1/*
2 * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25package java.util.zip;
26
27import java.nio.ByteBuffer;
28import java.nio.ByteOrder;
29
30import jdk.internal.HotSpotIntrinsicCandidate;
31import jdk.internal.misc.Unsafe;
32import sun.nio.ch.DirectBuffer;
33
34/**
35 * A class that can be used to compute the CRC-32C of a data stream.
36 *
37 * <p>
38 * CRC-32C is defined in <a href="http://www.ietf.org/rfc/rfc3720.txt">RFC
39 * 3720</a>: Internet Small Computer Systems Interface (iSCSI).
40 * </p>
41 *
42 * <p>
43 * Passing a {@code null} argument to a method in this class will cause a
44 * {@link NullPointerException} to be thrown.
45 * </p>
46 *
47 * @since 9
48 */
49public final class CRC32C implements Checksum {
50
51    /*
52     * This CRC-32C implementation uses the 'slicing-by-8' algorithm described
53     * in the paper "A Systematic Approach to Building High Performance
54     * Software-Based CRC Generators" by Michael E. Kounavis and Frank L. Berry,
55     * Intel Research and Development
56     */
57
58    /**
59     * CRC-32C Polynomial
60     */
61    private static final int CRC32C_POLY = 0x1EDC6F41;
62    private static final int REVERSED_CRC32C_POLY = Integer.reverse(CRC32C_POLY);
63
64    private static final Unsafe UNSAFE = Unsafe.getUnsafe();
65
66    // Lookup tables
67    // Lookup table for single byte calculations
68    private static final int[] byteTable;
69    // Lookup tables for bulk operations in 'slicing-by-8' algorithm
70    private static final int[][] byteTables = new int[8][256];
71    private static final int[] byteTable0 = byteTables[0];
72    private static final int[] byteTable1 = byteTables[1];
73    private static final int[] byteTable2 = byteTables[2];
74    private static final int[] byteTable3 = byteTables[3];
75    private static final int[] byteTable4 = byteTables[4];
76    private static final int[] byteTable5 = byteTables[5];
77    private static final int[] byteTable6 = byteTables[6];
78    private static final int[] byteTable7 = byteTables[7];
79
80    static {
81        // Generate lookup tables
82        // High-order polynomial term stored in LSB of r.
83        for (int index = 0; index < byteTables[0].length; index++) {
84           int r = index;
85            for (int i = 0; i < Byte.SIZE; i++) {
86                if ((r & 1) != 0) {
87                    r = (r >>> 1) ^ REVERSED_CRC32C_POLY;
88                } else {
89                    r >>>= 1;
90                }
91            }
92            byteTables[0][index] = r;
93        }
94
95        for (int index = 0; index < byteTables[0].length; index++) {
96            int r = byteTables[0][index];
97
98            for (int k = 1; k < byteTables.length; k++) {
99                r = byteTables[0][r & 0xFF] ^ (r >>> 8);
100                byteTables[k][index] = r;
101            }
102        }
103
104        if (ByteOrder.nativeOrder() == ByteOrder.LITTLE_ENDIAN) {
105            byteTable = byteTables[0];
106        } else { // ByteOrder.BIG_ENDIAN
107            byteTable = new int[byteTable0.length];
108            System.arraycopy(byteTable0, 0, byteTable, 0, byteTable0.length);
109            for (int[] table : byteTables) {
110                for (int index = 0; index < table.length; index++) {
111                    table[index] = Integer.reverseBytes(table[index]);
112                }
113            }
114        }
115    }
116
117    /**
118     * Calculated CRC-32C value
119     */
120    private int crc = 0xFFFFFFFF;
121
122    /**
123     * Creates a new CRC32C object.
124     */
125    public CRC32C() {
126    }
127
128    /**
129     * Updates the CRC-32C checksum with the specified byte (the low eight bits
130     * of the argument b).
131     */
132    @Override
133    public void update(int b) {
134        crc = (crc >>> 8) ^ byteTable[(crc ^ (b & 0xFF)) & 0xFF];
135    }
136
137    /**
138     * Updates the CRC-32C checksum with the specified array of bytes.
139     *
140     * @throws ArrayIndexOutOfBoundsException
141     *         if {@code off} is negative, or {@code len} is negative, or
142     *         {@code off+len} is negative or greater than the length of
143     *         the array {@code b}.
144     */
145    @Override
146    public void update(byte[] b, int off, int len) {
147        if (b == null) {
148            throw new NullPointerException();
149        }
150        if (off < 0 || len < 0 || off > b.length - len) {
151            throw new ArrayIndexOutOfBoundsException();
152        }
153        crc = updateBytes(crc, b, off, (off + len));
154    }
155
156    /**
157     * Updates the CRC-32C checksum with the bytes from the specified buffer.
