1/*
2 * reserved comment block
3 * DO NOT REMOVE OR ALTER!
4 */
5/*
6 * jdphuff.c
7 *
8 * Copyright (C) 1995-1997, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
11 *
12 * This file contains Huffman entropy decoding routines for progressive JPEG.
13 *
14 * Much of the complexity here has to do with supporting input suspension.
15 * If the data source module demands suspension, we want to be able to back
16 * up to the start of the current MCU.  To do this, we copy state variables
17 * into local working storage, and update them back to the permanent
18 * storage only upon successful completion of an MCU.
19 */
20
21#define JPEG_INTERNALS
22#include "jinclude.h"
23#include "jpeglib.h"
24#include "jdhuff.h"             /* Declarations shared with jdhuff.c */
25
26
27#ifdef D_PROGRESSIVE_SUPPORTED
28
29/*
30 * Expanded entropy decoder object for progressive Huffman decoding.
31 *
32 * The savable_state subrecord contains fields that change within an MCU,
33 * but must not be updated permanently until we complete the MCU.
34 */
35
36typedef struct {
37  unsigned int EOBRUN;                  /* remaining EOBs in EOBRUN */
38  int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
39} savable_state;
40
41/* This macro is to work around compilers with missing or broken
42 * structure assignment.  You'll need to fix this code if you have
43 * such a compiler and you change MAX_COMPS_IN_SCAN.
44 */
45
46#ifndef NO_STRUCT_ASSIGN
47#define ASSIGN_STATE(dest,src)  ((dest) = (src))
48#else
49#if MAX_COMPS_IN_SCAN == 4
50#define ASSIGN_STATE(dest,src)  \
51        ((dest).EOBRUN = (src).EOBRUN, \
52         (dest).last_dc_val[0] = (src).last_dc_val[0], \
53         (dest).last_dc_val[1] = (src).last_dc_val[1], \
54         (dest).last_dc_val[2] = (src).last_dc_val[2], \
55         (dest).last_dc_val[3] = (src).last_dc_val[3])
56#endif
57#endif
58
59
60typedef struct {
61  struct jpeg_entropy_decoder pub; /* public fields */
62
63  /* These fields are loaded into local variables at start of each MCU.
64   * In case of suspension, we exit WITHOUT updating them.
65   */
66  bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
67  savable_state saved;          /* Other state at start of MCU */
68
69  /* These fields are NOT loaded into local working state. */
70  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
71
72  /* Pointers to derived tables (these workspaces have image lifespan) */
73  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
74
75  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
76} phuff_entropy_decoder;
77
78typedef phuff_entropy_decoder * phuff_entropy_ptr;
79
80/* Forward declarations */
81METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
82                                            JBLOCKROW *MCU_data));
83METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
84                                            JBLOCKROW *MCU_data));
85METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
86                                             JBLOCKROW *MCU_data));
87METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
88                                             JBLOCKROW *MCU_data));
89
90
91/*
92 * Initialize for a Huffman-compressed scan.
93 */
94
95METHODDEF(void)
96start_pass_phuff_decoder (j_decompress_ptr cinfo)
97{
98  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
99  boolean is_DC_band, bad;
100  int ci, coefi, tbl;
101  int *coef_bit_ptr;
102  jpeg_component_info * compptr;
103
104  is_DC_band = (cinfo->Ss == 0);
105
106  /* Validate scan parameters */
107  bad = FALSE;
108  if (is_DC_band) {
109    if (cinfo->Se != 0)
110      bad = TRUE;
111  } else {
112    /* need not check Ss/Se < 0 since they came from unsigned bytes */
113    if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
114      bad = TRUE;
115    /* AC scans may have only one component */
116    if (cinfo->comps_in_scan != 1)
117      bad = TRUE;
118  }
119  if (cinfo->Ah != 0) {
120    /* Successive approximation refinement scan: must have Al = Ah-1. */
121    if (cinfo->Al != cinfo->Ah-1)
122      bad = TRUE;
123  }
124  if (cinfo->Al > 13)           /* need not check for < 0 */
125    bad = TRUE;
126  /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
127   * but the spec doesn't say so, and we try to be liberal about what we
128   * accept.  Note: large Al values could result in out-of-range DC
129   * coefficients during early scans, leading to bizarre displays due to
130   * overflows in the IDCT math.  But we won't crash.
