1/*
2 * reserved comment block
3 * DO NOT REMOVE OR ALTER!
4 */
5/*
6 * jquant1.c
7 *
8 * Copyright (C) 1991-1996, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
11 *
12 * This file contains 1-pass color quantization (color mapping) routines.
13 * These routines provide mapping to a fixed color map using equally spaced
14 * color values.  Optional Floyd-Steinberg or ordered dithering is available.
15 */
16
17#define JPEG_INTERNALS
18#include "jinclude.h"
19#include "jpeglib.h"
20
21#ifdef QUANT_1PASS_SUPPORTED
22
23
24/*
25 * The main purpose of 1-pass quantization is to provide a fast, if not very
26 * high quality, colormapped output capability.  A 2-pass quantizer usually
27 * gives better visual quality; however, for quantized grayscale output this
28 * quantizer is perfectly adequate.  Dithering is highly recommended with this
29 * quantizer, though you can turn it off if you really want to.
30 *
31 * In 1-pass quantization the colormap must be chosen in advance of seeing the
32 * image.  We use a map consisting of all combinations of Ncolors[i] color
33 * values for the i'th component.  The Ncolors[] values are chosen so that
34 * their product, the total number of colors, is no more than that requested.
35 * (In most cases, the product will be somewhat less.)
36 *
37 * Since the colormap is orthogonal, the representative value for each color
38 * component can be determined without considering the other components;
39 * then these indexes can be combined into a colormap index by a standard
40 * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
41 * can be precalculated and stored in the lookup table colorindex[].
42 * colorindex[i][j] maps pixel value j in component i to the nearest
43 * representative value (grid plane) for that component; this index is
44 * multiplied by the array stride for component i, so that the
45 * index of the colormap entry closest to a given pixel value is just
46 *    sum( colorindex[component-number][pixel-component-value] )
47 * Aside from being fast, this scheme allows for variable spacing between
48 * representative values with no additional lookup cost.
49 *
50 * If gamma correction has been applied in color conversion, it might be wise
51 * to adjust the color grid spacing so that the representative colors are
52 * equidistant in linear space.  At this writing, gamma correction is not
53 * implemented by jdcolor, so nothing is done here.
54 */
55
56
57/* Declarations for ordered dithering.
58 *
59 * We use a standard 16x16 ordered dither array.  The basic concept of ordered
60 * dithering is described in many references, for instance Dale Schumacher's
61 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
62 * In place of Schumacher's comparisons against a "threshold" value, we add a
63 * "dither" value to the input pixel and then round the result to the nearest
64 * output value.  The dither value is equivalent to (0.5 - threshold) times
65 * the distance between output values.  For ordered dithering, we assume that
66 * the output colors are equally spaced; if not, results will probably be
67 * worse, since the dither may be too much or too little at a given point.
68 *
69 * The normal calculation would be to form pixel value + dither, range-limit
70 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
71 * We can skip the separate range-limiting step by extending the colorindex
72 * table in both directions.
73 */
74
75#define ODITHER_SIZE  16        /* dimension of dither matrix */
76/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
77#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
78#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
79
80typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
81typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
82
83static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
84  /* Bayer's order-4 dither array.  Generated by the code given in
85   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
86   * The values in this array must range from 0 to ODITHER_CELLS-1.
87   */
88  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
89  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
90  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
91  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
92  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
93  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
94  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
95  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
96  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
97  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
98  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
99  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
100  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
101  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
102  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
103  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
104};
105
106
107/* Declarations for Floyd-Steinberg dithering.
108 *
109 * Errors are accumulated into the array fserrors[], at a resolution of
110 * 1/16th of a pixel count.  The error at a given pixel is propagated
111 * to its not-yet-processed neighbors using the standard F-S fractions,
112 *              ...     (here)  7/16
113 *              3/16    5/16    1/16
114 * We work left-to-right on even rows, right-to-left on odd rows.
115 *
116 * We can get away with a single array (holding one row's worth of errors)
117 * by using it to store the current row's errors at pixel columns not yet
118 * processed, but the next row's errors at columns already processed.  We
119 * need only a few extra variables to hold the errors immediately around the
120 * current column.  (If we are lucky, those variables are in registers, but
121 * even if not, they're probably cheaper to access than array elements are.)
