1/*
2 * reserved comment block
3 * DO NOT REMOVE OR ALTER!
4 */
5/*
6 * jquant2.c
7 *
8 * Copyright (C) 1991-1996, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
11 *
12 * This file contains 2-pass color quantization (color mapping) routines.
13 * These routines provide selection of a custom color map for an image,
14 * followed by mapping of the image to that color map, with optional
15 * Floyd-Steinberg dithering.
16 * It is also possible to use just the second pass to map to an arbitrary
17 * externally-given color map.
18 *
19 * Note: ordered dithering is not supported, since there isn't any fast
20 * way to compute intercolor distances; it's unclear that ordered dither's
21 * fundamental assumptions even hold with an irregularly spaced color map.
22 */
23
24#define JPEG_INTERNALS
25#include "jinclude.h"
26#include "jpeglib.h"
27
28#ifdef QUANT_2PASS_SUPPORTED
29
30
31/*
32 * This module implements the well-known Heckbert paradigm for color
33 * quantization.  Most of the ideas used here can be traced back to
34 * Heckbert's seminal paper
35 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
36 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
37 *
38 * In the first pass over the image, we accumulate a histogram showing the
39 * usage count of each possible color.  To keep the histogram to a reasonable
40 * size, we reduce the precision of the input; typical practice is to retain
41 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
42 * in the same histogram cell.
43 *
44 * Next, the color-selection step begins with a box representing the whole
45 * color space, and repeatedly splits the "largest" remaining box until we
46 * have as many boxes as desired colors.  Then the mean color in each
47 * remaining box becomes one of the possible output colors.
48 *
49 * The second pass over the image maps each input pixel to the closest output
50 * color (optionally after applying a Floyd-Steinberg dithering correction).
51 * This mapping is logically trivial, but making it go fast enough requires
52 * considerable care.
53 *
54 * Heckbert-style quantizers vary a good deal in their policies for choosing
55 * the "largest" box and deciding where to cut it.  The particular policies
56 * used here have proved out well in experimental comparisons, but better ones
57 * may yet be found.
58 *
59 * In earlier versions of the IJG code, this module quantized in YCbCr color
60 * space, processing the raw upsampled data without a color conversion step.
61 * This allowed the color conversion math to be done only once per colormap
62 * entry, not once per pixel.  However, that optimization precluded other
63 * useful optimizations (such as merging color conversion with upsampling)
64 * and it also interfered with desired capabilities such as quantizing to an
65 * externally-supplied colormap.  We have therefore abandoned that approach.
66 * The present code works in the post-conversion color space, typically RGB.
67 *
68 * To improve the visual quality of the results, we actually work in scaled
69 * RGB space, giving G distances more weight than R, and R in turn more than
70 * B.  To do everything in integer math, we must use integer scale factors.
71 * The 2/3/1 scale factors used here correspond loosely to the relative
72 * weights of the colors in the NTSC grayscale equation.
73 * If you want to use this code to quantize a non-RGB color space, you'll
74 * probably need to change these scale factors.
75 */
76
77#define R_SCALE 2               /* scale R distances by this much */
78#define G_SCALE 3               /* scale G distances by this much */
79#define B_SCALE 1               /* and B by this much */
80
81/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
82 * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
83 * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
84 * you'll get compile errors until you extend this logic.  In that case
85 * you'll probably want to tweak the histogram sizes too.
86 */
87
88#if RGB_RED == 0
89#define C0_SCALE R_SCALE
90#endif
91#if RGB_BLUE == 0
92#define C0_SCALE B_SCALE
93#endif
94#if RGB_GREEN == 1
95#define C1_SCALE G_SCALE
96#endif
97#if RGB_RED == 2
98#define C2_SCALE R_SCALE
99#endif
100#if RGB_BLUE == 2
101#define C2_SCALE B_SCALE
102#endif
103
104
105/*
106 * First we have the histogram data structure and routines for creating it.
107 *
108 * The number of bits of precision can be adjusted by changing these symbols.
109 * We recommend keeping 6 bits for G and 5 each for R and B.
110 * If you have plenty of memory and cycles, 6 bits all around gives marginally
111 * better results; if you are short of memory, 5 bits all around will save
112 * some space but degrade the results.
113 * To maintain a fully accurate histogram, we'd need to allocate a "long"
114 * (preferably unsigned long) for each cell.  In practice this is overkill;
115 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
116 * and clamping those that do overflow to the maximum value will give close-
117 * enough results.  This reduces the recommended histogram size from 256Kb
118 * to 128Kb, which is a useful savings on PC-class machines.
119 * (In the second pass the histogram space is re-used for pixel mapping data;
120 * in that capacity, each cell must be able to store zero to the number of
121 * desired colors.  16 bits/cell is plenty for that too.)
122 * Since the JPEG code is intended to run in small memory model on 80x86
123 * machines, we can't just allocate the histogram in one chunk.  Instead
124 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
125 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
126 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
127 * on 80x86 machines, the pointer row is in near memory but the actual
128 * arrays are in far memory (same arrangement as we use for image arrays).
129 */
130
131#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
132
133/* These will do the right thing for either R,G,B or B,G,R color order,
134 * but you may not like the results for other color orders.
135 */
136#define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
137#define HIST_C1_BITS  6         /* bits of precision in G histogram */
138#define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
139
140/* Number of elements along histogram axes. */
141#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
142#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
143#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
144
145/* These are the amounts to shift an input value to get a histogram index. */
146#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
147#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
148#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
149
150
151typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
152
153typedef histcell FAR * histptr; /* for pointers to histogram cells */
154
155typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
156typedef hist1d FAR * hist2d;    /* type for the 2nd-level pointers */
157typedef hist2d * hist3d;        /* type for top-level pointer */
158
159
160/* Declarations for Floyd-Steinberg dithering.
