1/*
2 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
3 * Use is subject to license terms.
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
9 *
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public License
16 * along with this library; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23
24/* *********************************************************************
25 *
26 * The Original Code is the elliptic curve math library for prime field curves.
27 *
28 * The Initial Developer of the Original Code is
29 * Sun Microsystems, Inc.
30 * Portions created by the Initial Developer are Copyright (C) 2003
31 * the Initial Developer. All Rights Reserved.
32 *
33 * Contributor(s):
34 *   Douglas Stebila <douglas@stebila.ca>
35 *
36 *********************************************************************** */
37
38#include "ecp.h"
39#include "mpi.h"
40#include "mplogic.h"
41#include "mpi-priv.h"
42#ifndef _KERNEL
43#include <stdlib.h>
44#endif
45
46/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1.  a can be r.
47 * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
48 * Elliptic Curve Cryptography. */
49mp_err
50ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
51{
52        mp_err res = MP_OKAY;
53        int a_bits = mpl_significant_bits(a);
54        int i;
55
56        /* m1, m2 are statically-allocated mp_int of exactly the size we need */
57        mp_int m[10];
58
59#ifdef ECL_THIRTY_TWO_BIT
60        mp_digit s[10][12];
61        for (i = 0; i < 10; i++) {
62                MP_SIGN(&m[i]) = MP_ZPOS;
63                MP_ALLOC(&m[i]) = 12;
64                MP_USED(&m[i]) = 12;
65                MP_DIGITS(&m[i]) = s[i];
66        }
67#else
68        mp_digit s[10][6];
69        for (i = 0; i < 10; i++) {
70                MP_SIGN(&m[i]) = MP_ZPOS;
71                MP_ALLOC(&m[i]) = 6;
72                MP_USED(&m[i]) = 6;
73                MP_DIGITS(&m[i]) = s[i];
74        }
75#endif
76
77#ifdef ECL_THIRTY_TWO_BIT
78        /* for polynomials larger than twice the field size or polynomials
79         * not using all words, use regular reduction */
80        if ((a_bits > 768) || (a_bits <= 736)) {
81                MP_CHECKOK(mp_mod(a, &meth->irr, r));
82        } else {
83                for (i = 0; i < 12; i++) {
84                        s[0][i] = MP_DIGIT(a, i);
85                }
86                s[1][0] = 0;
87                s[1][1] = 0;
88                s[1][2] = 0;
89                s[1][3] = 0;
90                s[1][4] = MP_DIGIT(a, 21);
91                s[1][5] = MP_DIGIT(a, 22);
92                s[1][6] = MP_DIGIT(a, 23);
93                s[1][7] = 0;
94                s[1][8] = 0;
95                s[1][9] = 0;
96                s[1][10] = 0;
97                s[1][11] = 0;
98                for (i = 0; i < 12; i++) {
99                        s[2][i] = MP_DIGIT(a, i+12);
100                }
101                s[3][0] = MP_DIGIT(a, 21);
102                s[3][1] = MP_DIGIT(a, 22);
103                s[3][2] = MP_DIGIT(a, 23);
104                for (i = 3; i < 12; i++) {
105                        s[3][i] = MP_DIGIT(a, i+9);
106                }
107                s[4][0] = 0;
108                s[4][1] = MP_DIGIT(a, 23);
109                s[4][2] = 0;
110                s[4][3] = MP_DIGIT(a, 20);
111                for (i = 4; i < 12; i++) {
112                        s[4][i] = MP_DIGIT(a, i+8);
113                }
114                s[5][0] = 0;
115                s[5][1] = 0;
116                s[5][2] = 0;
117                s[5][3] = 0;
118                s[5][4] = MP_DIGIT(a, 20);
119                s[5][5] = MP_DIGIT(a, 21);
120                s[5][6] = MP_DIGIT(a, 22);
121                s[5][7] = MP_DIGIT(a, 23);
122                s[5][8] = 0;
123                s[5][9] = 0;
124                s[5][10] = 0;
125                s[5][11] = 0;
126                s[6][0] = MP_DIGIT(a, 20);
127                s[6][1] = 0;
128                s[6][2] = 0;
129                s[6][3] = MP_DIGIT(a, 21);
130                s[6][4] = MP_DIGIT(a, 22);
131                s[6][5] = MP_DIGIT(a, 23);
132                s[6][6] = 0;
133                s[6][7] = 0;
134                s[6][8] = 0;
135                s[6][9] = 0;
136                s[6][10] = 0;
137                s[6][11] = 0;
138                s[7][0] = MP_DIGIT(a, 23);
139                for (i = 1; i < 12; i++) {
140                        s[7][i] = MP_DIGIT(a, i+11);
141                }
142                s[8][0] = 0;
143                s[8][1] = MP_DIGIT(a, 20);
144                s[8][2] = MP_DIGIT(a, 21);
145                s[8][3] = MP_DIGIT(a, 22);
146                s[8][4] = MP_DIGIT(a, 23);
147                s[8][5] = 0;
148                s[8][6] = 0;
149                s[8][7] = 0;
150                s[8][8] = 0;
151                s[8][9] = 0;
152                s[8][10] = 0;
153                s[8][11] = 0;
154                s[9][0] = 0;
155                s[9][1] = 0;
156                s[9][2] = 0;
157                s[9][3] = MP_DIGIT(a, 23);
158                s[9][4] = MP_DIGIT(a, 23);
159                s[9][5] = 0;
160                s[9][6] = 0;
161                s[9][7] = 0;
162                s[9][8] = 0;
163                s[9][9] = 0;