122 *
123 * The fserrors[] array is indexed [component#][position].
124 * We provide (#columns + 2) entries per component; the extra entry at each
125 * end saves us from special-casing the first and last pixels.
126 *
127 * Note: on a wide image, we might not have enough room in a PC's near data
128 * segment to hold the error array; so it is allocated with alloc_large.
129 */
130
131#if BITS_IN_JSAMPLE == 8
132typedef INT16 FSERROR;          /* 16 bits should be enough */
133typedef int LOCFSERROR;         /* use 'int' for calculation temps */
134#else
135typedef INT32 FSERROR;          /* may need more than 16 bits */
136typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
137#endif
138
139typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
140
141
142/* Private subobject */
143
144#define MAX_Q_COMPS 4           /* max components I can handle */
145
146typedef struct {
147  struct jpeg_color_quantizer pub; /* public fields */
148
149  /* Initially allocated colormap is saved here */
150  JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
151  int sv_actual;                /* number of entries in use */
152
153  JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
154  /* colorindex[i][j] = index of color closest to pixel value j in component i,
155   * premultiplied as described above.  Since colormap indexes must fit into
156   * JSAMPLEs, the entries of this array will too.
157   */
158  boolean is_padded;            /* is the colorindex padded for odither? */
159
160  int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
161
162  /* Variables for ordered dithering */
163  int row_index;                /* cur row's vertical index in dither matrix */
164  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
165
166  /* Variables for Floyd-Steinberg dithering */
167  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
168  boolean on_odd_row;           /* flag to remember which row we are on */
169} my_cquantizer;
170
171typedef my_cquantizer * my_cquantize_ptr;
172
173
174/*
175 * Policy-making subroutines for create_colormap and create_colorindex.
176 * These routines determine the colormap to be used.  The rest of the module
177 * only assumes that the colormap is orthogonal.
178 *
179 *  * select_ncolors decides how to divvy up the available colors
180 *    among the components.
181 *  * output_value defines the set of representative values for a component.
182 *  * largest_input_value defines the mapping from input values to
183 *    representative values for a component.
184 * Note that the latter two routines may impose different policies for
185 * different components, though this is not currently done.
186 */
187
188
189LOCAL(int)
190select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
191/* Determine allocation of desired colors to components, */
192/* and fill in Ncolors[] array to indicate choice. */
193/* Return value is total number of colors (product of Ncolors[] values). */
194{
195  int nc = cinfo->out_color_components; /* number of color components */
196  int max_colors = cinfo->desired_number_of_colors;
197  int total_colors, iroot, i, j;
198  boolean changed;
199  long temp;
200  static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
201
202  /* We can allocate at least the nc'th root of max_colors per component. */
203  /* Compute floor(nc'th root of max_colors). */
204  iroot = 1;
205  do {
206    iroot++;
207    temp = iroot;               /* set temp = iroot ** nc */
208    for (i = 1; i < nc; i++)
209      temp *= iroot;
210  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
211  iroot--;                      /* now iroot = floor(root) */
212
213  /* Must have at least 2 color values per component */
214  if (iroot < 2)
215    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
216
217  /* Initialize to iroot color values for each component */
218  total_colors = 1;
219  for (i = 0; i < nc; i++) {
220    Ncolors[i] = iroot;
221    total_colors *= iroot;
222  }
223  /* We may be able to increment the count for one or more components without
224   * exceeding max_colors, though we know not all can be incremented.
225   * Sometimes, the first component can be incremented more than once!
226   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
227   * In RGB colorspace, try to increment G first, then R, then B.
