1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25// This file is available under and governed by the GNU General Public
26// License version 2 only, as published by the Free Software Foundation.
27// However, the following notice accompanied the original version of this
28// file:
29//
30//---------------------------------------------------------------------------------
31//
32//  Little Color Management System
33//  Copyright (c) 1998-2016 Marti Maria Saguer
34//
35// Permission is hereby granted, free of charge, to any person obtaining
36// a copy of this software and associated documentation files (the "Software"),
37// to deal in the Software without restriction, including without limitation
38// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39// and/or sell copies of the Software, and to permit persons to whom the Software
40// is furnished to do so, subject to the following conditions:
41//
42// The above copyright notice and this permission notice shall be included in
43// all copies or substantial portions of the Software.
44//
45// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52//
53//---------------------------------------------------------------------------------
54//
55
56#include "lcms2_internal.h"
57
58
59//----------------------------------------------------------------------------------
60
61// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
62typedef struct {
63
64    cmsContext ContextID;
65
66    const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.
67
68    cmsUInt16Number rx[256], ry[256], rz[256];
69    cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data
70
71
72} Prelin8Data;
73
74
75// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
76typedef struct {
77
78    cmsContext ContextID;
79
80    // Number of channels
81    int nInputs;
82    int nOutputs;
83
84    _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance
85    cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
86
87    _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid
88    const cmsInterpParams* CLUTparams;  // (not-owned pointer)
89
90
91    _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer)
92    cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer)
93
94
95} Prelin16Data;
96
97
98// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
99
100typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits!
101
102#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
103
104typedef struct {
105
106    cmsContext ContextID;
107
108    cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0)
109    cmsS1Fixed14Number Shaper1G[256];
110    cmsS1Fixed14Number Shaper1B[256];
111
112    cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that)
113    cmsS1Fixed14Number Off[3];
114
115    cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255
116    cmsUInt16Number Shaper2G[16385];
117    cmsUInt16Number Shaper2B[16385];
118
119} MatShaper8Data;
120
121// Curves, optimization is shared between 8 and 16 bits
122typedef struct {
123
124    cmsContext ContextID;
125
126    int nCurves;                  // Number of curves
127    int nElements;                // Elements in curves
128    cmsUInt16Number** Curves;     // Points to a dynamically  allocated array
129
130} Curves16Data;
131
132
133// Simple optimizations ----------------------------------------------------------------------------------------------------------
134
135
136// Remove an element in linked chain
137static
138void _RemoveElement(cmsStage** head)
139{
140    cmsStage* mpe = *head;
141    cmsStage* next = mpe ->Next;
142    *head = next;
143    cmsStageFree(mpe);
144}
145
146// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
147static
148cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
149{
150    cmsStage** pt = &Lut ->Elements;
151    cmsBool AnyOpt = FALSE;
152
153    while (*pt != NULL) {
154
155        if ((*pt) ->Implements == UnaryOp) {
156            _RemoveElement(pt);
157            AnyOpt = TRUE;
158        }
159        else
160            pt = &((*pt) -> Next);
161    }
162
163    return AnyOpt;
164}
165
166// Same, but only if two adjacent elements are found
167static
168cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
169{
170    cmsStage** pt1;
171    cmsStage** pt2;
172    cmsBool AnyOpt = FALSE;
173
174    pt1 = &Lut ->Elements;
175    if (*pt1 == NULL) return AnyOpt;
176
177    while (*pt1 != NULL) {
178
179        pt2 = &((*pt1) -> Next);
180        if (*pt2 == NULL) return AnyOpt;
181
182        if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
183            _RemoveElement(pt2);
184            _RemoveElement(pt1);
185            AnyOpt = TRUE;
186        }
187        else
188            pt1 = &((*pt1) -> Next);
189    }
190
191    return AnyOpt;
192}
193
194
195static
196cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
197{
198       return fabs(b - a) < 0.00001f;
199}
200
201static
202cmsBool  isFloatMatrixIdentity(const cmsMAT3* a)
203{
204       cmsMAT3 Identity;
205       int i, j;
206
207       _cmsMAT3identity(&Identity);
208
209       for (i = 0; i < 3; i++)
210              for (j = 0; j < 3; j++)
211                     if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
212
213       return TRUE;
214}
215// if two adjacent matrices are found, multiply them.
216static
217cmsBool _MultiplyMatrix(cmsPipeline* Lut)
218{
219       cmsStage** pt1;
220       cmsStage** pt2;
221       cmsStage*  chain;
222       cmsBool AnyOpt = FALSE;
223
224       pt1 = &Lut->Elements;
225       if (*pt1 == NULL) return AnyOpt;
226
227       while (*pt1 != NULL) {
228
229              pt2 = &((*pt1)->Next);
230              if (*pt2 == NULL) return AnyOpt;
231
232              if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
233
234                     // Get both matrices
235                     _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
236                     _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
237                     cmsMAT3 res;
238
239                     // Input offset and output offset should be zero to use this optimization
240                     if (m1->Offset != NULL || m2 ->Offset != NULL ||
241                            cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
242                            cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
243                            return FALSE;
244
245                     // Multiply both matrices to get the result
246                     _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
247
248                     // Get the next in chain afer the matrices
249                     chain = (*pt2)->Next;
250
251                     // Remove both matrices
252                     _RemoveElement(pt2);
253                     _RemoveElement(pt1);
254
255                     // Now what if the result is a plain identity?
256                     if (!isFloatMatrixIdentity(&res)) {
257
258                            // We can not get rid of full matrix
259                            cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
260                            if (Multmat == NULL) return FALSE;  // Should never happen
261
262                            // Recover the chain
263                            Multmat->Next = chain;
264                            *pt1 = Multmat;
265                     }
266
267                     AnyOpt = TRUE;
268              }
269              else
270                     pt1 = &((*pt1)->Next);
271       }
272
273       return AnyOpt;
274}
275
276
277// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
278// by a v4 to v2 and vice-versa. The elements are then discarded.
279static
280cmsBool PreOptimize(cmsPipeline* Lut)
281{
282    cmsBool AnyOpt = FALSE, Opt;
283
284    do {
285
286        Opt = FALSE;
287
288        // Remove all identities
289        Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
290
291        // Remove XYZ2Lab followed by Lab2XYZ
292        Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
293
294        // Remove Lab2XYZ followed by XYZ2Lab
295        Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
296
297        // Remove V4 to V2 followed by V2 to V4
298        Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
299
300        // Remove V2 to V4 followed by V4 to V2
301        Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
302
303        // Remove float pcs Lab conversions
304        Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
305
306        // Remove float pcs Lab conversions
307        Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
308
309        // Simplify matrix.
