1/*
2 * Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package sun.java2d.marlin;
27
28final class Curve {
29
30    float ax, ay, bx, by, cx, cy, dx, dy;
31    float dax, day, dbx, dby;
32    // shared iterator instance
33    private final BreakPtrIterator iterator = new BreakPtrIterator();
34
35    Curve() {
36    }
37
38    void set(float[] points, int type) {
39        switch(type) {
40        case 8:
41            set(points[0], points[1],
42                points[2], points[3],
43                points[4], points[5],
44                points[6], points[7]);
45            return;
46        case 6:
47            set(points[0], points[1],
48                points[2], points[3],
49                points[4], points[5]);
50            return;
51        default:
52            throw new InternalError("Curves can only be cubic or quadratic");
53        }
54    }
55
56    void set(float x1, float y1,
57             float x2, float y2,
58             float x3, float y3,
59             float x4, float y4)
60    {
61        ax = 3f * (x2 - x3) + x4 - x1;
62        ay = 3f * (y2 - y3) + y4 - y1;
63        bx = 3f * (x1 - 2f * x2 + x3);
64        by = 3f * (y1 - 2f * y2 + y3);
65        cx = 3f * (x2 - x1);
66        cy = 3f * (y2 - y1);
67        dx = x1;
68        dy = y1;
69        dax = 3f * ax; day = 3f * ay;
70        dbx = 2f * bx; dby = 2f * by;
71    }
72
73    void set(float x1, float y1,
74             float x2, float y2,
75             float x3, float y3)
76    {
77        ax = 0f; ay = 0f;
78        bx = x1 - 2f * x2 + x3;
79        by = y1 - 2f * y2 + y3;
80        cx = 2f * (x2 - x1);
81        cy = 2f * (y2 - y1);
82        dx = x1;
83        dy = y1;
84        dax = 0f; day = 0f;
85        dbx = 2f * bx; dby = 2f * by;
86    }
87
88    float xat(float t) {
89        return t * (t * (t * ax + bx) + cx) + dx;
90    }
91    float yat(float t) {
92        return t * (t * (t * ay + by) + cy) + dy;
93    }
94
95    float dxat(float t) {
96        return t * (t * dax + dbx) + cx;
97    }
98
99    float dyat(float t) {
100        return t * (t * day + dby) + cy;
101    }
102
103    int dxRoots(float[] roots, int off) {
104        return Helpers.quadraticRoots(dax, dbx, cx, roots, off);
105    }
106
107    int dyRoots(float[] roots, int off) {
108        return Helpers.quadraticRoots(day, dby, cy, roots, off);
109    }
110
111    int infPoints(float[] pts, int off) {
112        // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
113        // Fortunately, this turns out to be quadratic, so there are at
114        // most 2 inflection points.
115        final float a = dax * dby - dbx * day;
116        final float b = 2f * (cy * dax - day * cx);
117        final float c = cy * dbx - cx * dby;
118
119        return Helpers.quadraticRoots(a, b, c, pts, off);
120    }
121
122    // finds points where the first and second derivative are
123    // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
124    // * is a dot product). Unfortunately, we have to solve a cubic.
125    private int perpendiculardfddf(float[] pts, int off) {
126        assert pts.length >= off + 4;
127
128        // these are the coefficients of some multiple of g(t) (not g(t),
129        // because the roots of a polynomial are not changed after multiplication
130        // by a constant, and this way we save a few multiplications).
131        final float a = 2f * (dax*dax + day*day);
132        final float b = 3f * (dax*dbx + day*dby);
133        final float c = 2f * (dax*cx + day*cy) + dbx*dbx + dby*dby;
134        final float d = dbx*cx + dby*cy;
135        return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f);
136    }
137
138    // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
139    // a variant of the false position algorithm to find the roots. False
140    // position requires that 2 initial values x0,x1 be given, and that the
141    // function must have opposite signs at those values. To find such
142    // values, we need the local extrema of the ROC function, for which we
143    // need the roots of its derivative; however, it's harder to find the
144    // roots of the derivative in this case than it is to find the roots
145    // of the original function. So, we find all points where this curve's
146    // first and second derivative are perpendicular, and we pretend these
147    // are our local extrema. There are at most 3 of these, so we will check
148    // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
149    // points, so roc-w can have at least 6 roots. This shouldn't be a
150    // problem for what we're trying to do (draw a nice looking curve).
151    int rootsOfROCMinusW(float[] roots, int off, final float w, final float err) {
152        // no OOB exception, because by now off<=6, and roots.length >= 10
153        assert off <= 6 && roots.length >= 10;
154        int ret = off;
155        int numPerpdfddf = perpendiculardfddf(roots, off);
156        float t0 = 0, ft0 = ROCsq(t0) - w*w;
157        roots[off + numPerpdfddf] = 1f; // always check interval end points
158        numPerpdfddf++;
159        for (int i = off; i < off + numPerpdfddf; i++) {
160            float t1 = roots[i], ft1 = ROCsq(t1) - w*w;
161            if (ft0 == 0f) {
162                roots[ret++] = t0;
163            } else if (ft1 * ft0 < 0f) { // have opposite signs
164                // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
165                // ROC(t) >= 0 for all t.