228   */
229  do {
230    changed = FALSE;
231    for (i = 0; i < nc; i++) {
232      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
233      /* calculate new total_colors if Ncolors[j] is incremented */
234      temp = total_colors / Ncolors[j];
235      temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
236      if (temp > (long) max_colors)
237        break;                  /* won't fit, done with this pass */
238      Ncolors[j]++;             /* OK, apply the increment */
239      total_colors = (int) temp;
240      changed = TRUE;
241    }
242  } while (changed);
243
244  return total_colors;
245}
246
247
248LOCAL(int)
249output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
250/* Return j'th output value, where j will range from 0 to maxj */
251/* The output values must fall in 0..MAXJSAMPLE in increasing order */
252{
253  /* We always provide values 0 and MAXJSAMPLE for each component;
254   * any additional values are equally spaced between these limits.
255   * (Forcing the upper and lower values to the limits ensures that
256   * dithering can't produce a color outside the selected gamut.)
257   */
258  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
259}
260
261
262LOCAL(int)
263largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
264/* Return largest input value that should map to j'th output value */
265/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
266{
267  /* Breakpoints are halfway between values returned by output_value */
268  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
269}
270
271
272/*
273 * Create the colormap.
274 */
275
276LOCAL(void)
277create_colormap (j_decompress_ptr cinfo)
278{
279  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
280  JSAMPARRAY colormap;          /* Created colormap */
281  int total_colors;             /* Number of distinct output colors */
282  int i,j,k, nci, blksize, blkdist, ptr, val;
283
284  /* Select number of colors for each component */
285  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
286
287  /* Report selected color counts */
288  if (cinfo->out_color_components == 3)
289    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
290             total_colors, cquantize->Ncolors[0],
291             cquantize->Ncolors[1], cquantize->Ncolors[2]);
292  else
293    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
294
295  /* Allocate and fill in the colormap. */
296  /* The colors are ordered in the map in standard row-major order, */
297  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
298
299  colormap = (*cinfo->mem->alloc_sarray)
300    ((j_common_ptr) cinfo, JPOOL_IMAGE,
301     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
302
303  /* blksize is number of adjacent repeated entries for a component */
304  /* blkdist is distance between groups of identical entries for a component */
305  blkdist = total_colors;
306
307  for (i = 0; i < cinfo->out_color_components; i++) {
308    /* fill in colormap entries for i'th color component */
309    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
310    blksize = blkdist / nci;
311    for (j = 0; j < nci; j++) {
312      /* Compute j'th output value (out of nci) for component */
313      val = output_value(cinfo, i, j, nci-1);
314      /* Fill in all colormap entries that have this value of this component */
315      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
316        /* fill in blksize entries beginning at ptr */
317        for (k = 0; k < blksize; k++)
318          colormap[i][ptr+k] = (JSAMPLE) val;
319      }
320    }
321    blkdist = blksize;          /* blksize of this color is blkdist of next */
322  }
323
324  /* Save the colormap in private storage,
325   * where it will survive color quantization mode changes.
326   */
327  cquantize->sv_colormap = colormap;
328  cquantize->sv_actual = total_colors;
329}
330
331
332/*
333 * Create the color index table.
334 */
335
336LOCAL(void)
337create_colorindex (j_decompress_ptr cinfo)
338{
339  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
340  JSAMPROW indexptr;
341  int i,j,k, nci, blksize, val, pad;
342
343  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
344   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
345   * This is not necessary in the other dithering modes.  However, we
346   * flag whether it was done in case user changes dithering mode.
347   */
348  if (cinfo->dither_mode == JDITHER_ORDERED) {
349    pad = MAXJSAMPLE*2;
350    cquantize->is_padded = TRUE;
351  } else {
352    pad = 0;
353    cquantize->is_padded = FALSE;
354  }
355
356  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
357    ((j_common_ptr) cinfo, JPOOL_IMAGE,
358     (JDIMENSION) (MAXJSAMPLE+1 + pad),
359     (JDIMENSION) cinfo->out_color_components);
360
361  /* blksize is number of adjacent repeated entries for a component */
362  blksize = cquantize->sv_actual;
363
364  for (i = 0; i < cinfo->out_color_components; i++) {
365    /* fill in colorindex entries for i'th color component */
366    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
367    blksize = blksize / nci;
368
369    /* adjust colorindex pointers to provide padding at negative indexes. */
370    if (pad)
371      cquantize->colorindex[i] += MAXJSAMPLE;
372
373    /* in loop, val = index of current output value, */
374    /* and k = largest j that maps to current val */
375    indexptr = cquantize->colorindex[i];
376    val = 0;
377    k = largest_input_value(cinfo, i, 0, nci-1);
378    for (j = 0; j <= MAXJSAMPLE; j++) {
379      while (j > k)             /* advance val if past boundary */
380        k = largest_input_value(cinfo, i, ++val, nci-1);
381      /* premultiply so that no multiplication needed in main processing */
382      indexptr[j] = (JSAMPLE) (val * blksize);
383    }
384    /* Pad at both ends if necessary */
385    if (pad)
386      for (j = 1; j <= MAXJSAMPLE; j++) {
387        indexptr[-j] = indexptr[0];
388        indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
389      }
390  }
391}
392
393
394/*
395 * Create an ordered-dither array for a component having ncolors
396 * distinct output values.