164                s[9][10] = 0;
165                s[9][11] = 0;
166
167                MP_CHECKOK(mp_add(&m[0], &m[1], r));
168                MP_CHECKOK(mp_add(r, &m[1], r));
169                MP_CHECKOK(mp_add(r, &m[2], r));
170                MP_CHECKOK(mp_add(r, &m[3], r));
171                MP_CHECKOK(mp_add(r, &m[4], r));
172                MP_CHECKOK(mp_add(r, &m[5], r));
173                MP_CHECKOK(mp_add(r, &m[6], r));
174                MP_CHECKOK(mp_sub(r, &m[7], r));
175                MP_CHECKOK(mp_sub(r, &m[8], r));
176                MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
177                s_mp_clamp(r);
178        }
179#else
180        /* for polynomials larger than twice the field size or polynomials
181         * not using all words, use regular reduction */
182        if ((a_bits > 768) || (a_bits <= 736)) {
183                MP_CHECKOK(mp_mod(a, &meth->irr, r));
184        } else {
185                for (i = 0; i < 6; i++) {
186                        s[0][i] = MP_DIGIT(a, i);
187                }
188                s[1][0] = 0;
189                s[1][1] = 0;
190                s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
191                s[1][3] = MP_DIGIT(a, 11) >> 32;
192                s[1][4] = 0;
193                s[1][5] = 0;
194                for (i = 0; i < 6; i++) {
195                        s[2][i] = MP_DIGIT(a, i+6);
196                }
197                s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
198                s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
199                for (i = 2; i < 6; i++) {
200                        s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
201                }
202                s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
203                s[4][1] = MP_DIGIT(a, 10) << 32;
204                for (i = 2; i < 6; i++) {
205                        s[4][i] = MP_DIGIT(a, i+4);
206                }
207                s[5][0] = 0;
208                s[5][1] = 0;
209                s[5][2] = MP_DIGIT(a, 10);
210                s[5][3] = MP_DIGIT(a, 11);
211                s[5][4] = 0;
212                s[5][5] = 0;
213                s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
214                s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
215                s[6][2] = MP_DIGIT(a, 11);
216                s[6][3] = 0;
217                s[6][4] = 0;
218                s[6][5] = 0;
219                s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
220                for (i = 1; i < 6; i++) {
221                        s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
222                }
223                s[8][0] = MP_DIGIT(a, 10) << 32;
224                s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
225                s[8][2] = MP_DIGIT(a, 11) >> 32;
226                s[8][3] = 0;
227                s[8][4] = 0;
228                s[8][5] = 0;
229                s[9][0] = 0;
230                s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
231                s[9][2] = MP_DIGIT(a, 11) >> 32;
232                s[9][3] = 0;
233                s[9][4] = 0;
234                s[9][5] = 0;
235
236                MP_CHECKOK(mp_add(&m[0], &m[1], r));
237                MP_CHECKOK(mp_add(r, &m[1], r));
238                MP_CHECKOK(mp_add(r, &m[2], r));
239                MP_CHECKOK(mp_add(r, &m[3], r));
240                MP_CHECKOK(mp_add(r, &m[4], r));
241                MP_CHECKOK(mp_add(r, &m[5], r));
242                MP_CHECKOK(mp_add(r, &m[6], r));
243                MP_CHECKOK(mp_sub(r, &m[7], r));
244                MP_CHECKOK(mp_sub(r, &m[8], r));
245                MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
246                s_mp_clamp(r);
247        }
248#endif
249
250  CLEANUP:
251        return res;
252}
253
254/* Compute the square of polynomial a, reduce modulo p384. Store the
255 * result in r.  r could be a.  Uses optimized modular reduction for p384.
256 */
257mp_err
258ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
259{
260        mp_err res = MP_OKAY;
261
262        MP_CHECKOK(mp_sqr(a, r));
263        MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
264  CLEANUP:
265        return res;
266}
267
268/* Compute the product of two polynomials a and b, reduce modulo p384.
269 * Store the result in r.  r could be a or b; a could be b.  Uses
270 * optimized modular reduction for p384. */
271mp_err
272ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
273                                        const GFMethod *meth)
274{
275        mp_err res = MP_OKAY;
276
277        MP_CHECKOK(mp_mul(a, b, r));
278        MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
279  CLEANUP:
280        return res;
281}
282
283/* Wire in fast field arithmetic and precomputation of base point for
284 * named curves. */
285mp_err
286ec_group_set_gfp384(ECGroup *group, ECCurveName name)
287{
288        if (name == ECCurve_NIST_P384) {
289                group->meth->field_mod = &ec_GFp_nistp384_mod;
290                group->meth->field_mul = &ec_GFp_nistp384_mul;
291                group->meth->field_sqr = &ec_GFp_nistp384_sqr;
292        }
293        return MP_OKAY;
294}
295