131   */
132  if (bad)
133    ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
134             cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
135  /* Update progression status, and verify that scan order is legal.
136   * Note that inter-scan inconsistencies are treated as warnings
137   * not fatal errors ... not clear if this is right way to behave.
138   */
139  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
140    int cindex = cinfo->cur_comp_info[ci]->component_index;
141    coef_bit_ptr = & cinfo->coef_bits[cindex][0];
142    if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
143      WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
144    for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
145      int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
146      if (cinfo->Ah != expected)
147        WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
148      coef_bit_ptr[coefi] = cinfo->Al;
149    }
150  }
151
152  /* Select MCU decoding routine */
153  if (cinfo->Ah == 0) {
154    if (is_DC_band)
155      entropy->pub.decode_mcu = decode_mcu_DC_first;
156    else
157      entropy->pub.decode_mcu = decode_mcu_AC_first;
158  } else {
159    if (is_DC_band)
160      entropy->pub.decode_mcu = decode_mcu_DC_refine;
161    else
162      entropy->pub.decode_mcu = decode_mcu_AC_refine;
163  }
164
165  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
166    compptr = cinfo->cur_comp_info[ci];
167    /* Make sure requested tables are present, and compute derived tables.
168     * We may build same derived table more than once, but it's not expensive.
169     */
170    if (is_DC_band) {
171      if (cinfo->Ah == 0) {     /* DC refinement needs no table */
172        tbl = compptr->dc_tbl_no;
173        jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
174                                & entropy->derived_tbls[tbl]);
175      }
176    } else {
177      tbl = compptr->ac_tbl_no;
178      jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
179                              & entropy->derived_tbls[tbl]);
180      /* remember the single active table */
181      entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
182    }
183    /* Initialize DC predictions to 0 */
184    entropy->saved.last_dc_val[ci] = 0;
185  }
186
187  /* Initialize bitread state variables */
188  entropy->bitstate.bits_left = 0;
189  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
190  entropy->pub.insufficient_data = FALSE;
191
192  /* Initialize private state variables */
193  entropy->saved.EOBRUN = 0;
194
195  /* Initialize restart counter */
196  entropy->restarts_to_go = cinfo->restart_interval;
197}
198
199
200/*
201 * Figure F.12: extend sign bit.
202 * On some machines, a shift and add will be faster than a table lookup.
203 */
204
205#ifdef AVOID_TABLES
206
207#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
208
209#else
210
211#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
212
213static const int extend_test[16] =   /* entry n is 2**(n-1) */
214  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
215    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
216
217static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
218  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
219    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
220    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
221    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
222
223#endif /* AVOID_TABLES */
224
225
226/*
227 * Check for a restart marker & resynchronize decoder.
228 * Returns FALSE if must suspend.
229 */
230
231LOCAL(boolean)
232process_restart (j_decompress_ptr cinfo)
233{
234  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
235  int ci;
236
237  /* Throw away any unused bits remaining in bit buffer; */
238  /* include any full bytes in next_marker's count of discarded bytes */
239  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
240  entropy->bitstate.bits_left = 0;
241
242  /* Advance past the RSTn marker */
243  if (! (*cinfo->marker->read_restart_marker) (cinfo))
244    return FALSE;
245
246  /* Re-initialize DC predictions to 0 */
247  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
248    entropy->saved.last_dc_val[ci] = 0;
249  /* Re-init EOB run count, too */
250  entropy->saved.EOBRUN = 0;
251
252  /* Reset restart counter */
253  entropy->restarts_to_go = cinfo->restart_interval;
254
255  /* Reset out-of-data flag, unless read_restart_marker left us smack up
256   * against a marker.  In that case we will end up treating the next data
257   * segment as empty, and we can avoid producing bogus output pixels by
258   * leaving the flag set.
259   */
260  if (cinfo->unread_marker == 0)
261    entropy->pub.insufficient_data = FALSE;
262
263  return TRUE;
264}
265
266
267/*
268 * Huffman MCU decoding.
269 * Each of these routines decodes and returns one MCU's worth of
270 * Huffman-compressed coefficients.