166                roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err);
167            }
168            t0 = t1;
169            ft0 = ft1;
170        }
171
172        return ret - off;
173    }
174
175    private static float eliminateInf(float x) {
176        return (x == Float.POSITIVE_INFINITY ? Float.MAX_VALUE :
177            (x == Float.NEGATIVE_INFINITY ? Float.MIN_VALUE : x));
178    }
179
180    // A slight modification of the false position algorithm on wikipedia.
181    // This only works for the ROCsq-x functions. It might be nice to have
182    // the function as an argument, but that would be awkward in java6.
183    // TODO: It is something to consider for java8 (or whenever lambda
184    // expressions make it into the language), depending on how closures
185    // and turn out. Same goes for the newton's method
186    // algorithm in Helpers.java
187    private float falsePositionROCsqMinusX(float x0, float x1,
188                                           final float x, final float err)
189    {
190        final int iterLimit = 100;
191        int side = 0;
192        float t = x1, ft = eliminateInf(ROCsq(t) - x);
193        float s = x0, fs = eliminateInf(ROCsq(s) - x);
194        float r = s, fr;
195        for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
196            r = (fs * t - ft * s) / (fs - ft);
197            fr = ROCsq(r) - x;
198            if (sameSign(fr, ft)) {
199                ft = fr; t = r;
200                if (side < 0) {
201                    fs /= (1 << (-side));
202                    side--;
203                } else {
204                    side = -1;
205                }
206            } else if (fr * fs > 0) {
207                fs = fr; s = r;
208                if (side > 0) {
209                    ft /= (1 << side);
210                    side++;
211                } else {
212                    side = 1;
213                }
214            } else {
215                break;
216            }
217        }
218        return r;
219    }
220
221    private static boolean sameSign(float x, float y) {
222        // another way is to test if x*y > 0. This is bad for small x, y.
223        return (x < 0f && y < 0f) || (x > 0f && y > 0f);
224    }
225
226    // returns the radius of curvature squared at t of this curve
227    // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
228    private float ROCsq(final float t) {
229        // dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency
230        final float dx = t * (t * dax + dbx) + cx;
231        final float dy = t * (t * day + dby) + cy;
232        final float ddx = 2f * dax * t + dbx;
233        final float ddy = 2f * day * t + dby;
234        final float dx2dy2 = dx*dx + dy*dy;
235        final float ddx2ddy2 = ddx*ddx + ddy*ddy;
236        final float ddxdxddydy = ddx*dx + ddy*dy;
237        return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));
238    }
239
240    // curve to be broken should be in pts
241    // this will change the contents of pts but not Ts
242    // TODO: There's no reason for Ts to be an array. All we need is a sequence
243    // of t values at which to subdivide. An array statisfies this condition,
244    // but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.
245    // Doing this will also make dashing easier, since we could easily make
246    // LengthIterator an Iterator<Float> and feed it to this function to simplify
247    // the loop in Dasher.somethingTo.
248    BreakPtrIterator breakPtsAtTs(final float[] pts, final int type,
249                                  final float[] Ts, final int numTs)
250    {
251        assert pts.length >= 2*type && numTs <= Ts.length;
252
253        // initialize shared iterator:
254        iterator.init(pts, type, Ts, numTs);
255
256        return iterator;
257    }
258
259    static final class BreakPtrIterator {
260        private int nextCurveIdx;
261        private int curCurveOff;
262        private float prevT;
263        private float[] pts;
264        private int type;
265        private float[] ts;
266        private int numTs;
267
268        void init(final float[] pts, final int type,
269                  final float[] ts, final int numTs) {
270            this.pts = pts;
271            this.type = type;
272            this.ts = ts;
273            this.numTs = numTs;
274
275            nextCurveIdx = 0;
276            curCurveOff = 0;
277            prevT = 0f;
278        }
279
280        public boolean hasNext() {
281            return nextCurveIdx <= numTs;
282        }
283
284        public int next() {
285            int ret;
286            if (nextCurveIdx < numTs) {
287                float curT = ts[nextCurveIdx];
288                float splitT = (curT - prevT) / (1f - prevT);
289                Helpers.subdivideAt(splitT,
290                                    pts, curCurveOff,
291                                    pts, 0,
292                                    pts, type, type);
293                prevT = curT;
294                ret = 0;
295                curCurveOff = type;
296            } else {
297                ret = curCurveOff;
298            }
299            nextCurveIdx++;
300            return ret;
301        }
302    }
303}
304
305