1/*
2 * reserved comment block
3 * DO NOT REMOVE OR ALTER!
4 */
5/*
6 * jdcoefct.c
7 *
8 * Copyright (C) 1994-1997, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
11 *
12 * This file contains the coefficient buffer controller for decompression.
13 * This controller is the top level of the JPEG decompressor proper.
14 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
15 *
16 * In buffered-image mode, this controller is the interface between
17 * input-oriented processing and output-oriented processing.
18 * Also, the input side (only) is used when reading a file for transcoding.
19 */
20
21#define JPEG_INTERNALS
22#include "jinclude.h"
23#include "jpeglib.h"
24
25/* Block smoothing is only applicable for progressive JPEG, so: */
26#ifndef D_PROGRESSIVE_SUPPORTED
27#undef BLOCK_SMOOTHING_SUPPORTED
28#endif
29
30/* Private buffer controller object */
31
32typedef struct {
33  struct jpeg_d_coef_controller pub; /* public fields */
34
35  /* These variables keep track of the current location of the input side. */
36  /* cinfo->input_iMCU_row is also used for this. */
37  JDIMENSION MCU_ctr;           /* counts MCUs processed in current row */
38  int MCU_vert_offset;          /* counts MCU rows within iMCU row */
39  int MCU_rows_per_iMCU_row;    /* number of such rows needed */
40
41  /* The output side's location is represented by cinfo->output_iMCU_row. */
42
43  /* In single-pass modes, it's sufficient to buffer just one MCU.
44   * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
45   * and let the entropy decoder write into that workspace each time.
46   * (On 80x86, the workspace is FAR even though it's not really very big;
47   * this is to keep the module interfaces unchanged when a large coefficient
48   * buffer is necessary.)
49   * In multi-pass modes, this array points to the current MCU's blocks
50   * within the virtual arrays; it is used only by the input side.
51   */
52  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
53
54#ifdef D_MULTISCAN_FILES_SUPPORTED
55  /* In multi-pass modes, we need a virtual block array for each component. */
56  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
57#endif
58
59#ifdef BLOCK_SMOOTHING_SUPPORTED
60  /* When doing block smoothing, we latch coefficient Al values here */
61  int * coef_bits_latch;
62#define SAVED_COEFS  6          /* we save coef_bits[0..5] */
63#endif
64} my_coef_controller;
65
66typedef my_coef_controller * my_coef_ptr;
67
68/* Forward declarations */
69METHODDEF(int) decompress_onepass
70        JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
71#ifdef D_MULTISCAN_FILES_SUPPORTED
72METHODDEF(int) decompress_data
73        JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
74#endif
75#ifdef BLOCK_SMOOTHING_SUPPORTED
76LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
77METHODDEF(int) decompress_smooth_data
78        JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
79#endif
80
81
82LOCAL(void)
83start_iMCU_row (j_decompress_ptr cinfo)
84/* Reset within-iMCU-row counters for a new row (input side) */
85{
86  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
87
88  /* In an interleaved scan, an MCU row is the same as an iMCU row.
89   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
90   * But at the bottom of the image, process only what's left.
91   */
92  if (cinfo->comps_in_scan > 1) {
93    coef->MCU_rows_per_iMCU_row = 1;
94  } else {
95    if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
96      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
97    else
98      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
99  }
100
101  coef->MCU_ctr = 0;
102  coef->MCU_vert_offset = 0;
103}
104
105
106/*
107 * Initialize for an input processing pass.
108 */
109
110METHODDEF(void)
111start_input_pass (j_decompress_ptr cinfo)
112{
113  cinfo->input_iMCU_row = 0;
114  start_iMCU_row(cinfo);
115}
116
117
118/*
119 * Initialize for an output processing pass.
120 */
121
122METHODDEF(void)
123start_output_pass (j_decompress_ptr cinfo)
124{
125#ifdef BLOCK_SMOOTHING_SUPPORTED
126  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
127
128  /* If multipass, check to see whether to use block smoothing on this pass */
129  if (coef->pub.coef_arrays != NULL) {
130    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
131      coef->pub.decompress_data = decompress_smooth_data;
132    else
133      coef->pub.decompress_data = decompress_data;
134  }
135#endif
136  cinfo->output_iMCU_row = 0;
137}
138
139
140/*
141 * Decompress and return some data in the single-pass case.