310        Opt |= _MultiplyMatrix(Lut);
311
312        if (Opt) AnyOpt = TRUE;
313
314    } while (Opt);
315
316    return AnyOpt;
317}
318
319static
320void Eval16nop1D(register const cmsUInt16Number Input[],
321                 register cmsUInt16Number Output[],
322                 register const struct _cms_interp_struc* p)
323{
324    Output[0] = Input[0];
325
326    cmsUNUSED_PARAMETER(p);
327}
328
329static
330void PrelinEval16(register const cmsUInt16Number Input[],
331                  register cmsUInt16Number Output[],
332                  register const void* D)
333{
334    Prelin16Data* p16 = (Prelin16Data*) D;
335    cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS];
336    cmsUInt16Number  StageDEF[cmsMAXCHANNELS];
337    int i;
338
339    for (i=0; i < p16 ->nInputs; i++) {
340
341        p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
342    }
343
344    p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
345
346    for (i=0; i < p16 ->nOutputs; i++) {
347
348        p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
349    }
350}
351
352
353static
354void PrelinOpt16free(cmsContext ContextID, void* ptr)
355{
356    Prelin16Data* p16 = (Prelin16Data*) ptr;
357
358    _cmsFree(ContextID, p16 ->EvalCurveOut16);
359    _cmsFree(ContextID, p16 ->ParamsCurveOut16);
360
361    _cmsFree(ContextID, p16);
362}
363
364static
365void* Prelin16dup(cmsContext ContextID, const void* ptr)
366{
367    Prelin16Data* p16 = (Prelin16Data*) ptr;
368    Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
369
370    if (Duped == NULL) return NULL;
371
372    Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
373    Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
374
375    return Duped;
376}
377
378
379static
380Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
381                               const cmsInterpParams* ColorMap,
382                               int nInputs, cmsToneCurve** In,
383                               int nOutputs, cmsToneCurve** Out )
384{
385    int i;
386    Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
387    if (p16 == NULL) return NULL;
388
389    p16 ->nInputs = nInputs;
390    p16 -> nOutputs = nOutputs;
391
392
393    for (i=0; i < nInputs; i++) {
394
395        if (In == NULL) {
396            p16 -> ParamsCurveIn16[i] = NULL;
397            p16 -> EvalCurveIn16[i] = Eval16nop1D;
398
399        }
400        else {
401            p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
402            p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
403        }
404    }
405
406    p16 ->CLUTparams = ColorMap;
407    p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16;
408
409
410    p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
411    p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
412
413    for (i=0; i < nOutputs; i++) {
414
415        if (Out == NULL) {
416            p16 ->ParamsCurveOut16[i] = NULL;
417            p16 -> EvalCurveOut16[i] = Eval16nop1D;
418        }
419        else {
420
421            p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
422            p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
423        }
424    }
425
426    return p16;
427}
428
429
430
431// Resampling ---------------------------------------------------------------------------------
432
433#define PRELINEARIZATION_POINTS 4096
434
435// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
436// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
437static
438int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
439{
440    cmsPipeline* Lut = (cmsPipeline*) Cargo;
441    cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
442    cmsUInt32Number i;
443
444    _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
445    _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
446
447    // From 16 bit to floating point
448    for (i=0; i < Lut ->InputChannels; i++)
449        InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
450
451    // Evaluate in floating point
452    cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
453
454    // Back to 16 bits representation
455    for (i=0; i < Lut ->OutputChannels; i++)
456        Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
457
458    // Always succeed
459    return TRUE;
460}
461
462// Try to see if the curves of a given MPE are linear
463static
464cmsBool AllCurvesAreLinear(cmsStage* mpe)
465{
466    cmsToneCurve** Curves;
467    cmsUInt32Number i, n;
468
469    Curves = _cmsStageGetPtrToCurveSet(mpe);
470    if (Curves == NULL) return FALSE;
471
472    n = cmsStageOutputChannels(mpe);
473
474    for (i=0; i < n; i++) {
475        if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
476    }
477
478    return TRUE;
479}
480
481// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
482// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
483static
484cmsBool  PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
485                  int nChannelsOut, int nChannelsIn)
486{
487    _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
488    cmsInterpParams* p16  = Grid ->Params;
489    cmsFloat64Number px, py, pz, pw;
490    int        x0, y0, z0, w0;
491    int        i, index;
492
493    if (CLUT -> Type != cmsSigCLutElemType) {
494        cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
495        return FALSE;
496    }
497
498    if (nChannelsIn == 4) {
499
500        px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
501        py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
502        pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
503        pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
504
505        x0 = (int) floor(px);
506        y0 = (int) floor(py);
507        z0 = (int) floor(pz);
508        w0 = (int) floor(pw);
509
510        if (((px - x0) != 0) ||
511            ((py - y0) != 0) ||
512            ((pz - z0) != 0) ||
513            ((pw - w0) != 0)) return FALSE; // Not on exact node
514
515        index = p16 -> opta[3] * x0 +
516                p16 -> opta[2] * y0 +
517                p16 -> opta[1] * z0 +
518                p16 -> opta[0] * w0;
519    }
520    else
521        if (nChannelsIn == 3) {
522
523            px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
524            py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
525            pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
526
527            x0 = (int) floor(px);
528            y0 = (int) floor(py);
529            z0 = (int) floor(pz);
530
531            if (((px - x0) != 0) ||
532                ((py - y0) != 0) ||
533                ((pz - z0) != 0)) return FALSE;  // Not on exact node
534
535            index = p16 -> opta[2] * x0 +
536                    p16 -> opta[1] * y0 +
537                    p16 -> opta[0] * z0;
538        }
539        else
540            if (nChannelsIn == 1) {
541
542                px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
543
544                x0 = (int) floor(px);
545
546                if (((px - x0) != 0)) return FALSE; // Not on exact node
547
548                index = p16 -> opta[0] * x0;
549            }
550            else {
551                cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
552                return FALSE;
553            }
554
555            for (i=0; i < nChannelsOut; i++)
556                Grid -> Tab.T[index + i] = Value[i];
557
558            return TRUE;
559}
560
561// Auxiliary, to see if two values are equal or very different
562static
563cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
564{
565    int i;
566
567    for (i=0; i < n; i++) {
568
569        if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremely different that the fixup should be avoided
570        if (White1[i] != White2[i]) return FALSE;
571    }
572    return TRUE;
573}
574
575
576// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
577static
578cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
579{
580    cmsUInt16Number *WhitePointIn, *WhitePointOut;
581    cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
582    cmsUInt32Number i, nOuts, nIns;
583    cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
584
585    if (!_cmsEndPointsBySpace(EntryColorSpace,
586        &WhitePointIn, NULL, &nIns)) return FALSE;
587
588    if (!_cmsEndPointsBySpace(ExitColorSpace,
589        &WhitePointOut, NULL, &nOuts)) return FALSE;
590
591    // It needs to be fixed?
