1/*
2 * reserved comment block
3 * DO NOT REMOVE OR ALTER!
4 */
5/*
6 * jidctfst.c
7 *
8 * Copyright (C) 1994-1998, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
11 *
12 * This file contains a fast, not so accurate integer implementation of the
13 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
14 * must also perform dequantization of the input coefficients.
15 *
16 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
17 * on each row (or vice versa, but it's more convenient to emit a row at
18 * a time).  Direct algorithms are also available, but they are much more
19 * complex and seem not to be any faster when reduced to code.
20 *
21 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
22 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
23 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
24 * JPEG textbook (see REFERENCES section in file README).  The following code
25 * is based directly on figure 4-8 in P&M.
26 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
27 * possible to arrange the computation so that many of the multiplies are
28 * simple scalings of the final outputs.  These multiplies can then be
29 * folded into the multiplications or divisions by the JPEG quantization
30 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
31 * to be done in the DCT itself.
32 * The primary disadvantage of this method is that with fixed-point math,
33 * accuracy is lost due to imprecise representation of the scaled
34 * quantization values.  The smaller the quantization table entry, the less
35 * precise the scaled value, so this implementation does worse with high-
36 * quality-setting files than with low-quality ones.
37 */
38
39#define JPEG_INTERNALS
40#include "jinclude.h"
41#include "jpeglib.h"
42#include "jdct.h"               /* Private declarations for DCT subsystem */
43
44#ifdef DCT_IFAST_SUPPORTED
45
46
47/*
48 * This module is specialized to the case DCTSIZE = 8.
49 */
50
51#if DCTSIZE != 8
52  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
53#endif
54
55
56/* Scaling decisions are generally the same as in the LL&M algorithm;
57 * see jidctint.c for more details.  However, we choose to descale
58 * (right shift) multiplication products as soon as they are formed,
59 * rather than carrying additional fractional bits into subsequent additions.
60 * This compromises accuracy slightly, but it lets us save a few shifts.
61 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
62 * everywhere except in the multiplications proper; this saves a good deal
63 * of work on 16-bit-int machines.
64 *
65 * The dequantized coefficients are not integers because the AA&N scaling
66 * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
67 * so that the first and second IDCT rounds have the same input scaling.
68 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
69 * avoid a descaling shift; this compromises accuracy rather drastically
70 * for small quantization table entries, but it saves a lot of shifts.
71 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
72 * so we use a much larger scaling factor to preserve accuracy.
73 *
74 * A final compromise is to represent the multiplicative constants to only
75 * 8 fractional bits, rather than 13.  This saves some shifting work on some
76 * machines, and may also reduce the cost of multiplication (since there
77 * are fewer one-bits in the constants).
78 */
79
80#if BITS_IN_JSAMPLE == 8
81#define CONST_BITS  8
82#define PASS1_BITS  2
83#else
84#define CONST_BITS  8
85#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
86#endif
87
88/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
89 * causing a lot of useless floating-point operations at run time.
90 * To get around this we use the following pre-calculated constants.
91 * If you change CONST_BITS you may want to add appropriate values.
92 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
93 */
94
95#if CONST_BITS == 8
96#define FIX_1_082392200  ((INT32)  277)         /* FIX(1.082392200) */
97#define FIX_1_414213562  ((INT32)  362)         /* FIX(1.414213562) */
98#define FIX_1_847759065  ((INT32)  473)         /* FIX(1.847759065) */
99#define FIX_2_613125930  ((INT32)  669)         /* FIX(2.613125930) */
100#else
101#define FIX_1_082392200  FIX(1.082392200)
102#define FIX_1_414213562  FIX(1.414213562)
103#define FIX_1_847759065  FIX(1.847759065)
104#define FIX_2_613125930  FIX(2.613125930)
105#endif
106
107
108/* We can gain a little more speed, with a further compromise in accuracy,
109 * by omitting the addition in a descaling shift.  This yields an incorrectly
110 * rounded result half the time...
111 */
112
113#ifndef USE_ACCURATE_ROUNDING
114#undef DESCALE
115#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
116#endif
117
118
119/* Multiply a DCTELEM variable by an INT32 constant, and immediately
120 * descale to yield a DCTELEM result.
121 */
122
123#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
124
125
126/* Dequantize a coefficient by multiplying it by the multiplier-table
127 * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
128 * multiplication will do.  For 12-bit data, the multiplier table is
129 * declared INT32, so a 32-bit multiply will be used.
130 */
131
132#if BITS_IN_JSAMPLE == 8
133#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
134#else
135#define DEQUANTIZE(coef,quantval)  \
136        DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
137#endif
138
139
140/* Like DESCALE, but applies to a DCTELEM and produces an int.
141 * We assume that int right shift is unsigned if INT32 right shift is.
142 */
143
144#ifdef RIGHT_SHIFT_IS_UNSIGNED
145#define ISHIFT_TEMPS    DCTELEM ishift_temp;
146#if BITS_IN_JSAMPLE == 8
147#define DCTELEMBITS  16         /* DCTELEM may be 16 or 32 bits */
148#else
149#define DCTELEMBITS  32         /* DCTELEM must be 32 bits */
150#endif
151#define IRIGHT_SHIFT(x,shft)  \
152    ((ishift_temp = (x)) < 0 ? \
153     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
154     (ishift_temp >> (shft)))
155#else
156#define ISHIFT_TEMPS
157#define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
158#endif
159
160#ifdef USE_ACCURATE_ROUNDING
161#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
162#else
163#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
164#endif
165
166
167/*
168 * Perform dequantization and inverse DCT on one block of coefficients.