142 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
143 * Input and output must run in lockstep since we have only a one-MCU buffer.
144 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
145 *
146 * NB: output_buf contains a plane for each component in image,
147 * which we index according to the component's SOF position.
148 */
149
150METHODDEF(int)
151decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
152{
153  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
154  JDIMENSION MCU_col_num;       /* index of current MCU within row */
155  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
156  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
157  int blkn, ci, xindex, yindex, yoffset, useful_width;
158  JSAMPARRAY output_ptr;
159  JDIMENSION start_col, output_col;
160  jpeg_component_info *compptr;
161  inverse_DCT_method_ptr inverse_DCT;
162
163  /* Loop to process as much as one whole iMCU row */
164  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
165       yoffset++) {
166    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
167         MCU_col_num++) {
168      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
169      jzero_far((void FAR *) coef->MCU_buffer[0],
170                (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
171      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
172        /* Suspension forced; update state counters and exit */
173        coef->MCU_vert_offset = yoffset;
174        coef->MCU_ctr = MCU_col_num;
175        return JPEG_SUSPENDED;
176      }
177      /* Determine where data should go in output_buf and do the IDCT thing.
178       * We skip dummy blocks at the right and bottom edges (but blkn gets
179       * incremented past them!).  Note the inner loop relies on having
180       * allocated the MCU_buffer[] blocks sequentially.
181       */
182      blkn = 0;                 /* index of current DCT block within MCU */
183      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
184        compptr = cinfo->cur_comp_info[ci];
185        /* Don't bother to IDCT an uninteresting component. */
186        if (! compptr->component_needed) {
187          blkn += compptr->MCU_blocks;
188          continue;
189        }
190        inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
191        useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
192                                                    : compptr->last_col_width;
193        output_ptr = output_buf[compptr->component_index] +
194          yoffset * compptr->DCT_scaled_size;
195        start_col = MCU_col_num * compptr->MCU_sample_width;
196        for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
197          if (cinfo->input_iMCU_row < last_iMCU_row ||
198              yoffset+yindex < compptr->last_row_height) {
199            output_col = start_col;
200            for (xindex = 0; xindex < useful_width; xindex++) {
201              (*inverse_DCT) (cinfo, compptr,
202                              (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
203                              output_ptr, output_col);
204              output_col += compptr->DCT_scaled_size;
205            }
206          }
207          blkn += compptr->MCU_width;
208          output_ptr += compptr->DCT_scaled_size;
209        }
210      }
211    }
212    /* Completed an MCU row, but perhaps not an iMCU row */
213    coef->MCU_ctr = 0;
214  }
215  /* Completed the iMCU row, advance counters for next one */
216  cinfo->output_iMCU_row++;
217  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
218    start_iMCU_row(cinfo);
219    return JPEG_ROW_COMPLETED;
220  }
221  /* Completed the scan */
222  (*cinfo->inputctl->finish_input_pass) (cinfo);
223  return JPEG_SCAN_COMPLETED;
224}
225
226
227/*
228 * Dummy consume-input routine for single-pass operation.
229 */
230
231METHODDEF(int)
232dummy_consume_data (j_decompress_ptr cinfo)
233{
234  return JPEG_SUSPENDED;        /* Always indicate nothing was done */
235}
236
237
238#ifdef D_MULTISCAN_FILES_SUPPORTED
239
240/*
241 * Consume input data and store it in the full-image coefficient buffer.
242 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
243 * ie, v_samp_factor block rows for each component in the scan.
244 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
245 */
246
247METHODDEF(int)
248consume_data (j_decompress_ptr cinfo)
249{
250  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
251  JDIMENSION MCU_col_num;       /* index of current MCU within row */
252  int blkn, ci, xindex, yindex, yoffset;
253  JDIMENSION start_col;
254  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
255  JBLOCKROW buffer_ptr;
256  jpeg_component_info *compptr;
257
258  /* Align the virtual buffers for the components used in this scan. */
259  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
260    compptr = cinfo->cur_comp_info[ci];
261    buffer[ci] = (*cinfo->mem->access_virt_barray)
262      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
263       cinfo->input_iMCU_row * compptr->v_samp_factor,
264       (JDIMENSION) compptr->v_samp_factor, TRUE);
265    /* Note: entropy decoder expects buffer to be zeroed,
266     * but this is handled automatically by the memory manager
267     * because we requested a pre-zeroed array.