161 *
162 * Errors are accumulated into the array fserrors[], at a resolution of
163 * 1/16th of a pixel count.  The error at a given pixel is propagated
164 * to its not-yet-processed neighbors using the standard F-S fractions,
165 *              ...     (here)  7/16
166 *              3/16    5/16    1/16
167 * We work left-to-right on even rows, right-to-left on odd rows.
168 *
169 * We can get away with a single array (holding one row's worth of errors)
170 * by using it to store the current row's errors at pixel columns not yet
171 * processed, but the next row's errors at columns already processed.  We
172 * need only a few extra variables to hold the errors immediately around the
173 * current column.  (If we are lucky, those variables are in registers, but
174 * even if not, they're probably cheaper to access than array elements are.)
175 *
176 * The fserrors[] array has (#columns + 2) entries; the extra entry at
177 * each end saves us from special-casing the first and last pixels.
178 * Each entry is three values long, one value for each color component.
179 *
180 * Note: on a wide image, we might not have enough room in a PC's near data
181 * segment to hold the error array; so it is allocated with alloc_large.
182 */
183
184#if BITS_IN_JSAMPLE == 8
185typedef INT16 FSERROR;          /* 16 bits should be enough */
186typedef int LOCFSERROR;         /* use 'int' for calculation temps */
187#else
188typedef INT32 FSERROR;          /* may need more than 16 bits */
189typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
190#endif
191
192typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
193
194
195/* Private subobject */
196
197typedef struct {
198  struct jpeg_color_quantizer pub; /* public fields */
199
200  /* Space for the eventually created colormap is stashed here */
201  JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
202  int desired;                  /* desired # of colors = size of colormap */
203
204  /* Variables for accumulating image statistics */
205  hist3d histogram;             /* pointer to the histogram */
206
207  boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
208
209  /* Variables for Floyd-Steinberg dithering */
210  FSERRPTR fserrors;            /* accumulated errors */
211  boolean on_odd_row;           /* flag to remember which row we are on */
212  int * error_limiter;          /* table for clamping the applied error */
213} my_cquantizer;
214
215typedef my_cquantizer * my_cquantize_ptr;
216
217
218/*
219 * Prescan some rows of pixels.
220 * In this module the prescan simply updates the histogram, which has been
221 * initialized to zeroes by start_pass.
222 * An output_buf parameter is required by the method signature, but no data
223 * is actually output (in fact the buffer controller is probably passing a
224 * NULL pointer).
225 */
226
227METHODDEF(void)
228prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
229                  JSAMPARRAY output_buf, int num_rows)
230{
231  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
232  register JSAMPROW ptr;
233  register histptr histp;
234  register hist3d histogram = cquantize->histogram;
235  int row;
236  JDIMENSION col;
237  JDIMENSION width = cinfo->output_width;
238
239  for (row = 0; row < num_rows; row++) {
240    ptr = input_buf[row];
241    for (col = width; col > 0; col--) {
242      /* get pixel value and index into the histogram */
243      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
244                         [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
245                         [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
246      /* increment, check for overflow and undo increment if so. */
247      if (++(*histp) <= 0)
248        (*histp)--;
249      ptr += 3;
250    }
251  }
252}
253
254
255/*
256 * Next we have the really interesting routines: selection of a colormap
257 * given the completed histogram.
258 * These routines work with a list of "boxes", each representing a rectangular
259 * subset of the input color space (to histogram precision).
260 */
261
262typedef struct {
263  /* The bounds of the box (inclusive); expressed as histogram indexes */
264  int c0min, c0max;
265  int c1min, c1max;
266  int c2min, c2max;
267  /* The volume (actually 2-norm) of the box */
268  INT32 volume;
269  /* The number of nonzero histogram cells within this box */
270  long colorcount;
271} box;
272
273typedef box * boxptr;
274
275
276LOCAL(boxptr)
277find_biggest_color_pop (boxptr boxlist, int numboxes)
278/* Find the splittable box with the largest color population */
279/* Returns NULL if no splittable boxes remain */
280{
281  register boxptr boxp;
282  register int i;
283  register long maxc = 0;
284  boxptr which = NULL;
285
286  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
287    if (boxp->colorcount > maxc && boxp->volume > 0) {
288      which = boxp;
289      maxc = boxp->colorcount;
290    }
291  }
292  return which;
293}
294
295
296LOCAL(boxptr)
297find_biggest_volume (boxptr boxlist, int numboxes)
298/* Find the splittable box with the largest (scaled) volume */
299/* Returns NULL if no splittable boxes remain */
300{
301  register boxptr boxp;
302  register int i;
303  register INT32 maxv = 0;
304  boxptr which = NULL;
305
306  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
307    if (boxp->volume > maxv) {
308      which = boxp;
309      maxv = boxp->volume;
310    }
311  }
312  return which;
313}
314
315
316LOCAL(void)
317update_box (j_decompress_ptr cinfo, boxptr boxp)
318/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
319/* and recompute its volume and population */
