1/*
2 * Copyright (c) 2006, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.awt;
27
28import java.awt.MultipleGradientPaint.CycleMethod;
29import java.awt.MultipleGradientPaint.ColorSpaceType;
30import java.awt.color.ColorSpace;
31import java.awt.geom.AffineTransform;
32import java.awt.geom.NoninvertibleTransformException;
33import java.awt.geom.Rectangle2D;
34import java.awt.image.ColorModel;
35import java.awt.image.DataBuffer;
36import java.awt.image.DataBufferInt;
37import java.awt.image.DirectColorModel;
38import java.awt.image.Raster;
39import java.awt.image.SinglePixelPackedSampleModel;
40import java.awt.image.WritableRaster;
41import java.lang.ref.SoftReference;
42import java.lang.ref.WeakReference;
43import java.util.Arrays;
44
45/**
46 * This is the superclass for all PaintContexts which use a multiple color
47 * gradient to fill in their raster.  It provides the actual color
48 * interpolation functionality.  Subclasses only have to deal with using
49 * the gradient to fill pixels in a raster.
50 *
51 * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
52 */
53abstract class MultipleGradientPaintContext implements PaintContext {
54
55    /**
56     * The PaintContext's ColorModel.  This is ARGB if colors are not all
57     * opaque, otherwise it is RGB.
58     */
59    protected ColorModel model;
60
61    /** Color model used if gradient colors are all opaque. */
62    private static ColorModel xrgbmodel =
63        new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
64
65    /** The cached ColorModel. */
66    protected static ColorModel cachedModel;
67
68    /** The cached raster, which is reusable among instances. */
69    protected static WeakReference<Raster> cached;
70
71    /** Raster is reused whenever possible. */
72    protected Raster saved;
73
74    /** The method to use when painting out of the gradient bounds. */
75    protected CycleMethod cycleMethod;
76
77    /** The ColorSpace in which to perform the interpolation */
78    protected ColorSpaceType colorSpace;
79
80    /** Elements of the inverse transform matrix. */
81    protected float a00, a01, a10, a11, a02, a12;
82
83    /**
84     * This boolean specifies whether we are in simple lookup mode, where an
85     * input value between 0 and 1 may be used to directly index into a single
86     * array of gradient colors.  If this boolean value is false, then we have
87     * to use a 2-step process where we have to determine which gradient array
88     * we fall into, then determine the index into that array.
89     */
90    protected boolean isSimpleLookup;
91
92    /**
93     * Size of gradients array for scaling the 0-1 index when looking up
94     * colors the fast way.
95     */
96    protected int fastGradientArraySize;
97
98    /**
99     * Array which contains the interpolated color values for each interval,
100     * used by calculateSingleArrayGradient().  It is protected for possible
101     * direct access by subclasses.
102     */
103    protected int[] gradient;
104
105    /**
106     * Array of gradient arrays, one array for each interval.  Used by
107     * calculateMultipleArrayGradient().
108     */
109    private int[][] gradients;
110
111    /** Normalized intervals array. */
112    private float[] normalizedIntervals;
113
114    /** Fractions array. */
115    private float[] fractions;
116
117    /** Used to determine if gradient colors are all opaque. */
118    private int transparencyTest;
119
120    /** Color space conversion lookup tables. */
121    private static final int SRGBtoLinearRGB[] = new int[256];
122    private static final int LinearRGBtoSRGB[] = new int[256];
123
124    static {
125        // build the tables
126        for (int k = 0; k < 256; k++) {
127            SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
128            LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
129        }
130    }
131
132    /**
133     * Constant number of max colors between any 2 arbitrary colors.
134     * Used for creating and indexing gradients arrays.
135     */
136    protected static final int GRADIENT_SIZE = 256;
137    protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
138
139    /**
140     * Maximum length of the fast single-array.  If the estimated array size
141     * is greater than this, switch over to the slow lookup method.