268     */
269  }
270
271  /* Loop to process one whole iMCU row */
272  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
273       yoffset++) {
274    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
275         MCU_col_num++) {
276      /* Construct list of pointers to DCT blocks belonging to this MCU */
277      blkn = 0;                 /* index of current DCT block within MCU */
278      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
279        compptr = cinfo->cur_comp_info[ci];
280        start_col = MCU_col_num * compptr->MCU_width;
281        for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
282          buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
283          for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
284            coef->MCU_buffer[blkn++] = buffer_ptr++;
285          }
286        }
287      }
288      /* Try to fetch the MCU. */
289      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
290        /* Suspension forced; update state counters and exit */
291        coef->MCU_vert_offset = yoffset;
292        coef->MCU_ctr = MCU_col_num;
293        return JPEG_SUSPENDED;
294      }
295    }
296    /* Completed an MCU row, but perhaps not an iMCU row */
297    coef->MCU_ctr = 0;
298  }
299  /* Completed the iMCU row, advance counters for next one */
300  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
301    start_iMCU_row(cinfo);
302    return JPEG_ROW_COMPLETED;
303  }
304  /* Completed the scan */
305  (*cinfo->inputctl->finish_input_pass) (cinfo);
306  return JPEG_SCAN_COMPLETED;
307}
308
309
310/*
311 * Decompress and return some data in the multi-pass case.
312 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
313 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
314 *
315 * NB: output_buf contains a plane for each component in image.
316 */
317
318METHODDEF(int)
319decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
320{
321  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
322  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
323  JDIMENSION block_num;
324  int ci, block_row, block_rows;
325  JBLOCKARRAY buffer;
326  JBLOCKROW buffer_ptr;
327  JSAMPARRAY output_ptr;
328  JDIMENSION output_col;
329  jpeg_component_info *compptr;
330  inverse_DCT_method_ptr inverse_DCT;
331
332  /* Force some input to be done if we are getting ahead of the input. */
333  while (cinfo->input_scan_number < cinfo->output_scan_number ||
334         (cinfo->input_scan_number == cinfo->output_scan_number &&
335          cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
336    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
337      return JPEG_SUSPENDED;
338  }
339
340  /* OK, output from the virtual arrays. */
341  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
342       ci++, compptr++) {
343    /* Don't bother to IDCT an uninteresting component. */
344    if (! compptr->component_needed)
345      continue;
346    /* Align the virtual buffer for this component. */
347    buffer = (*cinfo->mem->access_virt_barray)
348      ((j_common_ptr) cinfo, coef->whole_image[ci],
349       cinfo->output_iMCU_row * compptr->v_samp_factor,
350       (JDIMENSION) compptr->v_samp_factor, FALSE);
351    /* Count non-dummy DCT block rows in this iMCU row. */
352    if (cinfo->output_iMCU_row < last_iMCU_row)
353      block_rows = compptr->v_samp_factor;
354    else {
355      /* NB: can't use last_row_height here; it is input-side-dependent! */
356      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
357      if (block_rows == 0) block_rows = compptr->v_samp_factor;
358    }
359    inverse_DCT = cinfo->idct->inverse_DCT[ci];
360    output_ptr = output_buf[ci];
361    /* Loop over all DCT blocks to be processed. */
362    for (block_row = 0; block_row < block_rows; block_row++) {
363      buffer_ptr = buffer[block_row];
364      output_col = 0;
365      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
366        (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
367                        output_ptr, output_col);
368        buffer_ptr++;
369        output_col += compptr->DCT_scaled_size;
370      }
371      output_ptr += compptr->DCT_scaled_size;
372    }
373  }
374
375  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
376    return JPEG_ROW_COMPLETED;
377  return JPEG_SCAN_COMPLETED;
378}
379
380#endif /* D_MULTISCAN_FILES_SUPPORTED */
381
382
383#ifdef BLOCK_SMOOTHING_SUPPORTED
384
385/*
386 * This code applies interblock smoothing as described by section K.8
387 * of the JPEG standard: the first 5 AC coefficients are estimated from
388 * the DC values of a DCT block and its 8 neighboring blocks.