320{
321  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
322  hist3d histogram = cquantize->histogram;
323  histptr histp;
324  int c0,c1,c2;
325  int c0min,c0max,c1min,c1max,c2min,c2max;
326  INT32 dist0,dist1,dist2;
327  long ccount;
328
329  c0min = boxp->c0min;  c0max = boxp->c0max;
330  c1min = boxp->c1min;  c1max = boxp->c1max;
331  c2min = boxp->c2min;  c2max = boxp->c2max;
332
333  if (c0max > c0min)
334    for (c0 = c0min; c0 <= c0max; c0++)
335      for (c1 = c1min; c1 <= c1max; c1++) {
336        histp = & histogram[c0][c1][c2min];
337        for (c2 = c2min; c2 <= c2max; c2++)
338          if (*histp++ != 0) {
339            boxp->c0min = c0min = c0;
340            goto have_c0min;
341          }
342      }
343 have_c0min:
344  if (c0max > c0min)
345    for (c0 = c0max; c0 >= c0min; c0--)
346      for (c1 = c1min; c1 <= c1max; c1++) {
347        histp = & histogram[c0][c1][c2min];
348        for (c2 = c2min; c2 <= c2max; c2++)
349          if (*histp++ != 0) {
350            boxp->c0max = c0max = c0;
351            goto have_c0max;
352          }
353      }
354 have_c0max:
355  if (c1max > c1min)
356    for (c1 = c1min; c1 <= c1max; c1++)
357      for (c0 = c0min; c0 <= c0max; c0++) {
358        histp = & histogram[c0][c1][c2min];
359        for (c2 = c2min; c2 <= c2max; c2++)
360          if (*histp++ != 0) {
361            boxp->c1min = c1min = c1;
362            goto have_c1min;
363          }
364      }
365 have_c1min:
366  if (c1max > c1min)
367    for (c1 = c1max; c1 >= c1min; c1--)
368      for (c0 = c0min; c0 <= c0max; c0++) {
369        histp = & histogram[c0][c1][c2min];
370        for (c2 = c2min; c2 <= c2max; c2++)
371          if (*histp++ != 0) {
372            boxp->c1max = c1max = c1;
373            goto have_c1max;
374          }
375      }
376 have_c1max:
377  if (c2max > c2min)
378    for (c2 = c2min; c2 <= c2max; c2++)
379      for (c0 = c0min; c0 <= c0max; c0++) {
380        histp = & histogram[c0][c1min][c2];
381        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
382          if (*histp != 0) {
383            boxp->c2min = c2min = c2;
384            goto have_c2min;
385          }
386      }
387 have_c2min:
388  if (c2max > c2min)
389    for (c2 = c2max; c2 >= c2min; c2--)
390      for (c0 = c0min; c0 <= c0max; c0++) {
391        histp = & histogram[c0][c1min][c2];
392        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
393          if (*histp != 0) {
394            boxp->c2max = c2max = c2;
395            goto have_c2max;
396          }
397      }
398 have_c2max:
399
400  /* Update box volume.
401   * We use 2-norm rather than real volume here; this biases the method
402   * against making long narrow boxes, and it has the side benefit that
403   * a box is splittable iff norm > 0.
404   * Since the differences are expressed in histogram-cell units,
405   * we have to shift back to JSAMPLE units to get consistent distances;
406   * after which, we scale according to the selected distance scale factors.
407   */
408  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
409  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
410  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
411  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
412
413  /* Now scan remaining volume of box and compute population */
414  ccount = 0;
415  for (c0 = c0min; c0 <= c0max; c0++)
416    for (c1 = c1min; c1 <= c1max; c1++) {
417      histp = & histogram[c0][c1][c2min];
418      for (c2 = c2min; c2 <= c2max; c2++, histp++)
419        if (*histp != 0) {
420          ccount++;
421        }
422    }
423  boxp->colorcount = ccount;
424}
425
426
427LOCAL(int)
428median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
429            int desired_colors)
430/* Repeatedly select and split the largest box until we have enough boxes */
431{
432  int n,lb;
433  int c0,c1,c2,cmax;
434  register boxptr b1,b2;
435
436  while (numboxes < desired_colors) {
437    /* Select box to split.
438     * Current algorithm: by population for first half, then by volume.
439     */
440    if (numboxes*2 <= desired_colors) {
441      b1 = find_biggest_color_pop(boxlist, numboxes);
442    } else {
443      b1 = find_biggest_volume(boxlist, numboxes);
444    }
445    if (b1 == NULL)             /* no splittable boxes left! */
446      break;
447    b2 = &boxlist[numboxes];    /* where new box will go */
448    /* Copy the color bounds to the new box. */
449    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
450    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
451    /* Choose which axis to split the box on.
452     * Current algorithm: longest scaled axis.
453     * See notes in update_box about scaling distances.
454     */
455    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
456    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
457    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
458    /* We want to break any ties in favor of green, then red, blue last.
459     * This code does the right thing for R,G,B or B,G,R color orders only.
460     */
461#if RGB_RED == 0
462    cmax = c1; n = 1;
463    if (c0 > cmax) { cmax = c0; n = 0; }
464    if (c2 > cmax) { n = 2; }
465#else
466    cmax = c1; n = 1;
467    if (c2 > cmax) { cmax = c2; n = 2; }
468    if (c0 > cmax) { n = 0; }
469#endif
470    /* Choose split point along selected axis, and update box bounds.
471     * Current algorithm: split at halfway point.
472     * (Since the box has been shrunk to minimum volume,
473     * any split will produce two nonempty subboxes.)
474     * Note that lb value is max for lower box, so must be < old max.