142     * No particular reason for choosing this number, but it seems to provide
143     * satisfactory performance for the common case (fast lookup).
144     */
145    private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
146
147    /**
148     * Constructor for MultipleGradientPaintContext superclass.
149     */
150    protected MultipleGradientPaintContext(MultipleGradientPaint mgp,
151                                           ColorModel cm,
152                                           Rectangle deviceBounds,
153                                           Rectangle2D userBounds,
154                                           AffineTransform t,
155                                           RenderingHints hints,
156                                           float[] fractions,
157                                           Color[] colors,
158                                           CycleMethod cycleMethod,
159                                           ColorSpaceType colorSpace)
160    {
161        if (deviceBounds == null) {
162            throw new NullPointerException("Device bounds cannot be null");
163        }
164
165        if (userBounds == null) {
166            throw new NullPointerException("User bounds cannot be null");
167        }
168
169        if (t == null) {
170            throw new NullPointerException("Transform cannot be null");
171        }
172
173        if (hints == null) {
174            throw new NullPointerException("RenderingHints cannot be null");
175        }
176
177        // The inverse transform is needed to go from device to user space.
178        // Get all the components of the inverse transform matrix.
179        AffineTransform tInv;
180        try {
181            // the following assumes that the caller has copied the incoming
182            // transform and is not concerned about it being modified
183            t.invert();
184            tInv = t;
185        } catch (NoninvertibleTransformException e) {
186            // just use identity transform in this case; better to show
187            // (incorrect) results than to throw an exception and/or no-op
188            tInv = new AffineTransform();
189        }
190        double m[] = new double[6];
191        tInv.getMatrix(m);
192        a00 = (float)m[0];
193        a10 = (float)m[1];
194        a01 = (float)m[2];
195        a11 = (float)m[3];
196        a02 = (float)m[4];
197        a12 = (float)m[5];
198
199        // copy some flags
200        this.cycleMethod = cycleMethod;
201        this.colorSpace = colorSpace;
202
203        // we can avoid copying this array since we do not modify its values
204        this.fractions = fractions;
205
206        // note that only one of these values can ever be non-null (we either
207        // store the fast gradient array or the slow one, but never both
208        // at the same time)
209        int[] gradient =
210            (mgp.gradient != null) ? mgp.gradient.get() : null;
211        int[][] gradients =
212            (mgp.gradients != null) ? mgp.gradients.get() : null;
213
214        if (gradient == null && gradients == null) {
215            // we need to (re)create the appropriate values
216            calculateLookupData(colors);
217
218            // now cache the calculated values in the
219            // MultipleGradientPaint instance for future use
220            mgp.model               = this.model;
221            mgp.normalizedIntervals = this.normalizedIntervals;
222            mgp.isSimpleLookup      = this.isSimpleLookup;
223            if (isSimpleLookup) {
224                // only cache the fast array
225                mgp.fastGradientArraySize = this.fastGradientArraySize;
226                mgp.gradient = new SoftReference<int[]>(this.gradient);
227            } else {
228                // only cache the slow array
229                mgp.gradients = new SoftReference<int[][]>(this.gradients);
230            }
231        } else {
232            // use the values cached in the MultipleGradientPaint instance
233            this.model                 = mgp.model;
234            this.normalizedIntervals   = mgp.normalizedIntervals;
235            this.isSimpleLookup        = mgp.isSimpleLookup;
236            this.gradient              = gradient;
237            this.fastGradientArraySize = mgp.fastGradientArraySize;
238            this.gradients             = gradients;
239        }
240    }
241
242    /**
243     * This function is the meat of this class.  It calculates an array of
244     * gradient colors based on an array of fractions and color values at
245     * those fractions.