271 * The coefficients are reordered from zigzag order into natural array order,
272 * but are not dequantized.
273 *
274 * The i'th block of the MCU is stored into the block pointed to by
275 * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
276 *
277 * We return FALSE if data source requested suspension.  In that case no
278 * changes have been made to permanent state.  (Exception: some output
279 * coefficients may already have been assigned.  This is harmless for
280 * spectral selection, since we'll just re-assign them on the next call.
281 * Successive approximation AC refinement has to be more careful, however.)
282 */
283
284/*
285 * MCU decoding for DC initial scan (either spectral selection,
286 * or first pass of successive approximation).
287 */
288
289METHODDEF(boolean)
290decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
291{
292  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
293  int Al = cinfo->Al;
294  register int s, r;
295  int blkn, ci;
296  JBLOCKROW block;
297  BITREAD_STATE_VARS;
298  savable_state state;
299  d_derived_tbl * tbl;
300  jpeg_component_info * compptr;
301
302  /* Process restart marker if needed; may have to suspend */
303  if (cinfo->restart_interval) {
304    if (entropy->restarts_to_go == 0)
305      if (! process_restart(cinfo))
306        return FALSE;
307  }
308
309  /* If we've run out of data, just leave the MCU set to zeroes.
310   * This way, we return uniform gray for the remainder of the segment.
311   */
312  if (! entropy->pub.insufficient_data) {
313
314    /* Load up working state */
315    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
316    ASSIGN_STATE(state, entropy->saved);
317
318    /* Outer loop handles each block in the MCU */
319
320    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
321      block = MCU_data[blkn];
322      ci = cinfo->MCU_membership[blkn];
323      compptr = cinfo->cur_comp_info[ci];
324      tbl = entropy->derived_tbls[compptr->dc_tbl_no];
325
326      /* Decode a single block's worth of coefficients */
327
328      /* Section F.2.2.1: decode the DC coefficient difference */
329      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
330      if (s) {
331        CHECK_BIT_BUFFER(br_state, s, return FALSE);
332        r = GET_BITS(s);
333        s = HUFF_EXTEND(r, s);
334      }
335
336      /* Convert DC difference to actual value, update last_dc_val */
337      s += state.last_dc_val[ci];
338      state.last_dc_val[ci] = s;
339      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
340      (*block)[0] = (JCOEF) (s << Al);
341    }
342
343    /* Completed MCU, so update state */
344    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
345    ASSIGN_STATE(entropy->saved, state);
346  }
347
348  /* Account for restart interval (no-op if not using restarts) */
349  entropy->restarts_to_go--;
350
351  return TRUE;
352}
353
354
355/*
356 * MCU decoding for AC initial scan (either spectral selection,
357 * or first pass of successive approximation).
358 */
359
360METHODDEF(boolean)
361decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
362{
363  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
364  int Se = cinfo->Se;
365  int Al = cinfo->Al;
366  register int s, k, r;
367  unsigned int EOBRUN;
368  JBLOCKROW block;
369  BITREAD_STATE_VARS;
370  d_derived_tbl * tbl;
371
372  /* Process restart marker if needed; may have to suspend */
373  if (cinfo->restart_interval) {
374    if (entropy->restarts_to_go == 0)
375      if (! process_restart(cinfo))
376        return FALSE;
377  }
378
379  /* If we've run out of data, just leave the MCU set to zeroes.
380   * This way, we return uniform gray for the remainder of the segment.
381   */
382  if (! entropy->pub.insufficient_data) {
383
384    /* Load up working state.
385     * We can avoid loading/saving bitread state if in an EOB run.