475     */
476    switch (n) {
477    case 0:
478      lb = (b1->c0max + b1->c0min) / 2;
479      b1->c0max = lb;
480      b2->c0min = lb+1;
481      break;
482    case 1:
483      lb = (b1->c1max + b1->c1min) / 2;
484      b1->c1max = lb;
485      b2->c1min = lb+1;
486      break;
487    case 2:
488      lb = (b1->c2max + b1->c2min) / 2;
489      b1->c2max = lb;
490      b2->c2min = lb+1;
491      break;
492    }
493    /* Update stats for boxes */
494    update_box(cinfo, b1);
495    update_box(cinfo, b2);
496    numboxes++;
497  }
498  return numboxes;
499}
500
501
502LOCAL(void)
503compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
504/* Compute representative color for a box, put it in colormap[icolor] */
505{
506  /* Current algorithm: mean weighted by pixels (not colors) */
507  /* Note it is important to get the rounding correct! */
508  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
509  hist3d histogram = cquantize->histogram;
510  histptr histp;
511  int c0,c1,c2;
512  int c0min,c0max,c1min,c1max,c2min,c2max;
513  long count;
514  long total = 0;
515  long c0total = 0;
516  long c1total = 0;
517  long c2total = 0;
518
519  c0min = boxp->c0min;  c0max = boxp->c0max;
520  c1min = boxp->c1min;  c1max = boxp->c1max;
521  c2min = boxp->c2min;  c2max = boxp->c2max;
522
523  for (c0 = c0min; c0 <= c0max; c0++)
524    for (c1 = c1min; c1 <= c1max; c1++) {
525      histp = & histogram[c0][c1][c2min];
526      for (c2 = c2min; c2 <= c2max; c2++) {
527        if ((count = *histp++) != 0) {
528          total += count;
529          c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
530          c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
531          c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
532        }
533      }
534    }
535
536  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
537  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
538  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
539}
540
541
542LOCAL(void)
543select_colors (j_decompress_ptr cinfo, int desired_colors)
544/* Master routine for color selection */
545{
546  boxptr boxlist;
547  int numboxes;
548  int i;
549
550  /* Allocate workspace for box list */
551  boxlist = (boxptr) (*cinfo->mem->alloc_small)
552    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
553  /* Initialize one box containing whole space */
554  numboxes = 1;
555  boxlist[0].c0min = 0;
556  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
557  boxlist[0].c1min = 0;
558  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
559  boxlist[0].c2min = 0;
560  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
561  /* Shrink it to actually-used volume and set its statistics */
562  update_box(cinfo, & boxlist[0]);
563  /* Perform median-cut to produce final box list */
564  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
565  /* Compute the representative color for each box, fill colormap */
566  for (i = 0; i < numboxes; i++)
567    compute_color(cinfo, & boxlist[i], i);
568  cinfo->actual_number_of_colors = numboxes;
569  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
570}
571
572
573/*
574 * These routines are concerned with the time-critical task of mapping input
575 * colors to the nearest color in the selected colormap.
576 *
577 * We re-use the histogram space as an "inverse color map", essentially a
578 * cache for the results of nearest-color searches.  All colors within a
579 * histogram cell will be mapped to the same colormap entry, namely the one
580 * closest to the cell's center.  This may not be quite the closest entry to
581 * the actual input color, but it's almost as good.  A zero in the cache
582 * indicates we haven't found the nearest color for that cell yet; the array
583 * is cleared to zeroes before starting the mapping pass.  When we find the
584 * nearest color for a cell, its colormap index plus one is recorded in the
585 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
586 * when they need to use an unfilled entry in the cache.
587 *
588 * Our method of efficiently finding nearest colors is based on the "locally
589 * sorted search" idea described by Heckbert and on the incremental distance
590 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
591 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
592 * the distances from a given colormap entry to each cell of the histogram can
593 * be computed quickly using an incremental method: the differences between
594 * distances to adjacent cells themselves differ by a constant.  This allows a
595 * fairly fast implementation of the "brute force" approach of computing the
596 * distance from every colormap entry to every histogram cell.  Unfortunately,
597 * it needs a work array to hold the best-distance-so-far for each histogram
598 * cell (because the inner loop has to be over cells, not colormap entries).
599 * The work array elements have to be INT32s, so the work array would need
600 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
601 *
602 * To get around these problems, we apply Thomas' method to compute the
603 * nearest colors for only the cells within a small subbox of the histogram.
604 * The work array need be only as big as the subbox, so the memory usage
605 * problem is solved.  Furthermore, we need not fill subboxes that are never
606 * referenced in pass2; many images use only part of the color gamut, so a
607 * fair amount of work is saved.  An additional advantage of this
608 * approach is that we can apply Heckbert's locality criterion to quickly
609 * eliminate colormap entries that are far away from the subbox; typically
610 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
611 * and we need not compute their distances to individual cells in the subbox.
612 * The speed of this approach is heavily influenced by the subbox size: too
613 * small means too much overhead, too big loses because Heckbert's criterion
614 * can't eliminate as many colormap entries.  Empirically the best subbox
615 * size seems to be about 1/512th of the histogram (1/8th in each direction).
616 *
617 * Thomas' article also describes a refined method which is asymptotically
618 * faster than the brute-force method, but it is also far more complex and
619 * cannot efficiently be applied to small subboxes.  It is therefore not
620 * useful for programs intended to be portable to DOS machines.  On machines
621 * with plenty of memory, filling the whole histogram in one shot with Thomas'
622 * refined method might be faster than the present code --- but then again,
623 * it might not be any faster, and it's certainly more complicated.
624 */
625
626
627/* log2(histogram cells in update box) for each axis; this can be adjusted */
628#define BOX_C0_LOG  (HIST_C0_BITS-3)
629#define BOX_C1_LOG  (HIST_C1_BITS-3)
630#define BOX_C2_LOG  (HIST_C2_BITS-3)
631
632#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
633#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
634#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
635
636#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
637#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
638#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
639
640
641/*
642 * The next three routines implement inverse colormap filling.  They could
643 * all be folded into one big routine, but splitting them up this way saves
644 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
645 * and may allow some compilers to produce better code by registerizing more
646 * inner-loop variables.
647 */
648
649LOCAL(int)
650find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
651                    JSAMPLE colorlist[])
652/* Locate the colormap entries close enough to an update box to be candidates
653 * for the nearest entry to some cell(s) in the update box.  The update box
654 * is specified by the center coordinates of its first cell.  The number of
655 * candidate colormap entries is returned, and their colormap indexes are
656 * placed in colorlist[].
657 * This routine uses Heckbert's "locally sorted search" criterion to select
658 * the colors that need further consideration.