397 */
398
399LOCAL(ODITHER_MATRIX_PTR)
400make_odither_array (j_decompress_ptr cinfo, int ncolors)
401{
402  ODITHER_MATRIX_PTR odither;
403  int j,k;
404  INT32 num,den;
405
406  odither = (ODITHER_MATRIX_PTR)
407    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
408                                SIZEOF(ODITHER_MATRIX));
409  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
410   * Hence the dither value for the matrix cell with fill order f
411   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
412   * On 16-bit-int machine, be careful to avoid overflow.
413   */
414  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
415  for (j = 0; j < ODITHER_SIZE; j++) {
416    for (k = 0; k < ODITHER_SIZE; k++) {
417      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
418            * MAXJSAMPLE;
419      /* Ensure round towards zero despite C's lack of consistency
420       * about rounding negative values in integer division...
421       */
422      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
423    }
424  }
425  return odither;
426}
427
428
429/*
430 * Create the ordered-dither tables.
431 * Components having the same number of representative colors may
432 * share a dither table.
433 */
434
435LOCAL(void)
436create_odither_tables (j_decompress_ptr cinfo)
437{
438  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
439  ODITHER_MATRIX_PTR odither;
440  int i, j, nci;
441
442  for (i = 0; i < cinfo->out_color_components; i++) {
443    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
444    odither = NULL;             /* search for matching prior component */
445    for (j = 0; j < i; j++) {
446      if (nci == cquantize->Ncolors[j]) {
447        odither = cquantize->odither[j];
448        break;
449      }
450    }
451    if (odither == NULL)        /* need a new table? */
452      odither = make_odither_array(cinfo, nci);
453    cquantize->odither[i] = odither;
454  }
455}
456
457
458/*
459 * Map some rows of pixels to the output colormapped representation.
460 */
461
462METHODDEF(void)
463color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
464                JSAMPARRAY output_buf, int num_rows)
465/* General case, no dithering */
466{
467  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
468  JSAMPARRAY colorindex = cquantize->colorindex;
469  register int pixcode, ci;
470  register JSAMPROW ptrin, ptrout;
471  int row;
472  JDIMENSION col;
473  JDIMENSION width = cinfo->output_width;
474  register int nc = cinfo->out_color_components;
475
476  for (row = 0; row < num_rows; row++) {
477    ptrin = input_buf[row];
478    ptrout = output_buf[row];
479    for (col = width; col > 0; col--) {
480      pixcode = 0;
481      for (ci = 0; ci < nc; ci++) {
482        pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
483      }
484      *ptrout++ = (JSAMPLE) pixcode;
485    }
486  }
487}
488
489
490METHODDEF(void)
491color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
492                 JSAMPARRAY output_buf, int num_rows)
493/* Fast path for out_color_components==3, no dithering */
494{
495  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
496  register int pixcode;
497  register JSAMPROW ptrin, ptrout;
498  JSAMPROW colorindex0 = cquantize->colorindex[0];
499  JSAMPROW colorindex1 = cquantize->colorindex[1];
500  JSAMPROW colorindex2 = cquantize->colorindex[2];
501  int row;
502  JDIMENSION col;
503  JDIMENSION width = cinfo->output_width;
504
505  for (row = 0; row < num_rows; row++) {
506    ptrin = input_buf[row];
507    ptrout = output_buf[row];
508    for (col = width; col > 0; col--) {
509      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
510      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
511      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
512      *ptrout++ = (JSAMPLE) pixcode;
513    }
514  }
515}
516
517
518METHODDEF(void)
519quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
520                     JSAMPARRAY output_buf, int num_rows)
521/* General case, with ordered dithering */
522{
523  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
524  register JSAMPROW input_ptr;
525  register JSAMPROW output_ptr;
526  JSAMPROW colorindex_ci;