246     */
247    private void calculateLookupData(Color[] colors) {
248        Color[] normalizedColors;
249        if (colorSpace == ColorSpaceType.LINEAR_RGB) {
250            // create a new colors array
251            normalizedColors = new Color[colors.length];
252            // convert the colors using the lookup table
253            for (int i = 0; i < colors.length; i++) {
254                int argb = colors[i].getRGB();
255                int a = argb >>> 24;
256                int r = SRGBtoLinearRGB[(argb >> 16) & 0xff];
257                int g = SRGBtoLinearRGB[(argb >>  8) & 0xff];
258                int b = SRGBtoLinearRGB[(argb      ) & 0xff];
259                normalizedColors[i] = new Color(r, g, b, a);
260            }
261        } else {
262            // we can just use this array by reference since we do not
263            // modify its values in the case of SRGB
264            normalizedColors = colors;
265        }
266
267        // this will store the intervals (distances) between gradient stops
268        normalizedIntervals = new float[fractions.length-1];
269
270        // convert from fractions into intervals
271        for (int i = 0; i < normalizedIntervals.length; i++) {
272            // interval distance is equal to the difference in positions
273            normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i];
274        }
275
276        // initialize to be fully opaque for ANDing with colors
277        transparencyTest = 0xff000000;
278
279        // array of interpolation arrays
280        gradients = new int[normalizedIntervals.length][];
281
282        // find smallest interval
283        float Imin = 1;
284        for (int i = 0; i < normalizedIntervals.length; i++) {
285            Imin = (Imin > normalizedIntervals[i]) ?
286                normalizedIntervals[i] : Imin;
287        }
288
289        // Estimate the size of the entire gradients array.
290        // This is to prevent a tiny interval from causing the size of array
291        // to explode.  If the estimated size is too large, break to using
292        // separate arrays for each interval, and using an indexing scheme at
293        // look-up time.
294        int estimatedSize = 0;
295        for (int i = 0; i < normalizedIntervals.length; i++) {
296            estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
297        }
298
299        if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
300            // slow method
301            calculateMultipleArrayGradient(normalizedColors);
302        } else {
303            // fast method
304            calculateSingleArrayGradient(normalizedColors, Imin);
305        }
306
307        // use the most "economical" model
308        if ((transparencyTest >>> 24) == 0xff) {
309            model = xrgbmodel;
310        } else {
311            model = ColorModel.getRGBdefault();
312        }
313    }
314
315    /**
316     * FAST LOOKUP METHOD
317     *
318     * This method calculates the gradient color values and places them in a
319     * single int array, gradient[].  It does this by allocating space for
320     * each interval based on its size relative to the smallest interval in
321     * the array.  The smallest interval is allocated 255 interpolated values
322     * (the maximum number of unique in-between colors in a 24 bit color
323     * system), and all other intervals are allocated
324     * size = (255 * the ratio of their size to the smallest interval).
325     *
326     * This scheme expedites a speedy retrieval because the colors are
327     * distributed along the array according to their user-specified
328     * distribution.  All that is needed is a relative index from 0 to 1.
329     *
330     * The only problem with this method is that the possibility exists for
331     * the array size to balloon in the case where there is a
332     * disproportionately small gradient interval.  In this case the other
333     * intervals will be allocated huge space, but much of that data is
334     * redundant.  We thus need to use the space conserving scheme below.
