This configuration (with at most 20 digits) means that all digits must be
408            // 0.
409            assert (fractional_count <= 20);
410            buffer.reset();
411            buffer.decimalPoint = -fractional_count;
412        } else {
413            buffer.decimalPoint = 0;
414            fillFractionals(significand, exponent, fractional_count, buffer);
415        }
416        trimZeros(buffer);
417        if (buffer.length == 0) {
418            // The string is empty and the decimal_point thus has no importance. Mimick
419            // Gay's dtoa and and set it to -fractional_count.
420            buffer.decimalPoint = -fractional_count;
421        }
422        return true;
423    }
424
425}
426