386     */
387    EOBRUN = entropy->saved.EOBRUN;     /* only part of saved state we need */
388
389    /* There is always only one block per MCU */
390
391    if (EOBRUN > 0)             /* if it's a band of zeroes... */
392      EOBRUN--;                 /* ...process it now (we do nothing) */
393    else {
394      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
395      block = MCU_data[0];
396      tbl = entropy->ac_derived_tbl;
397
398      for (k = cinfo->Ss; k <= Se; k++) {
399        HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
400        r = s >> 4;
401        s &= 15;
402        if (s) {
403          k += r;
404          CHECK_BIT_BUFFER(br_state, s, return FALSE);
405          r = GET_BITS(s);
406          s = HUFF_EXTEND(r, s);
407          /* Scale and output coefficient in natural (dezigzagged) order */
408          (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
409        } else {
410          if (r == 15) {        /* ZRL */
411            k += 15;            /* skip 15 zeroes in band */
412          } else {              /* EOBr, run length is 2^r + appended bits */
413            EOBRUN = 1 << r;
414            if (r) {            /* EOBr, r > 0 */
415              CHECK_BIT_BUFFER(br_state, r, return FALSE);
416              r = GET_BITS(r);
417              EOBRUN += r;
418            }
419            EOBRUN--;           /* this band is processed at this moment */
420            break;              /* force end-of-band */
421          }
422        }
423      }
424
425      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
426    }
427
428    /* Completed MCU, so update state */
429    entropy->saved.EOBRUN = EOBRUN;     /* only part of saved state we need */
430  }
431
432  /* Account for restart interval (no-op if not using restarts) */
433  entropy->restarts_to_go--;
434
435  return TRUE;
436}
437
438
439/*
440 * MCU decoding for DC successive approximation refinement scan.
441 * Note: we assume such scans can be multi-component, although the spec
442 * is not very clear on the point.
443 */
444
445METHODDEF(boolean)
446decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
447{
448  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
449  int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
450  int blkn;
451  JBLOCKROW block;
452  BITREAD_STATE_VARS;
453
454  /* Process restart marker if needed; may have to suspend */
455  if (cinfo->restart_interval) {
456    if (entropy->restarts_to_go == 0)
457      if (! process_restart(cinfo))
458        return FALSE;
459  }
460
461  /* Not worth the cycles to check insufficient_data here,
462   * since we will not change the data anyway if we read zeroes.
463   */
464
465  /* Load up working state */
466  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
467
468  /* Outer loop handles each block in the MCU */
469
470  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
471    block = MCU_data[blkn];
472
473    /* Encoded data is simply the next bit of the two's-complement DC value */
474    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
475    if (GET_BITS(1))
476      (*block)[0] |= p1;
477    /* Note: since we use |=, repeating the assignment later is safe */
478  }
479
480  /* Completed MCU, so update state */
481  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
482
483  /* Account for restart interval (no-op if not using restarts) */
484  entropy->restarts_to_go--;
485
486  return TRUE;
487}
488
489
490/*
491 * MCU decoding for AC successive approximation refinement scan.
492 */
493
494METHODDEF(boolean)
495decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
496{
497  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
498  int Se = cinfo->Se;
499  int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
500  int m1 = (-1) << cinfo->Al;   /* -1 in the bit position being coded */
501  register int s, k, r;
502  unsigned int EOBRUN;
503  JBLOCKROW block;
504  JCOEFPTR thiscoef;
505  BITREAD_STATE_VARS;
506  d_derived_tbl * tbl;
507  int num_newnz;
508  int newnz_pos[DCTSIZE2];
509
510  /* Process restart marker if needed; may have to suspend */
511  if (cinfo->restart_interval) {
512    if (entropy->restarts_to_go == 0)
513      if (! process_restart(cinfo))
514        return FALSE;
515  }
516
517  /* If we've run out of data, don't modify the MCU.
518   */
519  if (! entropy->pub.insufficient_data) {
520
521    /* Load up working state */
522    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
523    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
524
525    /* There is always only one block per MCU */
526    block = MCU_data[0];
527    tbl = entropy->ac_derived_tbl;
528
529    /* If we are forced to suspend, we must undo the assignments to any newly
530     * nonzero coefficients in the block, because otherwise we'd get confused
531     * next time about which coefficients were already nonzero.
532     * But we need not undo addition of bits to already-nonzero coefficients;
533     * instead, we can test the current bit to see if we already did it.