592    if (Lut ->InputChannels != nIns) return FALSE;
593    if (Lut ->OutputChannels != nOuts) return FALSE;
594
595    cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
596
597    if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
598
599    // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
600    if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
601        if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
602            if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
603                if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
604                    return FALSE;
605
606    // We need to interpolate white points of both, pre and post curves
607    if (PreLin) {
608
609        cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
610
611        for (i=0; i < nIns; i++) {
612            WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
613        }
614    }
615    else {
616        for (i=0; i < nIns; i++)
617            WhiteIn[i] = WhitePointIn[i];
618    }
619
620    // If any post-linearization, we need to find how is represented white before the curve, do
621    // a reverse interpolation in this case.
622    if (PostLin) {
623
624        cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
625
626        for (i=0; i < nOuts; i++) {
627
628            cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
629            if (InversePostLin == NULL) {
630                WhiteOut[i] = WhitePointOut[i];
631
632            } else {
633
634                WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
635                cmsFreeToneCurve(InversePostLin);
636            }
637        }
638    }
639    else {
640        for (i=0; i < nOuts; i++)
641            WhiteOut[i] = WhitePointOut[i];
642    }
643
644    // Ok, proceed with patching. May fail and we don't care if it fails
645    PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
646
647    return TRUE;
648}
649
650// -----------------------------------------------------------------------------------------------------------------------------------------------
651// This function creates simple LUT from complex ones. The generated LUT has an optional set of
652// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
653// These curves have to exist in the original LUT in order to be used in the simplified output.
654// Caller may also use the flags to allow this feature.
655// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
656// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
657// -----------------------------------------------------------------------------------------------------------------------------------------------
658
659static
660cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
661{
662    cmsPipeline* Src = NULL;
663    cmsPipeline* Dest = NULL;
664    cmsStage* mpe;
665    cmsStage* CLUT;
666    cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
667    int nGridPoints;
668    cmsColorSpaceSignature ColorSpace, OutputColorSpace;
669    cmsStage *NewPreLin = NULL;
670    cmsStage *NewPostLin = NULL;
671    _cmsStageCLutData* DataCLUT;
672    cmsToneCurve** DataSetIn;
673    cmsToneCurve** DataSetOut;
674    Prelin16Data* p16;
675
676    // This is a loosy optimization! does not apply in floating-point cases
677    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
678
679    ColorSpace       = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
680    OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
681    nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
682
683    // For empty LUTs, 2 points are enough
684    if (cmsPipelineStageCount(*Lut) == 0)
685        nGridPoints = 2;
686
687    Src = *Lut;
688
689    // Named color pipelines cannot be optimized either
690    for (mpe = cmsPipelineGetPtrToFirstStage(Src);
691        mpe != NULL;
692        mpe = cmsStageNext(mpe)) {
693            if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
694    }
695
696    // Allocate an empty LUT
697    Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
698    if (!Dest) return FALSE;
699
700    // Prelinearization tables are kept unless indicated by flags
701    if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
702
703        // Get a pointer to the prelinearization element
704        cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
705
706        // Check if suitable
707        if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
708
709            // Maybe this is a linear tram, so we can avoid the whole stuff
710            if (!AllCurvesAreLinear(PreLin)) {
711
712                // All seems ok, proceed.
713                NewPreLin = cmsStageDup(PreLin);
714                if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
715                    goto Error;
716
717                // Remove prelinearization. Since we have duplicated the curve
718                // in destination LUT, the sampling shoud be applied after this stage.
719                cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
720            }
721        }
722    }
723
724    // Allocate the CLUT
725    CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
726    if (CLUT == NULL) return FALSE;
727
728    // Add the CLUT to the destination LUT
729    if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
730        goto Error;
731    }
732
733    // Postlinearization tables are kept unless indicated by flags
734    if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
735
736        // Get a pointer to the postlinearization if present
737        cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
738
739        // Check if suitable
740        if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
741
742            // Maybe this is a linear tram, so we can avoid the whole stuff
743            if (!AllCurvesAreLinear(PostLin)) {
744
745                // All seems ok, proceed.
746                NewPostLin = cmsStageDup(PostLin);
747                if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
748                    goto Error;
749
750                // In destination LUT, the sampling shoud be applied after this stage.
751                cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
752            }
753        }
754    }
755
756    // Now its time to do the sampling. We have to ignore pre/post linearization
757    // The source LUT whithout pre/post curves is passed as parameter.
758    if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
759Error:
760        // Ops, something went wrong, Restore stages
761        if (KeepPreLin != NULL) {
762            if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
763                _cmsAssert(0); // This never happens
764            }
765        }
766        if (KeepPostLin != NULL) {
767            if (!cmsPipelineInsertStage(Src, cmsAT_END,   KeepPostLin)) {
768                _cmsAssert(0); // This never happens
769            }
770        }
771        cmsPipelineFree(Dest);
772        return FALSE;
773    }
774
775    // Done.