389 * We apply smoothing only for progressive JPEG decoding, and only if
390 * the coefficients it can estimate are not yet known to full precision.
391 */
392
393/* Natural-order array positions of the first 5 zigzag-order coefficients */
394#define Q01_POS  1
395#define Q10_POS  8
396#define Q20_POS  16
397#define Q11_POS  9
398#define Q02_POS  2
399
400/*
401 * Determine whether block smoothing is applicable and safe.
402 * We also latch the current states of the coef_bits[] entries for the
403 * AC coefficients; otherwise, if the input side of the decompressor
404 * advances into a new scan, we might think the coefficients are known
405 * more accurately than they really are.
406 */
407
408LOCAL(boolean)
409smoothing_ok (j_decompress_ptr cinfo)
410{
411  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
412  boolean smoothing_useful = FALSE;
413  int ci, coefi;
414  jpeg_component_info *compptr;
415  JQUANT_TBL * qtable;
416  int * coef_bits;
417  int * coef_bits_latch;
418
419  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
420    return FALSE;
421
422  /* Allocate latch area if not already done */
423  if (coef->coef_bits_latch == NULL)
424    coef->coef_bits_latch = (int *)
425      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
426                                  cinfo->num_components *
427                                  (SAVED_COEFS * SIZEOF(int)));
428  coef_bits_latch = coef->coef_bits_latch;
429
430  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
431       ci++, compptr++) {
432    /* All components' quantization values must already be latched. */
433    if ((qtable = compptr->quant_table) == NULL)
434      return FALSE;
435    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
436    if (qtable->quantval[0] == 0 ||
437        qtable->quantval[Q01_POS] == 0 ||
438        qtable->quantval[Q10_POS] == 0 ||
439        qtable->quantval[Q20_POS] == 0 ||
440        qtable->quantval[Q11_POS] == 0 ||
441        qtable->quantval[Q02_POS] == 0)
442      return FALSE;
443    /* DC values must be at least partly known for all components. */
444    coef_bits = cinfo->coef_bits[ci];
445    if (coef_bits[0] < 0)
446      return FALSE;
447    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
448    for (coefi = 1; coefi <= 5; coefi++) {
449      coef_bits_latch[coefi] = coef_bits[coefi];
450      if (coef_bits[coefi] != 0)
451        smoothing_useful = TRUE;
452    }
453    coef_bits_latch += SAVED_COEFS;
454  }
455
456  return smoothing_useful;
457}
458
459
460/*
461 * Variant of decompress_data for use when doing block smoothing.
462 */
463
464METHODDEF(int)
465decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
466{
467  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
468  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
469  JDIMENSION block_num, last_block_column;
470  int ci, block_row, block_rows, access_rows;
471  JBLOCKARRAY buffer;
472  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
473  JSAMPARRAY output_ptr;
474  JDIMENSION output_col;
475  jpeg_component_info *compptr;
476  inverse_DCT_method_ptr inverse_DCT;
477  boolean first_row, last_row;
478  JBLOCK workspace;
479  int *coef_bits;
480  JQUANT_TBL *quanttbl;
481  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
482  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
483  int Al, pred;
484
485  /* Force some input to be done if we are getting ahead of the input. */
486  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
487         ! cinfo->inputctl->eoi_reached) {
488    if (cinfo->input_scan_number == cinfo->output_scan_number) {
489      /* If input is working on current scan, we ordinarily want it to
490       * have completed the current row.  But if input scan is DC,
491       * we want it to keep one row ahead so that next block row's DC
492       * values are up to date.