659 */
660{
661  int numcolors = cinfo->actual_number_of_colors;
662  int maxc0, maxc1, maxc2;
663  int centerc0, centerc1, centerc2;
664  int i, x, ncolors;
665  INT32 minmaxdist, min_dist, max_dist, tdist;
666  INT32 mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
667
668  /* Compute true coordinates of update box's upper corner and center.
669   * Actually we compute the coordinates of the center of the upper-corner
670   * histogram cell, which are the upper bounds of the volume we care about.
671   * Note that since ">>" rounds down, the "center" values may be closer to
672   * min than to max; hence comparisons to them must be "<=", not "<".
673   */
674  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
675  centerc0 = (minc0 + maxc0) >> 1;
676  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
677  centerc1 = (minc1 + maxc1) >> 1;
678  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
679  centerc2 = (minc2 + maxc2) >> 1;
680
681  /* For each color in colormap, find:
682   *  1. its minimum squared-distance to any point in the update box
683   *     (zero if color is within update box);
684   *  2. its maximum squared-distance to any point in the update box.
685   * Both of these can be found by considering only the corners of the box.
686   * We save the minimum distance for each color in mindist[];
687   * only the smallest maximum distance is of interest.
688   */
689  minmaxdist = 0x7FFFFFFFL;
690
691  for (i = 0; i < numcolors; i++) {
692    /* We compute the squared-c0-distance term, then add in the other two. */
693    x = GETJSAMPLE(cinfo->colormap[0][i]);
694    if (x < minc0) {
695      tdist = (x - minc0) * C0_SCALE;
696      min_dist = tdist*tdist;
697      tdist = (x - maxc0) * C0_SCALE;
698      max_dist = tdist*tdist;
699    } else if (x > maxc0) {
700      tdist = (x - maxc0) * C0_SCALE;
701      min_dist = tdist*tdist;
702      tdist = (x - minc0) * C0_SCALE;
703      max_dist = tdist*tdist;
704    } else {
705      /* within cell range so no contribution to min_dist */
706      min_dist = 0;
707      if (x <= centerc0) {
708        tdist = (x - maxc0) * C0_SCALE;
709        max_dist = tdist*tdist;
710      } else {
711        tdist = (x - minc0) * C0_SCALE;
712        max_dist = tdist*tdist;
713      }
714    }
715
716    x = GETJSAMPLE(cinfo->colormap[1][i]);
717    if (x < minc1) {
718      tdist = (x - minc1) * C1_SCALE;
719      min_dist += tdist*tdist;
720      tdist = (x - maxc1) * C1_SCALE;
721      max_dist += tdist*tdist;
722    } else if (x > maxc1) {
723      tdist = (x - maxc1) * C1_SCALE;
724      min_dist += tdist*tdist;
725      tdist = (x - minc1) * C1_SCALE;
726      max_dist += tdist*tdist;
727    } else {
728      /* within cell range so no contribution to min_dist */
729      if (x <= centerc1) {
730        tdist = (x - maxc1) * C1_SCALE;
731        max_dist += tdist*tdist;
732      } else {
733        tdist = (x - minc1) * C1_SCALE;
734        max_dist += tdist*tdist;
735      }
736    }
737
738    x = GETJSAMPLE(cinfo->colormap[2][i]);
739    if (x < minc2) {
740      tdist = (x - minc2) * C2_SCALE;
741      min_dist += tdist*tdist;
742      tdist = (x - maxc2) * C2_SCALE;
743      max_dist += tdist*tdist;
744    } else if (x > maxc2) {
745      tdist = (x - maxc2) * C2_SCALE;
746      min_dist += tdist*tdist;
747      tdist = (x - minc2) * C2_SCALE;
748      max_dist += tdist*tdist;
749    } else {
750      /* within cell range so no contribution to min_dist */
751      if (x <= centerc2) {
752        tdist = (x - maxc2) * C2_SCALE;
753        max_dist += tdist*tdist;
754      } else {
755        tdist = (x - minc2) * C2_SCALE;
756        max_dist += tdist*tdist;
757      }
758    }
759
760    mindist[i] = min_dist;      /* save away the results */
761    if (max_dist < minmaxdist)
762      minmaxdist = max_dist;
763  }
764
765  /* Now we know that no cell in the update box is more than minmaxdist
766   * away from some colormap entry.  Therefore, only colors that are
767   * within minmaxdist of some part of the box need be considered.
768   */
769  ncolors = 0;
770  for (i = 0; i < numcolors; i++) {
771    if (mindist[i] <= minmaxdist)
772      colorlist[ncolors++] = (JSAMPLE) i;
773  }
774  return ncolors;
775}
776
777
778LOCAL(void)
779find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
780                  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
781/* Find the closest colormap entry for each cell in the update box,
782 * given the list of candidate colors prepared by find_nearby_colors.
783 * Return the indexes of the closest entries in the bestcolor[] array.
784 * This routine uses Thomas' incremental distance calculation method to
785 * find the distance from a colormap entry to successive cells in the box.
786 */
787{
788  int ic0, ic1, ic2;
789  int i, icolor;
790  register INT32 * bptr;        /* pointer into bestdist[] array */
791  JSAMPLE * cptr;               /* pointer into bestcolor[] array */
792  INT32 dist0, dist1;           /* initial distance values */
793  register INT32 dist2;         /* current distance in inner loop */
794  INT32 xx0, xx1;               /* distance increments */
795  register INT32 xx2;
796  INT32 inc0, inc1, inc2;       /* initial values for increments */
797  /* This array holds the distance to the nearest-so-far color for each cell */
798  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
799
800  /* Initialize best-distance for each cell of the update box */
801  bptr = bestdist;
802  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
803    *bptr++ = 0x7FFFFFFFL;
804
805  /* For each color selected by find_nearby_colors,
806   * compute its distance to the center of each cell in the box.
807   * If that's less than best-so-far, update best distance and color number.