169 */
170
171GLOBAL(void)
172jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
173                 JCOEFPTR coef_block,
174                 JSAMPARRAY output_buf, JDIMENSION output_col)
175{
176  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
177  DCTELEM tmp10, tmp11, tmp12, tmp13;
178  DCTELEM z5, z10, z11, z12, z13;
179  JCOEFPTR inptr;
180  IFAST_MULT_TYPE * quantptr;
181  int * wsptr;
182  JSAMPROW outptr;
183  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
184  int ctr;
185  int workspace[DCTSIZE2];      /* buffers data between passes */
186  SHIFT_TEMPS                   /* for DESCALE */
187  ISHIFT_TEMPS                  /* for IDESCALE */
188
189  /* Pass 1: process columns from input, store into work array. */
190
191  inptr = coef_block;
192  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
193  wsptr = workspace;
194  for (ctr = DCTSIZE; ctr > 0; ctr--) {
195    /* Due to quantization, we will usually find that many of the input
196     * coefficients are zero, especially the AC terms.  We can exploit this
197     * by short-circuiting the IDCT calculation for any column in which all
198     * the AC terms are zero.  In that case each output is equal to the
199     * DC coefficient (with scale factor as needed).
200     * With typical images and quantization tables, half or more of the
201     * column DCT calculations can be simplified this way.
202     */
203
204    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
205        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
206        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
207        inptr[DCTSIZE*7] == 0) {
208      /* AC terms all zero */
209      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
210
211      wsptr[DCTSIZE*0] = dcval;
212      wsptr[DCTSIZE*1] = dcval;
213      wsptr[DCTSIZE*2] = dcval;
214      wsptr[DCTSIZE*3] = dcval;
215      wsptr[DCTSIZE*4] = dcval;
216      wsptr[DCTSIZE*5] = dcval;
217      wsptr[DCTSIZE*6] = dcval;
218      wsptr[DCTSIZE*7] = dcval;
219
220      inptr++;                  /* advance pointers to next column */
221      quantptr++;
222      wsptr++;
223      continue;
224    }
225
226    /* Even part */
227
228    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
229    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
230    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
231    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
232
233    tmp10 = tmp0 + tmp2;        /* phase 3 */
234    tmp11 = tmp0 - tmp2;
235
236    tmp13 = tmp1 + tmp3;        /* phases 5-3 */
237    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
238
239    tmp0 = tmp10 + tmp13;       /* phase 2 */
240    tmp3 = tmp10 - tmp13;
241    tmp1 = tmp11 + tmp12;
242    tmp2 = tmp11 - tmp12;
243
244    /* Odd part */
245
246    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
247    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
248    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
249    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
250
251    z13 = tmp6 + tmp5;          /* phase 6 */
252    z10 = tmp6 - tmp5;
253    z11 = tmp4 + tmp7;
254    z12 = tmp4 - tmp7;
255
256    tmp7 = z11 + z13;           /* phase 5 */
257    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
258
259    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
260    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
261    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
262
263    tmp6 = tmp12 - tmp7;        /* phase 2 */
264    tmp5 = tmp11 - tmp6;
265    tmp4 = tmp10 + tmp5;
266
267    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
268    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
269    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
270    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
271    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
272    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
273    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
274    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
275
276    inptr++;                    /* advance pointers to next column */
277    quantptr++;
278    wsptr++;
279  }
280
281  /* Pass 2: process rows from work array, store into output array. */
282  /* Note that we must descale the results by a factor of 8 == 2**3, */
283  /* and also undo the PASS1_BITS scaling. */
284
285  wsptr = workspace;
286  for (ctr = 0; ctr < DCTSIZE; ctr++) {
287    outptr = output_buf[ctr] + output_col;
288    /* Rows of zeroes can be exploited in the same way as we did with columns.
289     * However, the column calculation has created many nonzero AC terms, so
290     * the simplification applies less often (typically 5% to 10% of the time).
291     * On machines with very fast multiplication, it's possible that the
292     * test takes more time than it's worth.  In that case this section
293     * may be commented out.
294     */
295
296#ifndef NO_ZERO_ROW_TEST
297    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
298        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
299      /* AC terms all zero */
300      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
301                                  & RANGE_MASK];
302
303      outptr[0] = dcval;
304      outptr[1] = dcval;
305      outptr[2] = dcval;
306      outptr[3] = dcval;
307      outptr[4] = dcval;
308      outptr[5] = dcval;
309      outptr[6] = dcval;
310      outptr[7] = dcval;
311
312      wsptr += DCTSIZE;         /* advance pointer to next row */
313      continue;
314    }
315#endif
316
317    /* Even part */
318
319    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
320    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
321
322    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
323    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
324            - tmp13;
325
326    tmp0 = tmp10 + tmp13;
327    tmp3 = tmp10 - tmp13;
328    tmp1 = tmp11 + tmp12;
329    tmp2 = tmp11 - tmp12;
330
331    /* Odd part */
332
333    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
334    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
335    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
336    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
337
338    tmp7 = z11 + z13;           /* phase 5 */
339    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
340
341    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
342    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
343    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
344
345    tmp6 = tmp12 - tmp7;        /* phase 2 */
346    tmp5 = tmp11 - tmp6;
347    tmp4 = tmp10 + tmp5;
348
349    /* Final output stage: scale down by a factor of 8 and range-limit */
350
351    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
352                            & RANGE_MASK];
353    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
354                            & RANGE_MASK];
355    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
356                            & RANGE_MASK];
357    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
358                            & RANGE_MASK];
359    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
360                            & RANGE_MASK];
361    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
362                            & RANGE_MASK];
363    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
364                            & RANGE_MASK];
365    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
366                            & RANGE_MASK];
367
368    wsptr += DCTSIZE;           /* advance pointer to next row */
369  }
370}
371
372#endif /* DCT_IFAST_SUPPORTED */
373