776
777    if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
778    if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
779    cmsPipelineFree(Src);
780
781    DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
782
783    if (NewPreLin == NULL) DataSetIn = NULL;
784    else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
785
786    if (NewPostLin == NULL) DataSetOut = NULL;
787    else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
788
789
790    if (DataSetIn == NULL && DataSetOut == NULL) {
791
792        _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
793    }
794    else {
795
796        p16 = PrelinOpt16alloc(Dest ->ContextID,
797            DataCLUT ->Params,
798            Dest ->InputChannels,
799            DataSetIn,
800            Dest ->OutputChannels,
801            DataSetOut);
802
803        _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
804    }
805
806
807    // Don't fix white on absolute colorimetric
808    if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
809        *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
810
811    if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
812
813        FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
814    }
815
816    *Lut = Dest;
817    return TRUE;
818
819    cmsUNUSED_PARAMETER(Intent);
820}
821
822
823// -----------------------------------------------------------------------------------------------------------------------------------------------
824// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
825// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
826// for RGB transforms. See the paper for more details
827// -----------------------------------------------------------------------------------------------------------------------------------------------
828
829
830// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
831// Descending curves are handled as well.
832static
833void SlopeLimiting(cmsToneCurve* g)
834{
835    int BeginVal, EndVal;
836    int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2%
837    int AtEnd   = g ->nEntries - AtBegin - 1;                                  // And 98%
838    cmsFloat64Number Val, Slope, beta;
839    int i;
840
841    if (cmsIsToneCurveDescending(g)) {
842        BeginVal = 0xffff; EndVal = 0;
843    }
844    else {
845        BeginVal = 0; EndVal = 0xffff;
846    }
847
848    // Compute slope and offset for begin of curve
849    Val   = g ->Table16[AtBegin];
850    Slope = (Val - BeginVal) / AtBegin;
851    beta  = Val - Slope * AtBegin;
852
853    for (i=0; i < AtBegin; i++)
854        g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
855
856    // Compute slope and offset for the end
857    Val   = g ->Table16[AtEnd];
858    Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases
859    beta  = Val - Slope * AtEnd;
860
861    for (i = AtEnd; i < (int) g ->nEntries; i++)
862        g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
863}
864
865
866// Precomputes tables for 8-bit on input devicelink.
867static
868Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
869{
870    int i;
871    cmsUInt16Number Input[3];
872    cmsS15Fixed16Number v1, v2, v3;
873    Prelin8Data* p8;
874
875    p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
876    if (p8 == NULL) return NULL;
877
878    // Since this only works for 8 bit input, values comes always as x * 257,
879    // we can safely take msb byte (x << 8 + x)
880
881    for (i=0; i < 256; i++) {
882
883        if (G != NULL) {
884
885            // Get 16-bit representation
886            Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
887            Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
888            Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
889        }
890        else {
891            Input[0] = FROM_8_TO_16(i);
892            Input[1] = FROM_8_TO_16(i);
893            Input[2] = FROM_8_TO_16(i);
894        }
895
896
897        // Move to 0..1.0 in fixed domain
898        v1 = _cmsToFixedDomain(Input[0] * p -> Domain[0]);
899        v2 = _cmsToFixedDomain(Input[1] * p -> Domain[1]);
900        v3 = _cmsToFixedDomain(Input[2] * p -> Domain[2]);
901
902        // Store the precalculated table of nodes
903        p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
904        p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
905        p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
906
907        // Store the precalculated table of offsets
908        p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
909        p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
910        p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
911    }
912
913    p8 ->ContextID = ContextID;
914    p8 ->p = p;
915
916    return p8;
917}
918
919static
920void Prelin8free(cmsContext ContextID, void* ptr)
921{
922    _cmsFree(ContextID, ptr);
923}
924
925static
926void* Prelin8dup(cmsContext ContextID, const void* ptr)
927{
928    return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
929}
930
931
932
933// A optimized interpolation for 8-bit input.
934#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
935static
936void PrelinEval8(register const cmsUInt16Number Input[],
937                  register cmsUInt16Number Output[],
938                  register const void* D)
939{
940
941    cmsUInt8Number         r, g, b;
942    cmsS15Fixed16Number    rx, ry, rz;
943    cmsS15Fixed16Number    c0, c1, c2, c3, Rest;
944    int                    OutChan;
945    register cmsS15Fixed16Number    X0, X1, Y0, Y1, Z0, Z1;
946    Prelin8Data* p8 = (Prelin8Data*) D;
947    register const cmsInterpParams* p = p8 ->p;
948    int                    TotalOut = p -> nOutputs;
949    const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
950
951    r = Input[0] >> 8;
952    g = Input[1] >> 8;
953    b = Input[2] >> 8;
954
955    X0 = X1 = p8->X0[r];
956    Y0 = Y1 = p8->Y0[g];
957    Z0 = Z1 = p8->Z0[b];
958
959    rx = p8 ->rx[r];
960    ry = p8 ->ry[g];
961    rz = p8 ->rz[b];
962
963    X1 = X0 + ((rx == 0) ? 0 : p ->opta[2]);
964    Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]);
965    Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]);
966
967
968    // These are the 6 Tetrahedral
969    for (OutChan=0; OutChan < TotalOut; OutChan++) {
970
971        c0 = DENS(X0, Y0, Z0);
972
973        if (rx >= ry && ry >= rz)
974        {
975            c1 = DENS(X1, Y0, Z0) - c0;
976            c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
977            c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
978        }
979        else
980            if (rx >= rz && rz >= ry)
981            {
982                c1 = DENS(X1, Y0, Z0) - c0;
983                c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
984                c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
985            }
986            else
987                if (rz >= rx && rx >= ry)
988                {
989                    c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
990                    c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
991                    c3 = DENS(X0, Y0, Z1) - c0;
992                }
993                else
994                    if (ry >= rx && rx >= rz)
995                    {
996                        c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
997                        c2 = DENS(X0, Y1, Z0) - c0;
998                        c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
999                    }
1000                    else
1001                        if (ry >= rz && rz >= rx)
1002                        {
1003                            c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1004                            c2 = DENS(X0, Y1, Z0) - c0;
1005                            c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
1006                        }
1007                        else
1008                            if (rz >= ry && ry >= rx)
1009                            {
1010                                c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1011                                c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
1012                                c3 = DENS(X0, Y0, Z1) - c0;
1013                            }
1014                            else  {
1015                                c1 = c2 = c3 = 0;
1016                            }
1017
1018
1019                            Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1020                            Output[OutChan] = (cmsUInt16Number)c0 + ((Rest + (Rest>>16))>>16);
1021
1022    }
1023}
1024
1025#undef DENS
1026
1027
1028// Curves that contain wide empty areas are not optimizeable
1029static
1030cmsBool IsDegenerated(const cmsToneCurve* g)
1031{
1032    int i, Zeros = 0, Poles = 0;
1033    int nEntries = g ->nEntries;
1034