527  int * dither;                 /* points to active row of dither matrix */
528  int row_index, col_index;     /* current indexes into dither matrix */
529  int nc = cinfo->out_color_components;
530  int ci;
531  int row;
532  JDIMENSION col;
533  JDIMENSION width = cinfo->output_width;
534
535  for (row = 0; row < num_rows; row++) {
536    /* Initialize output values to 0 so can process components separately */
537    jzero_far((void FAR *) output_buf[row],
538              (size_t) (width * SIZEOF(JSAMPLE)));
539    row_index = cquantize->row_index;
540    for (ci = 0; ci < nc; ci++) {
541      input_ptr = input_buf[row] + ci;
542      output_ptr = output_buf[row];
543      colorindex_ci = cquantize->colorindex[ci];
544      dither = cquantize->odither[ci][row_index];
545      col_index = 0;
546
547      for (col = width; col > 0; col--) {
548        /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
549         * select output value, accumulate into output code for this pixel.
550         * Range-limiting need not be done explicitly, as we have extended
551         * the colorindex table to produce the right answers for out-of-range
552         * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
553         * required amount of padding.
554         */
555        *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
556        input_ptr += nc;
557        output_ptr++;
558        col_index = (col_index + 1) & ODITHER_MASK;
559      }
560    }
561    /* Advance row index for next row */
562    row_index = (row_index + 1) & ODITHER_MASK;
563    cquantize->row_index = row_index;
564  }
565}
566
567
568METHODDEF(void)
569quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
570                      JSAMPARRAY output_buf, int num_rows)
571/* Fast path for out_color_components==3, with ordered dithering */
572{
573  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
574  register int pixcode;
575  register JSAMPROW input_ptr;
576  register JSAMPROW output_ptr;
577  JSAMPROW colorindex0 = cquantize->colorindex[0];
578  JSAMPROW colorindex1 = cquantize->colorindex[1];
579  JSAMPROW colorindex2 = cquantize->colorindex[2];
580  int * dither0;                /* points to active row of dither matrix */
581  int * dither1;
582  int * dither2;
583  int row_index, col_index;     /* current indexes into dither matrix */
584  int row;
585  JDIMENSION col;
586  JDIMENSION width = cinfo->output_width;
587
588  for (row = 0; row < num_rows; row++) {
589    row_index = cquantize->row_index;
590    input_ptr = input_buf[row];
591    output_ptr = output_buf[row];
592    dither0 = cquantize->odither[0][row_index];
593    dither1 = cquantize->odither[1][row_index];
594    dither2 = cquantize->odither[2][row_index];
595    col_index = 0;
596
597    for (col = width; col > 0; col--) {
598      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
599                                        dither0[col_index]]);
600      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
601                                        dither1[col_index]]);
602      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
603                                        dither2[col_index]]);
604      *output_ptr++ = (JSAMPLE) pixcode;
605      col_index = (col_index + 1) & ODITHER_MASK;
606    }
607    row_index = (row_index + 1) & ODITHER_MASK;
608    cquantize->row_index = row_index;
609  }
610}
611
612
613METHODDEF(void)
614quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
615                    JSAMPARRAY output_buf, int num_rows)
616/* General case, with Floyd-Steinberg dithering */
617{
618  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
619  register LOCFSERROR cur;      /* current error or pixel value */
620  LOCFSERROR belowerr;          /* error for pixel below cur */
621  LOCFSERROR bpreverr;          /* error for below/prev col */
622  LOCFSERROR bnexterr;          /* error for below/next col */
623  LOCFSERROR delta;
624  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
625  register JSAMPROW input_ptr;
626  register JSAMPROW output_ptr;
627  JSAMPROW colorindex_ci;
628  JSAMPROW colormap_ci;
629  int pixcode;
630  int nc = cinfo->out_color_components;
631  int dir;                      /* 1 for left-to-right, -1 for right-to-left */