534     */
535    num_newnz = 0;
536
537    /* initialize coefficient loop counter to start of band */
538    k = cinfo->Ss;
539
540    if (EOBRUN == 0) {
541      for (; k <= Se; k++) {
542        HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
543        r = s >> 4;
544        s &= 15;
545        if (s) {
546          if (s != 1)           /* size of new coef should always be 1 */
547            WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
548          CHECK_BIT_BUFFER(br_state, 1, goto undoit);
549          if (GET_BITS(1))
550            s = p1;             /* newly nonzero coef is positive */
551          else
552            s = m1;             /* newly nonzero coef is negative */
553        } else {
554          if (r != 15) {
555            EOBRUN = 1 << r;    /* EOBr, run length is 2^r + appended bits */
556            if (r) {
557              CHECK_BIT_BUFFER(br_state, r, goto undoit);
558              r = GET_BITS(r);
559              EOBRUN += r;
560            }
561            break;              /* rest of block is handled by EOB logic */
562          }
563          /* note s = 0 for processing ZRL */
564        }
565        /* Advance over already-nonzero coefs and r still-zero coefs,
566         * appending correction bits to the nonzeroes.  A correction bit is 1
567         * if the absolute value of the coefficient must be increased.
568         */
569        do {
570          thiscoef = *block + jpeg_natural_order[k];
571          if (*thiscoef != 0) {
572            CHECK_BIT_BUFFER(br_state, 1, goto undoit);
573            if (GET_BITS(1)) {
574              if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
575                if (*thiscoef >= 0)
576                  *thiscoef += p1;
577                else
578                  *thiscoef += m1;
579              }
580            }
581          } else {
582            if (--r < 0)
583              break;            /* reached target zero coefficient */
584          }
585          k++;
586        } while (k <= Se);
587        if (s) {
588          int pos = jpeg_natural_order[k];
589          /* Output newly nonzero coefficient */
590          (*block)[pos] = (JCOEF) s;
591          /* Remember its position in case we have to suspend */
592          newnz_pos[num_newnz++] = pos;
593        }
594      }
595    }
596
597    if (EOBRUN > 0) {
598      /* Scan any remaining coefficient positions after the end-of-band
599       * (the last newly nonzero coefficient, if any).  Append a correction
600       * bit to each already-nonzero coefficient.  A correction bit is 1
601       * if the absolute value of the coefficient must be increased.
602       */
603      for (; k <= Se; k++) {
604        thiscoef = *block + jpeg_natural_order[k];
605        if (*thiscoef != 0) {
606          CHECK_BIT_BUFFER(br_state, 1, goto undoit);
607          if (GET_BITS(1)) {
608            if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
609              if (*thiscoef >= 0)
610                *thiscoef += p1;
611              else
612                *thiscoef += m1;
613            }
614          }
615        }
616      }
617      /* Count one block completed in EOB run */
618      EOBRUN--;
619    }
620
621    /* Completed MCU, so update state */
622    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
623    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
624  }
625
626  /* Account for restart interval (no-op if not using restarts) */
627  entropy->restarts_to_go--;
628
629  return TRUE;
630
631undoit:
632  /* Re-zero any output coefficients that we made newly nonzero */
633  while (num_newnz > 0)
634    (*block)[newnz_pos[--num_newnz]] = 0;
635
636  return FALSE;
637}
638
639
640/*
641 * Module initialization routine for progressive Huffman entropy decoding.
642 */
643
644GLOBAL(void)
645jinit_phuff_decoder (j_decompress_ptr cinfo)
646{
647  phuff_entropy_ptr entropy;
648  int *coef_bit_ptr;
649  int ci, i;
650
651  entropy = (phuff_entropy_ptr)
652    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
653                                SIZEOF(phuff_entropy_decoder));
654  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
655  entropy->pub.start_pass = start_pass_phuff_decoder;
656
657  /* Mark derived tables unallocated */
658  for (i = 0; i < NUM_HUFF_TBLS; i++) {
659    entropy->derived_tbls[i] = NULL;
660  }
661
662  /* Create progression status table */
663  cinfo->coef_bits = (int (*)[DCTSIZE2])
664    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
665                                cinfo->num_components*DCTSIZE2*SIZEOF(int));
666  coef_bit_ptr = & cinfo->coef_bits[0][0];
667  for (ci = 0; ci < cinfo->num_components; ci++)
668    for (i = 0; i < DCTSIZE2; i++)
669      *coef_bit_ptr++ = -1;
670}
671
672#endif /* D_PROGRESSIVE_SUPPORTED */
673