808   */
809
810  /* Nominal steps between cell centers ("x" in Thomas article) */
811#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
812#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
813#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
814
815  for (i = 0; i < numcolors; i++) {
816    icolor = GETJSAMPLE(colorlist[i]);
817    /* Compute (square of) distance from minc0/c1/c2 to this color */
818    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
819    dist0 = inc0*inc0;
820    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
821    dist0 += inc1*inc1;
822    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
823    dist0 += inc2*inc2;
824    /* Form the initial difference increments */
825    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
826    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
827    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
828    /* Now loop over all cells in box, updating distance per Thomas method */
829    bptr = bestdist;
830    cptr = bestcolor;
831    xx0 = inc0;
832    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
833      dist1 = dist0;
834      xx1 = inc1;
835      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
836        dist2 = dist1;
837        xx2 = inc2;
838        for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
839          if (dist2 < *bptr) {
840            *bptr = dist2;
841            *cptr = (JSAMPLE) icolor;
842          }
843          dist2 += xx2;
844          xx2 += 2 * STEP_C2 * STEP_C2;
845          bptr++;
846          cptr++;
847        }
848        dist1 += xx1;
849        xx1 += 2 * STEP_C1 * STEP_C1;
850      }
851      dist0 += xx0;
852      xx0 += 2 * STEP_C0 * STEP_C0;
853    }
854  }
855}
856
857
858LOCAL(void)
859fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
860/* Fill the inverse-colormap entries in the update box that contains */
861/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
862/* we can fill as many others as we wish.) */
863{
864  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
865  hist3d histogram = cquantize->histogram;
866  int minc0, minc1, minc2;      /* lower left corner of update box */
867  int ic0, ic1, ic2;
868  register JSAMPLE * cptr;      /* pointer into bestcolor[] array */
869  register histptr cachep;      /* pointer into main cache array */
870  /* This array lists the candidate colormap indexes. */
871  JSAMPLE colorlist[MAXNUMCOLORS];
872  int numcolors;                /* number of candidate colors */
873  /* This array holds the actually closest colormap index for each cell. */
874  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
875
876  /* Convert cell coordinates to update box ID */
877  c0 >>= BOX_C0_LOG;
878  c1 >>= BOX_C1_LOG;
879  c2 >>= BOX_C2_LOG;
880
881  /* Compute true coordinates of update box's origin corner.
882   * Actually we compute the coordinates of the center of the corner
883   * histogram cell, which are the lower bounds of the volume we care about.
884   */
885  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
886  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
887  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
888
889  /* Determine which colormap entries are close enough to be candidates
890   * for the nearest entry to some cell in the update box.
891   */
892  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
893
894  /* Determine the actually nearest colors. */
895  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
896                   bestcolor);
897
898  /* Save the best color numbers (plus 1) in the main cache array */
899  c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
900  c1 <<= BOX_C1_LOG;
901  c2 <<= BOX_C2_LOG;
902  cptr = bestcolor;
903  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
904    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
905      cachep = & histogram[c0+ic0][c1+ic1][c2];
906      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
907        *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
908      }
909    }
910  }
911}
912
913
914/*
915 * Map some rows of pixels to the output colormapped representation.
916 */
917
918METHODDEF(void)
919pass2_no_dither (j_decompress_ptr cinfo,
920                 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
921/* This version performs no dithering */
922{
923  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
924  hist3d histogram = cquantize->histogram;
925  register JSAMPROW inptr, outptr;
926  register histptr cachep;
927  register int c0, c1, c2;
928  int row;
929  JDIMENSION col;
930  JDIMENSION width = cinfo->output_width;
931
932  for (row = 0; row < num_rows; row++) {
933    inptr = input_buf[row];
934    outptr = output_buf[row];
935    for (col = width; col > 0; col--) {
936      /* get pixel value and index into the cache */
937      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
938      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
939      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
940      cachep = & histogram[c0][c1][c2];
941      /* If we have not seen this color before, find nearest colormap entry */
942      /* and update the cache */
943      if (*cachep == 0)
944        fill_inverse_cmap(cinfo, c0,c1,c2);
945      /* Now emit the colormap index for this cell */
946      *outptr++ = (JSAMPLE) (*cachep - 1);
947    }
948  }
949}
950
951
952METHODDEF(void)
953pass2_fs_dither (j_decompress_ptr cinfo,
954                 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
955/* This version performs Floyd-Steinberg dithering */
956{
957  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
958  hist3d histogram = cquantize->histogram;
959  register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
960  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
961  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
962  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
963  JSAMPROW inptr;               /* => current input pixel */
964  JSAMPROW outptr;              /* => current output pixel */
965  histptr cachep;
966  int dir;                      /* +1 or -1 depending on direction */
967  int dir3;                     /* 3*dir, for advancing inptr & errorptr */
968  int row;
969  JDIMENSION col;
970  JDIMENSION width = cinfo->output_width;
971  JSAMPLE *range_limit = cinfo->sample_range_limit;
972  int *error_limit = cquantize->error_limiter;
973  JSAMPROW colormap0 = cinfo->colormap[0];
974  JSAMPROW colormap1 = cinfo->colormap[1];
975  JSAMPROW colormap2 = cinfo->colormap[2];
976  SHIFT_TEMPS
977
978  for (row = 0; row < num_rows; row++) {
979    inptr = input_buf[row];
980    outptr = output_buf[row];
981    if (cquantize->on_odd_row) {
982      /* work right to left in this row */
983      inptr += (width-1) * 3;   /* so point to rightmost pixel */
984      outptr += width-1;
985      dir = -1;
986      dir3 = -3;
987      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
988      cquantize->on_odd_row = FALSE; /* flip for next time */
989    } else {
990      /* work left to right in this row */
991      dir = 1;
992      dir3 = 3;
993      errorptr = cquantize->fserrors; /* => entry before first real column */
994      cquantize->on_odd_row = TRUE; /* flip for next time */
995    }
996    /* Preset error values: no error propagated to first pixel from left */
997    cur0 = cur1 = cur2 = 0;
998    /* and no error propagated to row below yet */
999    belowerr0 = belowerr1 = belowerr2 = 0;
1000    bpreverr0 = bpreverr1 = bpreverr2 = 0;
1001
1002    for (col = width; col > 0; col--) {
1003      /* curN holds the error propagated from the previous pixel on the
1004       * current line.  Add the error propagated from the previous line
1005       * to form the complete error correction term for this pixel, and
1006       * round the error term (which is expressed * 16) to an integer.