632  int dirnc;                    /* dir * nc */
633  int ci;
634  int row;
635  JDIMENSION col;
636  JDIMENSION width = cinfo->output_width;
637  JSAMPLE *range_limit = cinfo->sample_range_limit;
638  SHIFT_TEMPS
639
640  for (row = 0; row < num_rows; row++) {
641    /* Initialize output values to 0 so can process components separately */
642    jzero_far((void FAR *) output_buf[row],
643              (size_t) (width * SIZEOF(JSAMPLE)));
644    for (ci = 0; ci < nc; ci++) {
645      input_ptr = input_buf[row] + ci;
646      output_ptr = output_buf[row];
647      if (cquantize->on_odd_row) {
648        /* work right to left in this row */
649        input_ptr += (width-1) * nc; /* so point to rightmost pixel */
650        output_ptr += width-1;
651        dir = -1;
652        dirnc = -nc;
653        errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
654      } else {
655        /* work left to right in this row */
656        dir = 1;
657        dirnc = nc;
658        errorptr = cquantize->fserrors[ci]; /* => entry before first column */
659      }
660      colorindex_ci = cquantize->colorindex[ci];
661      colormap_ci = cquantize->sv_colormap[ci];
662      /* Preset error values: no error propagated to first pixel from left */
663      cur = 0;
664      /* and no error propagated to row below yet */
665      belowerr = bpreverr = 0;
666
667      for (col = width; col > 0; col--) {
668        /* cur holds the error propagated from the previous pixel on the
669         * current line.  Add the error propagated from the previous line
670         * to form the complete error correction term for this pixel, and
671         * round the error term (which is expressed * 16) to an integer.
672         * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
673         * for either sign of the error value.
674         * Note: errorptr points to *previous* column's array entry.
675         */
676        cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
677        /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
678         * The maximum error is +- MAXJSAMPLE; this sets the required size
679         * of the range_limit array.
680         */
681        cur += GETJSAMPLE(*input_ptr);
682        cur = GETJSAMPLE(range_limit[cur]);
683        /* Select output value, accumulate into output code for this pixel */
684        pixcode = GETJSAMPLE(colorindex_ci[cur]);
685        *output_ptr += (JSAMPLE) pixcode;
686        /* Compute actual representation error at this pixel */
687        /* Note: we can do this even though we don't have the final */
688        /* pixel code, because the colormap is orthogonal. */
689        cur -= GETJSAMPLE(colormap_ci[pixcode]);
690        /* Compute error fractions to be propagated to adjacent pixels.
691         * Add these into the running sums, and simultaneously shift the
692         * next-line error sums left by 1 column.
693         */
694        bnexterr = cur;
695        delta = cur * 2;
696        cur += delta;           /* form error * 3 */
697        errorptr[0] = (FSERROR) (bpreverr + cur);
698        cur += delta;           /* form error * 5 */
699        bpreverr = belowerr + cur;
700        belowerr = bnexterr;
701        cur += delta;           /* form error * 7 */
702        /* At this point cur contains the 7/16 error value to be propagated
703         * to the next pixel on the current line, and all the errors for the
704         * next line have been shifted over. We are therefore ready to move on.
705         */
706        input_ptr += dirnc;     /* advance input ptr to next column */
707        output_ptr += dir;      /* advance output ptr to next column */
708        errorptr += dir;        /* advance errorptr to current column */
709      }
710      /* Post-loop cleanup: we must unload the final error value into the
711       * final fserrors[] entry.  Note we need not unload belowerr because
712       * it is for the dummy column before or after the actual array.
713       */
714      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
715    }
716    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
717  }
718}
719
720
721/*
722 * Allocate workspace for Floyd-Steinberg errors.