335     *
336     * @param Imin the size of the smallest interval
337     */
338    private void calculateSingleArrayGradient(Color[] colors, float Imin) {
339        // set the flag so we know later it is a simple (fast) lookup
340        isSimpleLookup = true;
341
342        // 2 colors to interpolate
343        int rgb1, rgb2;
344
345        //the eventual size of the single array
346        int gradientsTot = 1;
347
348        // for every interval (transition between 2 colors)
349        for (int i = 0; i < gradients.length; i++) {
350            // create an array whose size is based on the ratio to the
351            // smallest interval
352            int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
353            gradientsTot += nGradients;
354            gradients[i] = new int[nGradients];
355
356            // the 2 colors (keyframes) to interpolate between
357            rgb1 = colors[i].getRGB();
358            rgb2 = colors[i+1].getRGB();
359
360            // fill this array with the colors in between rgb1 and rgb2
361            interpolate(rgb1, rgb2, gradients[i]);
362
363            // if the colors are opaque, transparency should still
364            // be 0xff000000
365            transparencyTest &= rgb1;
366            transparencyTest &= rgb2;
367        }
368
369        // put all gradients in a single array
370        gradient = new int[gradientsTot];
371        int curOffset = 0;
372        for (int i = 0; i < gradients.length; i++){
373            System.arraycopy(gradients[i], 0, gradient,
374                             curOffset, gradients[i].length);
375            curOffset += gradients[i].length;
376        }
377        gradient[gradient.length-1] = colors[colors.length-1].getRGB();
378
379        // if interpolation occurred in Linear RGB space, convert the
380        // gradients back to sRGB using the lookup table
381        if (colorSpace == ColorSpaceType.LINEAR_RGB) {
382            for (int i = 0; i < gradient.length; i++) {
383                gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]);
384            }
385        }
386
387        fastGradientArraySize = gradient.length - 1;
388    }
389
390    /**
391     * SLOW LOOKUP METHOD
392     *
393     * This method calculates the gradient color values for each interval and
394     * places each into its own 255 size array.  The arrays are stored in
395     * gradients[][].  (255 is used because this is the maximum number of
396     * unique colors between 2 arbitrary colors in a 24 bit color system.)
397     *
398     * This method uses the minimum amount of space (only 255 * number of
399     * intervals), but it aggravates the lookup procedure, because now we
400     * have to find out which interval to select, then calculate the index
401     * within that interval.  This causes a significant performance hit,
402     * because it requires this calculation be done for every point in
403     * the rendering loop.
404     *
405     * For those of you who are interested, this is a classic example of the
406     * time-space tradeoff.
407     */
408    private void calculateMultipleArrayGradient(Color[] colors) {
409        // set the flag so we know later it is a non-simple lookup
410        isSimpleLookup = false;
411
412        // 2 colors to interpolate
413        int rgb1, rgb2;
414
415        // for every interval (transition between 2 colors)
416        for (int i = 0; i < gradients.length; i++){
417            // create an array of the maximum theoretical size for
418            // each interval
419            gradients[i] = new int[GRADIENT_SIZE];
420
421            // get the 2 colors
422            rgb1 = colors[i].getRGB();
423            rgb2 = colors[i+1].getRGB();
424
425            // fill this array with the colors in between rgb1 and rgb2
426            interpolate(rgb1, rgb2, gradients[i]);
427
428            // if the colors are opaque, transparency should still
429            // be 0xff000000
430            transparencyTest &= rgb1;
431            transparencyTest &= rgb2;
432        }
433
434        // if interpolation occurred in Linear RGB space, convert the
435        // gradients back to SRGB using the lookup table
436        if (colorSpace == ColorSpaceType.LINEAR_RGB) {
437            for (int j = 0; j < gradients.length; j++) {
438                for (int i = 0; i < gradients[j].length; i++) {
439                    gradients[j][i] =
440                        convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
441                }
442            }
443        }
444    }
445
446    /**
447     * Yet another helper function.  This one linearly interpolates between
448     * 2 colors, filling up the output array.