1007       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1008       * for either sign of the error value.
1009       * Note: errorptr points to *previous* column's array entry.
1010       */
1011      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1012      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1013      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1014      /* Limit the error using transfer function set by init_error_limit.
1015       * See comments with init_error_limit for rationale.
1016       */
1017      cur0 = error_limit[cur0];
1018      cur1 = error_limit[cur1];
1019      cur2 = error_limit[cur2];
1020      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1021       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1022       * this sets the required size of the range_limit array.
1023       */
1024      cur0 += GETJSAMPLE(inptr[0]);
1025      cur1 += GETJSAMPLE(inptr[1]);
1026      cur2 += GETJSAMPLE(inptr[2]);
1027      cur0 = GETJSAMPLE(range_limit[cur0]);
1028      cur1 = GETJSAMPLE(range_limit[cur1]);
1029      cur2 = GETJSAMPLE(range_limit[cur2]);
1030      /* Index into the cache with adjusted pixel value */
1031      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1032      /* If we have not seen this color before, find nearest colormap */
1033      /* entry and update the cache */
1034      if (*cachep == 0)
1035        fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1036      /* Now emit the colormap index for this cell */
1037      { register int pixcode = *cachep - 1;
1038        *outptr = (JSAMPLE) pixcode;
1039        /* Compute representation error for this pixel */
1040        cur0 -= GETJSAMPLE(colormap0[pixcode]);
1041        cur1 -= GETJSAMPLE(colormap1[pixcode]);
1042        cur2 -= GETJSAMPLE(colormap2[pixcode]);
1043      }
1044      /* Compute error fractions to be propagated to adjacent pixels.
1045       * Add these into the running sums, and simultaneously shift the
1046       * next-line error sums left by 1 column.
1047       */
1048      { register LOCFSERROR bnexterr, delta;
1049
1050        bnexterr = cur0;        /* Process component 0 */
1051        delta = cur0 * 2;
1052        cur0 += delta;          /* form error * 3 */
1053        errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1054        cur0 += delta;          /* form error * 5 */
1055        bpreverr0 = belowerr0 + cur0;
1056        belowerr0 = bnexterr;
1057        cur0 += delta;          /* form error * 7 */
1058        bnexterr = cur1;        /* Process component 1 */
1059        delta = cur1 * 2;
1060        cur1 += delta;          /* form error * 3 */
1061        errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1062        cur1 += delta;          /* form error * 5 */
1063        bpreverr1 = belowerr1 + cur1;
1064        belowerr1 = bnexterr;
1065        cur1 += delta;          /* form error * 7 */
1066        bnexterr = cur2;        /* Process component 2 */
1067        delta = cur2 * 2;
1068        cur2 += delta;          /* form error * 3 */
1069        errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1070        cur2 += delta;          /* form error * 5 */
1071        bpreverr2 = belowerr2 + cur2;
1072        belowerr2 = bnexterr;
1073        cur2 += delta;          /* form error * 7 */
1074      }
1075      /* At this point curN contains the 7/16 error value to be propagated
1076       * to the next pixel on the current line, and all the errors for the
1077       * next line have been shifted over.  We are therefore ready to move on.
1078       */
1079      inptr += dir3;            /* Advance pixel pointers to next column */
1080      outptr += dir;
1081      errorptr += dir3;         /* advance errorptr to current column */
1082    }
1083    /* Post-loop cleanup: we must unload the final error values into the
1084     * final fserrors[] entry.  Note we need not unload belowerrN because
1085     * it is for the dummy column before or after the actual array.
1086     */
1087    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1088    errorptr[1] = (FSERROR) bpreverr1;
1089    errorptr[2] = (FSERROR) bpreverr2;
1090  }
1091}
1092
1093
1094/*
1095 * Initialize the error-limiting transfer function (lookup table).
1096 * The raw F-S error computation can potentially compute error values of up to
1097 * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1098 * much less, otherwise obviously wrong pixels will be created.  (Typical
1099 * effects include weird fringes at color-area boundaries, isolated bright
1100 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1101 * is to ensure that the "corners" of the color cube are allocated as output
1102 * colors; then repeated errors in the same direction cannot cause cascading
1103 * error buildup.  However, that only prevents the error from getting
1104 * completely out of hand; Aaron Giles reports that error limiting improves
1105 * the results even with corner colors allocated.
1106 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1107 * well, but the smoother transfer function used below is even better.  Thanks
1108 * to Aaron Giles for this idea.
1109 */
1110
1111LOCAL(void)
1112init_error_limit (j_decompress_ptr cinfo)
1113/* Allocate and fill in the error_limiter table */
1114{
1115  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1116  int * table;
1117  int in, out;
1118
1119  table = (int *) (*cinfo->mem->alloc_small)
1120    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1121  table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1122  cquantize->error_limiter = table;
1123
1124#define STEPSIZE ((MAXJSAMPLE+1)/16)
1125  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1126  out = 0;
1127  for (in = 0; in < STEPSIZE; in++, out++) {
1128    table[in] = out; table[-in] = -out;
1129  }
1130  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1131  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1132    table[in] = out; table[-in] = -out;
1133  }
1134  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1135  for (; in <= MAXJSAMPLE; in++) {
1136    table[in] = out; table[-in] = -out;
1137  }
1138#undef STEPSIZE
1139}
1140
1141
1142/*
1143 * Finish up at the end of each pass.