1035    for (i=0; i < nEntries; i++) {
1036
1037        if (g ->Table16[i] == 0x0000) Zeros++;
1038        if (g ->Table16[i] == 0xffff) Poles++;
1039    }
1040
1041    if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables
1042    if (Zeros > (nEntries / 20)) return TRUE;  // Degenerated, many zeros
1043    if (Poles > (nEntries / 20)) return TRUE;  // Degenerated, many poles
1044
1045    return FALSE;
1046}
1047
1048// --------------------------------------------------------------------------------------------------------------
1049// We need xput over here
1050
1051static
1052cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1053{
1054    cmsPipeline* OriginalLut;
1055    int nGridPoints;
1056    cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1057    cmsUInt32Number t, i;
1058    cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1059    cmsBool lIsSuitable, lIsLinear;
1060    cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1061    cmsStage* OptimizedCLUTmpe;
1062    cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1063    cmsStage* OptimizedPrelinMpe;
1064    cmsStage* mpe;
1065    cmsToneCurve** OptimizedPrelinCurves;
1066    _cmsStageCLutData* OptimizedPrelinCLUT;
1067
1068
1069    // This is a loosy optimization! does not apply in floating-point cases
1070    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1071
1072    // Only on chunky RGB
1073    if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
1074    if (T_PLANAR(*InputFormat)) return FALSE;
1075
1076    if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1077    if (T_PLANAR(*OutputFormat)) return FALSE;
1078
1079    // On 16 bits, user has to specify the feature
1080    if (!_cmsFormatterIs8bit(*InputFormat)) {
1081        if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1082    }
1083
1084    OriginalLut = *Lut;
1085
1086   // Named color pipelines cannot be optimized either
1087   for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
1088         mpe != NULL;
1089         mpe = cmsStageNext(mpe)) {
1090            if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1091    }
1092
1093    ColorSpace       = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
1094    OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
1095    nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1096
1097    // Empty gamma containers
1098    memset(Trans, 0, sizeof(Trans));
1099    memset(TransReverse, 0, sizeof(TransReverse));
1100
1101    // If the last stage of the original lut are curves, and those curves are
1102    // degenerated, it is likely the transform is squeezing and clipping
1103    // the output from previous CLUT. We cannot optimize this case
1104    {
1105        cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1106
1107        if (cmsStageType(last) == cmsSigCurveSetElemType) {
1108
1109            _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1110            for (i = 0; i < Data->nCurves; i++) {
1111                if (IsDegenerated(Data->TheCurves[i]))
1112                    goto Error;
1113            }
1114        }
1115    }
1116
1117    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1118        Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1119        if (Trans[t] == NULL) goto Error;
1120    }
1121
1122    // Populate the curves
1123    for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1124
1125        v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1126
1127        // Feed input with a gray ramp
1128        for (t=0; t < OriginalLut ->InputChannels; t++)
1129            In[t] = v;
1130
1131        // Evaluate the gray value
1132        cmsPipelineEvalFloat(In, Out, OriginalLut);
1133
1134        // Store result in curve
1135        for (t=0; t < OriginalLut ->InputChannels; t++)
1136            Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1137    }
1138
1139    // Slope-limit the obtained curves
1140    for (t = 0; t < OriginalLut ->InputChannels; t++)
1141        SlopeLimiting(Trans[t]);
1142
1143    // Check for validity
1144    lIsSuitable = TRUE;
1145    lIsLinear   = TRUE;
1146    for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1147
1148        // Exclude if already linear
1149        if (!cmsIsToneCurveLinear(Trans[t]))
1150            lIsLinear = FALSE;
1151
1152        // Exclude if non-monotonic
1153        if (!cmsIsToneCurveMonotonic(Trans[t]))
1154            lIsSuitable = FALSE;
1155
1156        if (IsDegenerated(Trans[t]))
1157            lIsSuitable = FALSE;
1158    }
1159
1160    // If it is not suitable, just quit
1161    if (!lIsSuitable) goto Error;
1162
1163    // Invert curves if possible
1164    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1165        TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1166        if (TransReverse[t] == NULL) goto Error;
1167    }
1168
1169    // Now inset the reversed curves at the begin of transform
1170    LutPlusCurves = cmsPipelineDup(OriginalLut);
1171    if (LutPlusCurves == NULL) goto Error;
1172
1173    if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1174        goto Error;
1175
1176    // Create the result LUT
1177    OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1178    if (OptimizedLUT == NULL) goto Error;
1179
1180    OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1181
1182    // Create and insert the curves at the beginning
1183    if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1184        goto Error;
1185
1186    // Allocate the CLUT for result
1187    OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1188
1189    // Add the CLUT to the destination LUT
1190    if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1191        goto Error;
1192
1193    // Resample the LUT
1194    if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1195
1196    // Free resources
1197    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1198
1199        if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1200        if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1201    }
1202
1203    cmsPipelineFree(LutPlusCurves);
1204
1205
1206    OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1207    OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1208
1209    // Set the evaluator if 8-bit
1210    if (_cmsFormatterIs8bit(*InputFormat)) {
1211
1212        Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1213                                                OptimizedPrelinCLUT ->Params,
1214                                                OptimizedPrelinCurves);
1215        if (p8 == NULL) return FALSE;
1216
1217        _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1218
1219    }
1220    else
1221    {
1222        Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1223            OptimizedPrelinCLUT ->Params,
1224            3, OptimizedPrelinCurves, 3, NULL);
1225        if (p16 == NULL) return FALSE;
1226
1227        _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1228
1229    }
1230
1231    // Don't fix white on absolute colorimetric
1232    if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1233        *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1234
1235    if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1236
1237        if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1238
1239            return FALSE;
1240        }
1241    }
1242
1243    // And return the obtained LUT
1244
1245    cmsPipelineFree(OriginalLut);
1246    *Lut = OptimizedLUT;
1247    return TRUE;
1248
1249Error:
1250
1251    for (t = 0; t < OriginalLut ->InputChannels; t++) {
1252
1253        if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1254        if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1255    }
1256
1257    if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1258    if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1259
1260    return FALSE;
1261
1262    cmsUNUSED_PARAMETER(Intent);
1263}
1264
1265
1266// Curves optimizer ------------------------------------------------------------------------------------------------------------------
1267
1268static
1269void CurvesFree(cmsContext ContextID, void* ptr)
1270{
1271     Curves16Data* Data = (Curves16Data*) ptr;
1272     int i;
1273
1274     for (i=0; i < Data -> nCurves; i++) {
1275
1276         _cmsFree(ContextID, Data ->Curves[i]);
1277     }
1278
1279     _cmsFree(ContextID, Data ->Curves);
1280     _cmsFree(ContextID, ptr);
1281}
1282
1283static
1284void* CurvesDup(cmsContext ContextID, const void* ptr)
1285{
1286    Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1287    int i;
1288
1289    if (Data == NULL) return NULL;
1290
1291    Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1292
1293    for (i=0; i < Data -> nCurves; i++) {
1294        Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1295    }
1296
1297    return (void*) Data;
1298}
1299
1300// Precomputes tables for 8-bit on input devicelink.