449     *
450     * @param rgb1 the start color
451     * @param rgb2 the end color
452     * @param output the output array of colors; must not be null
453     */
454    private void interpolate(int rgb1, int rgb2, int[] output) {
455        // color components
456        int a1, r1, g1, b1, da, dr, dg, db;
457
458        // step between interpolated values
459        float stepSize = 1.0f / output.length;
460
461        // extract color components from packed integer
462        a1 = (rgb1 >> 24) & 0xff;
463        r1 = (rgb1 >> 16) & 0xff;
464        g1 = (rgb1 >>  8) & 0xff;
465        b1 = (rgb1      ) & 0xff;
466
467        // calculate the total change in alpha, red, green, blue
468        da = ((rgb2 >> 24) & 0xff) - a1;
469        dr = ((rgb2 >> 16) & 0xff) - r1;
470        dg = ((rgb2 >>  8) & 0xff) - g1;
471        db = ((rgb2      ) & 0xff) - b1;
472
473        // for each step in the interval calculate the in-between color by
474        // multiplying the normalized current position by the total color
475        // change (0.5 is added to prevent truncation round-off error)
476        for (int i = 0; i < output.length; i++) {
477            output[i] =
478                (((int) ((a1 + i * da * stepSize) + 0.5) << 24)) |
479                (((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) |
480                (((int) ((g1 + i * dg * stepSize) + 0.5) <<  8)) |
481                (((int) ((b1 + i * db * stepSize) + 0.5)      ));
482        }
483    }
484
485    /**
486     * Yet another helper function.  This one extracts the color components
487     * of an integer RGB triple, converts them from LinearRGB to SRGB, then
488     * recompacts them into an int.
489     */
490    private int convertEntireColorLinearRGBtoSRGB(int rgb) {
491        // color components
492        int a1, r1, g1, b1;
493
494        // extract red, green, blue components
495        a1 = (rgb >> 24) & 0xff;
496        r1 = (rgb >> 16) & 0xff;
497        g1 = (rgb >>  8) & 0xff;
498        b1 = (rgb      ) & 0xff;
499
500        // use the lookup table
501        r1 = LinearRGBtoSRGB[r1];
502        g1 = LinearRGBtoSRGB[g1];
503        b1 = LinearRGBtoSRGB[b1];
504
505        // re-compact the components
506        return ((a1 << 24) |
507                (r1 << 16) |
508                (g1 <<  8) |
509                (b1      ));
510    }
511
512    /**
513     * Helper function to index into the gradients array.  This is necessary
514     * because each interval has an array of colors with uniform size 255.
515     * However, the color intervals are not necessarily of uniform length, so
516     * a conversion is required.
517     *
518     * @param position the unmanipulated position, which will be mapped
519     *                 into the range 0 to 1
520     * @return integer color to display
521     */
522    protected final int indexIntoGradientsArrays(float position) {
523        // first, manipulate position value depending on the cycle method
524        if (cycleMethod == CycleMethod.NO_CYCLE) {
525            if (position > 1) {
526                // upper bound is 1
527                position = 1;
528            } else if (position < 0) {
529                // lower bound is 0
530                position = 0;
531            }
532        } else if (cycleMethod == CycleMethod.REPEAT) {
533            // get the fractional part
534            // (modulo behavior discards integer component)
535            position = position - (int)position;
536
537            //position should now be between -1 and 1
538            if (position < 0) {
539                // force it to be in the range 0-1
540                position = position + 1;
541            }
542        } else { // cycleMethod == CycleMethod.REFLECT
543            if (position < 0) {
544                // take absolute value
545                position = -position;
546            }
547
548            // get the integer part
549            int part = (int)position;
550
551            // get the fractional part
552            position = position - part;
553
554            if ((part & 1) == 1) {
555                // integer part is odd, get reflected color instead
556                position = 1 - position;
557            }
558        }
559
560        // now, get the color based on this 0-1 position...
561
562        if (isSimpleLookup) {
563            // easy to compute: just scale index by array size
564            return gradient[(int)(position * fastGradientArraySize)];
565        } else {
566            // more complicated computation, to save space
567
568            // for all the gradient interval arrays
569            for (int i = 0; i < gradients.length; i++) {
570                if (position < fractions[i+1]) {
571                    // this is the array we want
572                    float delta = position - fractions[i];
573
574                    // this is the interval we want
575                    int index = (int)((delta / normalizedIntervals[i])
576                                      * (GRADIENT_SIZE_INDEX));
577
578                    return gradients[i][index];
579                }
580            }
581        }
582
583        return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX];
584    }
585
586    /**
587     * Helper function to convert a color component in sRGB space to linear
588     * RGB space.  Used to build a static lookup table.