493       */
494      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
495      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
496        break;
497    }
498    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
499      return JPEG_SUSPENDED;
500  }
501
502  /* OK, output from the virtual arrays. */
503  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
504       ci++, compptr++) {
505    /* Don't bother to IDCT an uninteresting component. */
506    if (! compptr->component_needed)
507      continue;
508    /* Count non-dummy DCT block rows in this iMCU row. */
509    if (cinfo->output_iMCU_row < last_iMCU_row) {
510      block_rows = compptr->v_samp_factor;
511      access_rows = block_rows * 2; /* this and next iMCU row */
512      last_row = FALSE;
513    } else {
514      /* NB: can't use last_row_height here; it is input-side-dependent! */
515      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
516      if (block_rows == 0) block_rows = compptr->v_samp_factor;
517      access_rows = block_rows; /* this iMCU row only */
518      last_row = TRUE;
519    }
520    /* Align the virtual buffer for this component. */
521    if (cinfo->output_iMCU_row > 0) {
522      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
523      buffer = (*cinfo->mem->access_virt_barray)
524        ((j_common_ptr) cinfo, coef->whole_image[ci],
525         (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
526         (JDIMENSION) access_rows, FALSE);
527      buffer += compptr->v_samp_factor; /* point to current iMCU row */
528      first_row = FALSE;
529    } else {
530      buffer = (*cinfo->mem->access_virt_barray)
531        ((j_common_ptr) cinfo, coef->whole_image[ci],
532         (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
533      first_row = TRUE;
534    }
535    /* Fetch component-dependent info */
536    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
537    quanttbl = compptr->quant_table;
538    Q00 = quanttbl->quantval[0];
539    Q01 = quanttbl->quantval[Q01_POS];
540    Q10 = quanttbl->quantval[Q10_POS];
541    Q20 = quanttbl->quantval[Q20_POS];
542    Q11 = quanttbl->quantval[Q11_POS];
543    Q02 = quanttbl->quantval[Q02_POS];
544    inverse_DCT = cinfo->idct->inverse_DCT[ci];
545    output_ptr = output_buf[ci];
546    /* Loop over all DCT blocks to be processed. */
547    for (block_row = 0; block_row < block_rows; block_row++) {
548      buffer_ptr = buffer[block_row];
549      if (first_row && block_row == 0)
550        prev_block_row = buffer_ptr;
551      else
552        prev_block_row = buffer[block_row-1];
553      if (last_row && block_row == block_rows-1)
554        next_block_row = buffer_ptr;
555      else
556        next_block_row = buffer[block_row+1];
557      /* We fetch the surrounding DC values using a sliding-register approach.
558       * Initialize all nine here so as to do the right thing on narrow pics.
559       */
560      DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
561      DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
562      DC7 = DC8 = DC9 = (int) next_block_row[0][0];
563      output_col = 0;
564      last_block_column = compptr->width_in_blocks - 1;
565      for (block_num = 0; block_num <= last_block_column; block_num++) {
566        /* Fetch current DCT block into workspace so we can modify it. */
567        jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
568        /* Update DC values */
569        if (block_num < last_block_column) {
570          DC3 = (int) prev_block_row[1][0];
571          DC6 = (int) buffer_ptr[1][0];
572          DC9 = (int) next_block_row[1][0];
573        }
574        /* Compute coefficient estimates per K.8.
575         * An estimate is applied only if coefficient is still zero,
576         * and is not known to be fully accurate.
577         */
578        /* AC01 */
579        if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
580          num = 36 * Q00 * (DC4 - DC6);
581          if (num >= 0) {
582            pred = (int) (((Q01<<7) + num) / (Q01<<8));
583            if (Al > 0 && pred >= (1<<Al))
584              pred = (1<<Al)-1;
585          } else {
586            pred = (int) (((Q01<<7) - num) / (Q01<<8));
587            if (Al > 0 && pred >= (1<<Al))
588              pred = (1<<Al)-1;
589            pred = -pred;
590          }
591          workspace[1] = (JCOEF) pred;
592        }
593        /* AC10 */
594        if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
595          num = 36 * Q00 * (DC2 - DC8);
596          if (num >= 0) {
597            pred = (int) (((Q10<<7) + num) / (Q10<<8));
598            if (Al > 0 && pred >= (1<<Al))
599              pred = (1<<Al)-1;
600          } else {
601            pred = (int) (((Q10<<7) - num) / (Q10<<8));
602            if (Al > 0 && pred >= (1<<Al))
603              pred = (1<<Al)-1;
604            pred = -pred;
605          }
606          workspace[8] = (JCOEF) pred;