1301static
1302Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G)
1303{
1304    int i, j;
1305    Curves16Data* c16;
1306
1307    c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1308    if (c16 == NULL) return NULL;
1309
1310    c16 ->nCurves = nCurves;
1311    c16 ->nElements = nElements;
1312
1313    c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1314    if (c16 ->Curves == NULL) return NULL;
1315
1316    for (i=0; i < nCurves; i++) {
1317
1318        c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1319
1320        if (c16->Curves[i] == NULL) {
1321
1322            for (j=0; j < i; j++) {
1323                _cmsFree(ContextID, c16->Curves[j]);
1324            }
1325            _cmsFree(ContextID, c16->Curves);
1326            _cmsFree(ContextID, c16);
1327            return NULL;
1328        }
1329
1330        if (nElements == 256) {
1331
1332            for (j=0; j < nElements; j++) {
1333
1334                c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1335            }
1336        }
1337        else {
1338
1339            for (j=0; j < nElements; j++) {
1340                c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1341            }
1342        }
1343    }
1344
1345    return c16;
1346}
1347
1348static
1349void FastEvaluateCurves8(register const cmsUInt16Number In[],
1350                          register cmsUInt16Number Out[],
1351                          register const void* D)
1352{
1353    Curves16Data* Data = (Curves16Data*) D;
1354    cmsUInt8Number x;
1355    int i;
1356
1357    for (i=0; i < Data ->nCurves; i++) {
1358
1359         x = (In[i] >> 8);
1360         Out[i] = Data -> Curves[i][x];
1361    }
1362}
1363
1364
1365static
1366void FastEvaluateCurves16(register const cmsUInt16Number In[],
1367                          register cmsUInt16Number Out[],
1368                          register const void* D)
1369{
1370    Curves16Data* Data = (Curves16Data*) D;
1371    int i;
1372
1373    for (i=0; i < Data ->nCurves; i++) {
1374         Out[i] = Data -> Curves[i][In[i]];
1375    }
1376}
1377
1378
1379static
1380void FastIdentity16(register const cmsUInt16Number In[],
1381                    register cmsUInt16Number Out[],
1382                    register const void* D)
1383{
1384    cmsPipeline* Lut = (cmsPipeline*) D;
1385    cmsUInt32Number i;
1386
1387    for (i=0; i < Lut ->InputChannels; i++) {
1388         Out[i] = In[i];
1389    }
1390}
1391
1392
1393// If the target LUT holds only curves, the optimization procedure is to join all those
1394// curves together. That only works on curves and does not work on matrices.
1395static
1396cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1397{
1398    cmsToneCurve** GammaTables = NULL;
1399    cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1400    cmsUInt32Number i, j;
1401    cmsPipeline* Src = *Lut;
1402    cmsPipeline* Dest = NULL;
1403    cmsStage* mpe;
1404    cmsStage* ObtainedCurves = NULL;
1405
1406
1407    // This is a loosy optimization! does not apply in floating-point cases
1408    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1409
1410    //  Only curves in this LUT?
1411    for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1412         mpe != NULL;
1413         mpe = cmsStageNext(mpe)) {
1414            if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1415    }
1416
1417    // Allocate an empty LUT
1418    Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1419    if (Dest == NULL) return FALSE;
1420
1421    // Create target curves
1422    GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1423    if (GammaTables == NULL) goto Error;
1424
1425    for (i=0; i < Src ->InputChannels; i++) {
1426        GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1427        if (GammaTables[i] == NULL) goto Error;
1428    }
1429
1430    // Compute 16 bit result by using floating point
1431    for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1432
1433        for (j=0; j < Src ->InputChannels; j++)
1434            InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1435
1436        cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1437
1438        for (j=0; j < Src ->InputChannels; j++)
1439            GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1440    }
1441
1442    ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1443    if (ObtainedCurves == NULL) goto Error;
1444
1445    for (i=0; i < Src ->InputChannels; i++) {
1446        cmsFreeToneCurve(GammaTables[i]);
1447        GammaTables[i] = NULL;
1448    }
1449
1450    if (GammaTables != NULL) {
1451        _cmsFree(Src->ContextID, GammaTables);
1452        GammaTables = NULL;
1453    }
1454
1455    // Maybe the curves are linear at the end
1456    if (!AllCurvesAreLinear(ObtainedCurves)) {
1457
1458        if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1459            goto Error;
1460
1461        // If the curves are to be applied in 8 bits, we can save memory
1462        if (_cmsFormatterIs8bit(*InputFormat)) {
1463
1464            _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
1465             Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1466
1467             if (c16 == NULL) goto Error;
1468             *dwFlags |= cmsFLAGS_NOCACHE;
1469            _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1470
1471        }
1472        else {
1473
1474            _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1475             Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1476
1477             if (c16 == NULL) goto Error;
1478             *dwFlags |= cmsFLAGS_NOCACHE;
1479            _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1480        }
1481    }
1482    else {
1483
1484        // LUT optimizes to nothing. Set the identity LUT
1485        cmsStageFree(ObtainedCurves);
1486
1487        if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1488            goto Error;
1489
1490        *dwFlags |= cmsFLAGS_NOCACHE;
1491        _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1492    }
1493
1494    // We are done.