1144 */
1145
1146METHODDEF(void)
1147finish_pass1 (j_decompress_ptr cinfo)
1148{
1149  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1150
1151  /* Select the representative colors and fill in cinfo->colormap */
1152  cinfo->colormap = cquantize->sv_colormap;
1153  select_colors(cinfo, cquantize->desired);
1154  /* Force next pass to zero the color index table */
1155  cquantize->needs_zeroed = TRUE;
1156}
1157
1158
1159METHODDEF(void)
1160finish_pass2 (j_decompress_ptr cinfo)
1161{
1162  /* no work */
1163}
1164
1165
1166/*
1167 * Initialize for each processing pass.
1168 */
1169
1170METHODDEF(void)
1171start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1172{
1173  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1174  hist3d histogram = cquantize->histogram;
1175  int i;
1176
1177  /* Only F-S dithering or no dithering is supported. */
1178  /* If user asks for ordered dither, give him F-S. */
1179  if (cinfo->dither_mode != JDITHER_NONE)
1180    cinfo->dither_mode = JDITHER_FS;
1181
1182  if (is_pre_scan) {
1183    /* Set up method pointers */
1184    cquantize->pub.color_quantize = prescan_quantize;
1185    cquantize->pub.finish_pass = finish_pass1;
1186    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1187  } else {
1188    /* Set up method pointers */
1189    if (cinfo->dither_mode == JDITHER_FS)
1190      cquantize->pub.color_quantize = pass2_fs_dither;
1191    else
1192      cquantize->pub.color_quantize = pass2_no_dither;
1193    cquantize->pub.finish_pass = finish_pass2;
1194
1195    /* Make sure color count is acceptable */
1196    i = cinfo->actual_number_of_colors;
1197    if (i < 1)
1198      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1199    if (i > MAXNUMCOLORS)
1200      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1201
1202    if (cinfo->dither_mode == JDITHER_FS) {
1203      size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1204                                   (3 * SIZEOF(FSERROR)));
1205      /* Allocate Floyd-Steinberg workspace if we didn't already. */
1206      if (cquantize->fserrors == NULL)
1207        cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1208          ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1209      /* Initialize the propagated errors to zero. */
1210      jzero_far((void FAR *) cquantize->fserrors, arraysize);
1211      /* Make the error-limit table if we didn't already. */
1212      if (cquantize->error_limiter == NULL)
1213        init_error_limit(cinfo);
1214      cquantize->on_odd_row = FALSE;
1215    }
1216
1217  }
1218  /* Zero the histogram or inverse color map, if necessary */
1219  if (cquantize->needs_zeroed) {
1220    for (i = 0; i < HIST_C0_ELEMS; i++) {
1221      jzero_far((void FAR *) histogram[i],
1222                HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1223    }
1224    cquantize->needs_zeroed = FALSE;
1225  }
1226}
1227
1228
1229/*
1230 * Switch to a new external colormap between output passes.
1231 */
1232
1233METHODDEF(void)
1234new_color_map_2_quant (j_decompress_ptr cinfo)
1235{
1236  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1237
1238  /* Reset the inverse color map */
1239  cquantize->needs_zeroed = TRUE;
1240}
1241
1242
1243/*
1244 * Module initialization routine for 2-pass color quantization.
1245 */
1246
1247GLOBAL(void)
1248jinit_2pass_quantizer (j_decompress_ptr cinfo)
1249{
1250  my_cquantize_ptr cquantize;
1251  int i;
1252
1253  cquantize = (my_cquantize_ptr)
1254    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1255                                SIZEOF(my_cquantizer));
1256  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1257  cquantize->pub.start_pass = start_pass_2_quant;
1258  cquantize->pub.new_color_map = new_color_map_2_quant;
1259  cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1260  cquantize->error_limiter = NULL;
1261
1262  /* Make sure jdmaster didn't give me a case I can't handle */
1263  if (cinfo->out_color_components != 3)
1264    ERREXIT(cinfo, JERR_NOTIMPL);
1265
1266  /* Allocate the histogram/inverse colormap storage */
1267  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1268    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1269  for (i = 0; i < HIST_C0_ELEMS; i++) {
1270    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1271      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1272       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1273  }
1274  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1275
1276  /* Allocate storage for the completed colormap, if required.
1277   * We do this now since it is FAR storage and may affect
1278   * the memory manager's space calculations.
1279   */
1280  if (cinfo->enable_2pass_quant) {
1281    /* Make sure color count is acceptable */
1282    int desired = cinfo->desired_number_of_colors;
1283    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1284    if (desired < 8)
1285      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1286    /* Make sure colormap indexes can be represented by JSAMPLEs */
1287    if (desired > MAXNUMCOLORS)
1288      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1289    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1290      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1291    cquantize->desired = desired;
1292  } else
1293    cquantize->sv_colormap = NULL;
1294
1295  /* Only F-S dithering or no dithering is supported. */
1296  /* If user asks for ordered dither, give him F-S. */
1297  if (cinfo->dither_mode != JDITHER_NONE)
1298    cinfo->dither_mode = JDITHER_FS;
1299
1300  /* Allocate Floyd-Steinberg workspace if necessary.
1301   * This isn't really needed until pass 2, but again it is FAR storage.
1302   * Although we will cope with a later change in dither_mode,
1303   * we do not promise to honor max_memory_to_use if dither_mode changes.
1304   */
1305  if (cinfo->dither_mode == JDITHER_FS) {
1306    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1307      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1308       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1309    /* Might as well create the error-limiting table too. */
1310    init_error_limit(cinfo);
1311  }
1312}
1313
1314#endif /* QUANT_2PASS_SUPPORTED */
1315