723 */
724
725LOCAL(void)
726alloc_fs_workspace (j_decompress_ptr cinfo)
727{
728  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
729  size_t arraysize;
730  int i;
731
732  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
733  for (i = 0; i < cinfo->out_color_components; i++) {
734    cquantize->fserrors[i] = (FSERRPTR)
735      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
736  }
737}
738
739
740/*
741 * Initialize for one-pass color quantization.
742 */
743
744METHODDEF(void)
745start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
746{
747  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
748  size_t arraysize;
749  int i;
750
751  /* Install my colormap. */
752  cinfo->colormap = cquantize->sv_colormap;
753  cinfo->actual_number_of_colors = cquantize->sv_actual;
754
755  /* Initialize for desired dithering mode. */
756  switch (cinfo->dither_mode) {
757  case JDITHER_NONE:
758    if (cinfo->out_color_components == 3)
759      cquantize->pub.color_quantize = color_quantize3;
760    else
761      cquantize->pub.color_quantize = color_quantize;
762    break;
763  case JDITHER_ORDERED:
764    if (cinfo->out_color_components == 3)
765      cquantize->pub.color_quantize = quantize3_ord_dither;
766    else
767      cquantize->pub.color_quantize = quantize_ord_dither;
768    cquantize->row_index = 0;   /* initialize state for ordered dither */
769    /* If user changed to ordered dither from another mode,
770     * we must recreate the color index table with padding.
771     * This will cost extra space, but probably isn't very likely.
772     */
773    if (! cquantize->is_padded)
774      create_colorindex(cinfo);
775    /* Create ordered-dither tables if we didn't already. */
776    if (cquantize->odither[0] == NULL)
777      create_odither_tables(cinfo);
778    break;
779  case JDITHER_FS:
780    cquantize->pub.color_quantize = quantize_fs_dither;
781    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
782    /* Allocate Floyd-Steinberg workspace if didn't already. */
783    if (cquantize->fserrors[0] == NULL)
784      alloc_fs_workspace(cinfo);
785    /* Initialize the propagated errors to zero. */
786    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
787    for (i = 0; i < cinfo->out_color_components; i++)
788      jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
789    break;
790  default:
791    ERREXIT(cinfo, JERR_NOT_COMPILED);
792    break;
793  }
794}
795
796
797/*
798 * Finish up at the end of the pass.
799 */
800
801METHODDEF(void)
802finish_pass_1_quant (j_decompress_ptr cinfo)
803{
804  /* no work in 1-pass case */
805}
806
807
808/*
809 * Switch to a new external colormap between output passes.
810 * Shouldn't get to this module!
811 */
812
813METHODDEF(void)
814new_color_map_1_quant (j_decompress_ptr cinfo)
815{
816  ERREXIT(cinfo, JERR_MODE_CHANGE);
817}
818
819
820/*
821 * Module initialization routine for 1-pass color quantization.
822 */
823
824GLOBAL(void)
825jinit_1pass_quantizer (j_decompress_ptr cinfo)
826{
827  my_cquantize_ptr cquantize;
828
829  cquantize = (my_cquantize_ptr)
830    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
831                                SIZEOF(my_cquantizer));
832  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
833  cquantize->pub.start_pass = start_pass_1_quant;
834  cquantize->pub.finish_pass = finish_pass_1_quant;
835  cquantize->pub.new_color_map = new_color_map_1_quant;
836  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
837  cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
838
839  /* Make sure my internal arrays won't overflow */
840  if (cinfo->out_color_components > MAX_Q_COMPS)
841    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
842  /* Make sure colormap indexes can be represented by JSAMPLEs */
843  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
844    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
845
846  /* Create the colormap and color index table. */
847  create_colormap(cinfo);
848  create_colorindex(cinfo);
849
850  /* Allocate Floyd-Steinberg workspace now if requested.
851   * We do this now since it is FAR storage and may affect the memory
852   * manager's space calculations.  If the user changes to FS dither
853   * mode in a later pass, we will allocate the space then, and will
854   * possibly overrun the max_memory_to_use setting.
855   */
856  if (cinfo->dither_mode == JDITHER_FS)
857    alloc_fs_workspace(cinfo);
858}
859
860#endif /* QUANT_1PASS_SUPPORTED */
861