1495    cmsPipelineFree(Src);
1496    *Lut = Dest;
1497    return TRUE;
1498
1499Error:
1500
1501    if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1502    if (GammaTables != NULL) {
1503        for (i=0; i < Src ->InputChannels; i++) {
1504            if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1505        }
1506
1507        _cmsFree(Src ->ContextID, GammaTables);
1508    }
1509
1510    if (Dest != NULL) cmsPipelineFree(Dest);
1511    return FALSE;
1512
1513    cmsUNUSED_PARAMETER(Intent);
1514    cmsUNUSED_PARAMETER(InputFormat);
1515    cmsUNUSED_PARAMETER(OutputFormat);
1516    cmsUNUSED_PARAMETER(dwFlags);
1517}
1518
1519// -------------------------------------------------------------------------------------------------------------------------------------
1520// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1521
1522
1523static
1524void  FreeMatShaper(cmsContext ContextID, void* Data)
1525{
1526    if (Data != NULL) _cmsFree(ContextID, Data);
1527}
1528
1529static
1530void* DupMatShaper(cmsContext ContextID, const void* Data)
1531{
1532    return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1533}
1534
1535
1536// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1537// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1538// in total about 50K, and the performance boost is huge!
1539static
1540void MatShaperEval16(register const cmsUInt16Number In[],
1541                     register cmsUInt16Number Out[],
1542                     register const void* D)
1543{
1544    MatShaper8Data* p = (MatShaper8Data*) D;
1545    cmsS1Fixed14Number l1, l2, l3, r, g, b;
1546    cmsUInt32Number ri, gi, bi;
1547
1548    // In this case (and only in this case!) we can use this simplification since
1549    // In[] is assured to come from a 8 bit number. (a << 8 | a)
1550    ri = In[0] & 0xFF;
1551    gi = In[1] & 0xFF;
1552    bi = In[2] & 0xFF;
1553
1554    // Across first shaper, which also converts to 1.14 fixed point
1555    r = p->Shaper1R[ri];
1556    g = p->Shaper1G[gi];
1557    b = p->Shaper1B[bi];
1558
1559    // Evaluate the matrix in 1.14 fixed point
1560    l1 =  (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1561    l2 =  (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1562    l3 =  (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1563
1564    // Now we have to clip to 0..1.0 range
1565    ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
1566    gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
1567    bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
1568
1569    // And across second shaper,
1570    Out[0] = p->Shaper2R[ri];
1571    Out[1] = p->Shaper2G[gi];
1572    Out[2] = p->Shaper2B[bi];
1573
1574}
1575
1576// This table converts from 8 bits to 1.14 after applying the curve
1577static
1578void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1579{
1580    int i;
1581    cmsFloat32Number R, y;
1582
1583    for (i=0; i < 256; i++) {
1584
1585        R   = (cmsFloat32Number) (i / 255.0);
1586        y   = cmsEvalToneCurveFloat(Curve, R);
1587
1588        Table[i] = DOUBLE_TO_1FIXED14(y);
1589    }
1590}
1591
1592// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1593static
1594void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1595{
1596    int i;
1597    cmsFloat32Number R, Val;
1598
1599    for (i=0; i < 16385; i++) {
1600
1601        R   = (cmsFloat32Number) (i / 16384.0);
1602        Val = cmsEvalToneCurveFloat(Curve, R);    // Val comes 0..1.0
1603
1604        if (Is8BitsOutput) {
1605
1606            // If 8 bits output, we can optimize further by computing the / 257 part.
1607            // first we compute the resulting byte and then we store the byte times
1608            // 257. This quantization allows to round very quick by doing a >> 8, but
1609            // since the low byte is always equal to msb, we can do a & 0xff and this works!
1610            cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1611            cmsUInt8Number  b = FROM_16_TO_8(w);
1612
1613            Table[i] = FROM_8_TO_16(b);
1614        }
1615        else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0);
1616    }
1617}
1618
1619// Compute the matrix-shaper structure
1620static
1621cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1622{
1623    MatShaper8Data* p;
1624    int i, j;
1625    cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1626
1627    // Allocate a big chuck of memory to store precomputed tables
1628    p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1629    if (p == NULL) return FALSE;
1630
1631    p -> ContextID = Dest -> ContextID;
1632
1633    // Precompute tables
1634    FillFirstShaper(p ->Shaper1R, Curve1[0]);
1635    FillFirstShaper(p ->Shaper1G, Curve1[1]);
1636    FillFirstShaper(p ->Shaper1B, Curve1[2]);
1637
1638    FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1639    FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1640    FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1641
1642    // Convert matrix to nFixed14. Note that those values may take more than 16 bits as
1643    for (i=0; i < 3; i++) {
1644        for (j=0; j < 3; j++) {
1645            p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1646        }
1647    }
1648
1649    for (i=0; i < 3; i++) {
1650
1651        if (Off == NULL) {
1652            p ->Off[i] = 0;
1653        }
1654        else {
1655            p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1656        }
1657    }
1658
1659    // Mark as optimized for faster formatter
1660    if (Is8Bits)
1661        *OutputFormat |= OPTIMIZED_SH(1);
1662
1663    // Fill function pointers
1664    _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1665    return TRUE;
1666}
1667
1668//  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1669static
1670cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1671{
1672       cmsStage* Curve1, *Curve2;
1673       cmsStage* Matrix1, *Matrix2;
1674       cmsMAT3 res;
1675       cmsBool IdentityMat;
1676       cmsPipeline* Dest, *Src;
1677       cmsFloat64Number* Offset;
1678
1679       // Only works on RGB to RGB
1680       if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1681
1682       // Only works on 8 bit input
1683       if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1684
1685       // Seems suitable, proceed
1686       Src = *Lut;
1687
1688       // Check for:
1689       //
1690       //    shaper-matrix-matrix-shaper
1691       //    shaper-matrix-shaper
1692       //
1693       // Both of those constructs are possible (first because abs. colorimetric).
1694       // additionally, In the first case, the input matrix offset should be zero.