589     */
590    private static int convertSRGBtoLinearRGB(int color) {
591        float input, output;
592
593        input = color / 255.0f;
594        if (input <= 0.04045f) {
595            output = input / 12.92f;
596        } else {
597            output = (float)Math.pow((input + 0.055) / 1.055, 2.4);
598        }
599
600        return Math.round(output * 255.0f);
601    }
602
603    /**
604     * Helper function to convert a color component in linear RGB space to
605     * SRGB space.  Used to build a static lookup table.
606     */
607    private static int convertLinearRGBtoSRGB(int color) {
608        float input, output;
609
610        input = color/255.0f;
611        if (input <= 0.0031308) {
612            output = input * 12.92f;
613        } else {
614            output = (1.055f *
615                ((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
616        }
617
618        return Math.round(output * 255.0f);
619    }
620
621    /**
622     * {@inheritDoc}
623     */
624    public final Raster getRaster(int x, int y, int w, int h) {
625        // If working raster is big enough, reuse it. Otherwise,
626        // build a large enough new one.
627        Raster raster = saved;
628        if (raster == null ||
629            raster.getWidth() < w || raster.getHeight() < h)
630        {
631            raster = getCachedRaster(model, w, h);
632            saved = raster;
633        }
634
635        // Access raster internal int array. Because we use a DirectColorModel,
636        // we know the DataBuffer is of type DataBufferInt and the SampleModel
637        // is SinglePixelPackedSampleModel.
638        // Adjust for initial offset in DataBuffer and also for the scanline
639        // stride.
640        // These calls make the DataBuffer non-acceleratable, but the
641        // Raster is never Stable long enough to accelerate anyway...
642        DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
643        int[] pixels = rasterDB.getData(0);
644        int off = rasterDB.getOffset();
645        int scanlineStride = ((SinglePixelPackedSampleModel)
646                              raster.getSampleModel()).getScanlineStride();
647        int adjust = scanlineStride - w;
648
649        fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass
650
651        return raster;
652    }
653
654    protected abstract void fillRaster(int pixels[], int off, int adjust,
655                                       int x, int y, int w, int h);
656
657
658    /**
659     * Took this cacheRaster code from GradientPaint. It appears to recycle
660     * rasters for use by any other instance, as long as they are sufficiently
661     * large.
662     */
663    private static synchronized Raster getCachedRaster(ColorModel cm,
664                                                       int w, int h)
665    {
666        if (cm == cachedModel) {
667            if (cached != null) {
668                Raster ras = cached.get();
669                if (ras != null &&
670                    ras.getWidth() >= w &&
671                    ras.getHeight() >= h)
672                {
673                    cached = null;
674                    return ras;
675                }
676            }
677        }
678        return cm.createCompatibleWritableRaster(w, h);
679    }
680
681    /**
682     * Took this cacheRaster code from GradientPaint. It appears to recycle
683     * rasters for use by any other instance, as long as they are sufficiently
684     * large.
685     */
686    private static synchronized void putCachedRaster(ColorModel cm,
687                                                     Raster ras)
688    {
689        if (cached != null) {
690            Raster cras = cached.get();
691            if (cras != null) {
692                int cw = cras.getWidth();
693                int ch = cras.getHeight();
694                int iw = ras.getWidth();
695                int ih = ras.getHeight();
696                if (cw >= iw && ch >= ih) {
697                    return;
698                }
699                if (cw * ch >= iw * ih) {
700                    return;
701                }
702            }
703        }
704        cachedModel = cm;
705        cached = new WeakReference<Raster>(ras);
706    }
707
708    /**
709     * {@inheritDoc}
710     */
711    public final void dispose() {
712        if (saved != null) {
713            putCachedRaster(model, saved);
714            saved = null;
715        }
716    }
717
718    /**
719     * {@inheritDoc}
720     */
721    public final ColorModel getColorModel() {
722        return model;
723    }
724}
725