607        }
608        /* AC20 */
609        if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
610          num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
611          if (num >= 0) {
612            pred = (int) (((Q20<<7) + num) / (Q20<<8));
613            if (Al > 0 && pred >= (1<<Al))
614              pred = (1<<Al)-1;
615          } else {
616            pred = (int) (((Q20<<7) - num) / (Q20<<8));
617            if (Al > 0 && pred >= (1<<Al))
618              pred = (1<<Al)-1;
619            pred = -pred;
620          }
621          workspace[16] = (JCOEF) pred;
622        }
623        /* AC11 */
624        if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
625          num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
626          if (num >= 0) {
627            pred = (int) (((Q11<<7) + num) / (Q11<<8));
628            if (Al > 0 && pred >= (1<<Al))
629              pred = (1<<Al)-1;
630          } else {
631            pred = (int) (((Q11<<7) - num) / (Q11<<8));
632            if (Al > 0 && pred >= (1<<Al))
633              pred = (1<<Al)-1;
634            pred = -pred;
635          }
636          workspace[9] = (JCOEF) pred;
637        }
638        /* AC02 */
639        if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
640          num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
641          if (num >= 0) {
642            pred = (int) (((Q02<<7) + num) / (Q02<<8));
643            if (Al > 0 && pred >= (1<<Al))
644              pred = (1<<Al)-1;
645          } else {
646            pred = (int) (((Q02<<7) - num) / (Q02<<8));
647            if (Al > 0 && pred >= (1<<Al))
648              pred = (1<<Al)-1;
649            pred = -pred;
650          }
651          workspace[2] = (JCOEF) pred;
652        }
653        /* OK, do the IDCT */
654        (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
655                        output_ptr, output_col);
656        /* Advance for next column */
657        DC1 = DC2; DC2 = DC3;
658        DC4 = DC5; DC5 = DC6;
659        DC7 = DC8; DC8 = DC9;
660        buffer_ptr++, prev_block_row++, next_block_row++;
661        output_col += compptr->DCT_scaled_size;
662      }
663      output_ptr += compptr->DCT_scaled_size;
664    }
665  }
666
667  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
668    return JPEG_ROW_COMPLETED;
669  return JPEG_SCAN_COMPLETED;
670}
671
672#endif /* BLOCK_SMOOTHING_SUPPORTED */
673
674
675/*
676 * Initialize coefficient buffer controller.
677 */
678
679GLOBAL(void)
680jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
681{
682  my_coef_ptr coef;
683
684  coef = (my_coef_ptr)
685    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
686                                SIZEOF(my_coef_controller));
687  cinfo->coef = (struct jpeg_d_coef_controller *) coef;
688  coef->pub.start_input_pass = start_input_pass;
689  coef->pub.start_output_pass = start_output_pass;
690#ifdef BLOCK_SMOOTHING_SUPPORTED
691  coef->coef_bits_latch = NULL;
692#endif
693
694  /* Create the coefficient buffer. */
695  if (need_full_buffer) {
696#ifdef D_MULTISCAN_FILES_SUPPORTED
697    /* Allocate a full-image virtual array for each component, */
698    /* padded to a multiple of samp_factor DCT blocks in each direction. */
699    /* Note we ask for a pre-zeroed array. */
700    int ci, access_rows;
701    jpeg_component_info *compptr;
702
703    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
704         ci++, compptr++) {
705      access_rows = compptr->v_samp_factor;
706#ifdef BLOCK_SMOOTHING_SUPPORTED
707      /* If block smoothing could be used, need a bigger window */
708      if (cinfo->progressive_mode)
709        access_rows *= 3;
710#endif
711      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
712        ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
713         (JDIMENSION) jround_up((long) compptr->width_in_blocks,
714                                (long) compptr->h_samp_factor),
715         (JDIMENSION) jround_up((long) compptr->height_in_blocks,
716                                (long) compptr->v_samp_factor),
717         (JDIMENSION) access_rows);
718    }
719    coef->pub.consume_data = consume_data;
720    coef->pub.decompress_data = decompress_data;
721    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
722#else
723    ERREXIT(cinfo, JERR_NOT_COMPILED);
724#endif
725  } else {
726    /* We only need a single-MCU buffer. */
727    JBLOCKROW buffer;
728    int i;
729
730    buffer = (JBLOCKROW)
731      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
732                                  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
733    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
734      coef->MCU_buffer[i] = buffer + i;
735    }
736    coef->pub.consume_data = dummy_consume_data;
737    coef->pub.decompress_data = decompress_onepass;
738    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
739  }
740}
741