1695
1696       IdentityMat = FALSE;
1697       if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1698              cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1699              &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1700
1701              // Get both matrices
1702              _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1703              _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1704
1705              // Input offset should be zero
1706              if (Data1->Offset != NULL) return FALSE;
1707
1708              // Multiply both matrices to get the result
1709              _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1710
1711              // Only 2nd matrix has offset, or it is zero
1712              Offset = Data2->Offset;
1713
1714              // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1715              if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1716
1717                     // We can get rid of full matrix
1718                     IdentityMat = TRUE;
1719              }
1720
1721       }
1722       else {
1723
1724              if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1725                     cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1726                     &Curve1, &Matrix1, &Curve2)) {
1727
1728                     _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1729
1730                     // Copy the matrix to our result
1731                     memcpy(&res, Data->Double, sizeof(res));
1732
1733                     // Preserve the Odffset (may be NULL as a zero offset)
1734                     Offset = Data->Offset;
1735
1736                     if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1737
1738                            // We can get rid of full matrix
1739                            IdentityMat = TRUE;
1740                     }
1741              }
1742              else
1743                     return FALSE; // Not optimizeable this time
1744
1745       }
1746
1747      // Allocate an empty LUT
1748    Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1749    if (!Dest) return FALSE;
1750
1751    // Assamble the new LUT
1752    if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1753        goto Error;
1754
1755    if (!IdentityMat) {
1756
1757           if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1758                  goto Error;
1759    }
1760
1761    if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1762        goto Error;
1763
1764    // If identity on matrix, we can further optimize the curves, so call the join curves routine
1765    if (IdentityMat) {
1766
1767        OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1768    }
1769    else {
1770        _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1771        _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1772
1773        // In this particular optimization, cach� does not help as it takes more time to deal with
1774        // the cach� that with the pixel handling
1775        *dwFlags |= cmsFLAGS_NOCACHE;
1776
1777        // Setup the optimizarion routines
1778        SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1779    }
1780
1781    cmsPipelineFree(Src);
1782    *Lut = Dest;
1783    return TRUE;
1784Error:
1785    // Leave Src unchanged
1786    cmsPipelineFree(Dest);
1787    return FALSE;
1788}
1789
1790
1791// -------------------------------------------------------------------------------------------------------------------------------------
1792// Optimization plug-ins
1793
1794// List of optimizations
1795typedef struct _cmsOptimizationCollection_st {
1796
1797    _cmsOPToptimizeFn  OptimizePtr;
1798
1799    struct _cmsOptimizationCollection_st *Next;
1800
1801} _cmsOptimizationCollection;
1802
1803
1804// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1805static _cmsOptimizationCollection DefaultOptimization[] = {
1806
1807    { OptimizeByJoiningCurves,            &DefaultOptimization[1] },
1808    { OptimizeMatrixShaper,               &DefaultOptimization[2] },
1809    { OptimizeByComputingLinearization,   &DefaultOptimization[3] },
1810    { OptimizeByResampling,               NULL }
1811};
1812
1813// The linked list head
1814_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1815
1816
1817// Duplicates the zone of memory used by the plug-in in the new context
1818static
1819void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1820                               const struct _cmsContext_struct* src)
1821{
1822   _cmsOptimizationPluginChunkType newHead = { NULL };
1823   _cmsOptimizationCollection*  entry;
1824   _cmsOptimizationCollection*  Anterior = NULL;
1825   _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1826
1827    _cmsAssert(ctx != NULL);
1828    _cmsAssert(head != NULL);
1829
1830    // Walk the list copying all nodes
1831   for (entry = head->OptimizationCollection;
1832        entry != NULL;
1833        entry = entry ->Next) {
1834
1835            _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1836
1837            if (newEntry == NULL)
1838                return;
1839
1840            // We want to keep the linked list order, so this is a little bit tricky
1841            newEntry -> Next = NULL;
1842            if (Anterior)
1843                Anterior -> Next = newEntry;
1844
1845            Anterior = newEntry;
1846
1847            if (newHead.OptimizationCollection == NULL)
1848                newHead.OptimizationCollection = newEntry;
1849    }
1850
1851  ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1852}
1853
1854void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1855                                         const struct _cmsContext_struct* src)
1856{
1857  if (src != NULL) {
1858
1859        // Copy all linked list
1860       DupPluginOptimizationList(ctx, src);
1861    }
1862    else {
1863        static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1864        ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1865    }
1866}
1867
1868
1869// Register new ways to optimize
1870cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1871{
1872    cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1873    _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1874    _cmsOptimizationCollection* fl;
1875
1876    if (Data == NULL) {
1877
1878        ctx->OptimizationCollection = NULL;
1879        return TRUE;
1880    }
1881
1882    // Optimizer callback is required
1883    if (Plugin ->OptimizePtr == NULL) return FALSE;
1884
1885    fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1886    if (fl == NULL) return FALSE;
1887
1888    // Copy the parameters
1889    fl ->OptimizePtr = Plugin ->OptimizePtr;
1890
1891    // Keep linked list
1892    fl ->Next = ctx->OptimizationCollection;
1893
1894    // Set the head
1895    ctx ->OptimizationCollection = fl;
1896
1897    // All is ok
1898    return TRUE;
1899}
1900
1901// The entry point for LUT optimization
1902cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1903                             cmsPipeline**    PtrLut,
1904                             int              Intent,
1905                             cmsUInt32Number* InputFormat,
1906                             cmsUInt32Number* OutputFormat,
1907                             cmsUInt32Number* dwFlags)
1908{
1909    _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1910    _cmsOptimizationCollection* Opts;
1911    cmsBool AnySuccess = FALSE;
1912
1913    // A CLUT is being asked, so force this specific optimization
1914    if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1915
1916        PreOptimize(*PtrLut);
1917        return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1918    }
1919
1920    // Anything to optimize?
1921    if ((*PtrLut) ->Elements == NULL) {
1922        _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1923        return TRUE;
1924    }
1925
1926    // Try to get rid of identities and trivial conversions.
1927    AnySuccess = PreOptimize(*PtrLut);
1928
1929    // After removal do we end with an identity?
1930    if ((*PtrLut) ->Elements == NULL) {
1931        _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1932        return TRUE;
1933    }
1934
1935    // Do not optimize, keep all precision
1936    if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1937        return FALSE;
1938
1939    // Try plug-in optimizations
1940    for (Opts = ctx->OptimizationCollection;
1941         Opts != NULL;
1942         Opts = Opts ->Next) {
1943
1944            // If one schema succeeded, we are done
1945            if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1946
1947                return TRUE;    // Optimized!
1948            }
1949    }
1950
1951   // Try built-in optimizations
1952    for (Opts = DefaultOptimization;
1953         Opts != NULL;
1954         Opts = Opts ->Next) {
1955
1956            if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1957
1958                return TRUE;
1959            }
1960    }
1961
1962    // Only simple optimizations succeeded
1963    return AnySuccess;
1964}
1965
1966
1967
1968