158     *
159     * The checksum is updated with the remaining bytes in the buffer, starting
160     * at the buffer's position. Upon return, the buffer's position will be
161     * updated to its limit; its limit will not have been changed.
162     */
163    @Override
164    public void update(ByteBuffer buffer) {
165        int pos = buffer.position();
166        int limit = buffer.limit();
167        assert (pos <= limit);
168        int rem = limit - pos;
169        if (rem <= 0) {
170            return;
171        }
172
173        if (buffer instanceof DirectBuffer) {
174            crc = updateDirectByteBuffer(crc, ((DirectBuffer) buffer).address(),
175                                         pos, limit);
176        } else if (buffer.hasArray()) {
177            crc = updateBytes(crc, buffer.array(), pos + buffer.arrayOffset(),
178                              limit + buffer.arrayOffset());
179        } else {
180            byte[] b = new byte[Math.min(buffer.remaining(), 4096)];
181            while (buffer.hasRemaining()) {
182                int length = Math.min(buffer.remaining(), b.length);
183                buffer.get(b, 0, length);
184                update(b, 0, length);
185            }
186        }
187        buffer.position(limit);
188    }
189
190    /**
191     * Resets CRC-32C to initial value.
192     */
193    @Override
194    public void reset() {
195        crc = 0xFFFFFFFF;
196    }
197
198    /**
199     * Returns CRC-32C value.
200     */
201    @Override
202    public long getValue() {
203        return (~crc) & 0xFFFFFFFFL;
204    }
205
206    /**
207     * Updates the CRC-32C checksum with the specified array of bytes.
208     */
209    @HotSpotIntrinsicCandidate
210    private static int updateBytes(int crc, byte[] b, int off, int end) {
211
212        // Do only byte reads for arrays so short they can't be aligned
213        // or if bytes are stored with a larger witdh than one byte.,%
214        if (end - off >= 8 && Unsafe.ARRAY_BYTE_INDEX_SCALE == 1) {
215
216            // align on 8 bytes
217            int alignLength
218                    = (8 - ((Unsafe.ARRAY_BYTE_BASE_OFFSET + off) & 0x7)) & 0x7;
219            for (int alignEnd = off + alignLength; off < alignEnd; off++) {
220                crc = (crc >>> 8) ^ byteTable[(crc ^ b[off]) & 0xFF];
221            }
222
223            if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) {
224                crc = Integer.reverseBytes(crc);
225            }
226
227            // slicing-by-8
228            for (; off < (end - Long.BYTES); off += Long.BYTES) {
229                int firstHalf;
230                int secondHalf;
231                if (Unsafe.ADDRESS_SIZE == 4) {
232                    // On 32 bit platforms read two ints instead of a single 64bit long
233                    firstHalf = UNSAFE.getInt(b, (long)Unsafe.ARRAY_BYTE_BASE_OFFSET + off);
234                    secondHalf = UNSAFE.getInt(b, (long)Unsafe.ARRAY_BYTE_BASE_OFFSET + off
235                                               + Integer.BYTES);
236                } else {
237                    long value = UNSAFE.getLong(b, (long)Unsafe.ARRAY_BYTE_BASE_OFFSET + off);
238                    if (ByteOrder.nativeOrder() == ByteOrder.LITTLE_ENDIAN) {
239                        firstHalf = (int) value;
240                        secondHalf = (int) (value >>> 32);
241                    } else { // ByteOrder.BIG_ENDIAN
242                        firstHalf = (int) (value >>> 32);
243                        secondHalf = (int) value;
244                    }
245                }
246                crc ^= firstHalf;
247                if (ByteOrder.nativeOrder() == ByteOrder.LITTLE_ENDIAN) {
248                    crc = byteTable7[crc & 0xFF]
249                            ^ byteTable6[(crc >>> 8) & 0xFF]
250                            ^ byteTable5[(crc >>> 16) & 0xFF]
251                            ^ byteTable4[crc >>> 24]
252                            ^ byteTable3[secondHalf & 0xFF]
253                            ^ byteTable2[(secondHalf >>> 8) & 0xFF]
254                            ^ byteTable1[(secondHalf >>> 16) & 0xFF]
255                            ^ byteTable0[secondHalf >>> 24];
256                } else { // ByteOrder.BIG_ENDIAN
257                    crc = byteTable0[secondHalf & 0xFF]
258                            ^ byteTable1[(secondHalf >>> 8) & 0xFF]
259                            ^ byteTable2[(secondHalf >>> 16) & 0xFF]
260                            ^ byteTable3[secondHalf >>> 24]
261                            ^ byteTable4[crc & 0xFF]
262                            ^ byteTable5[(crc >>> 8) & 0xFF]
263                            ^ byteTable6[(crc >>> 16) & 0xFF]
264                            ^ byteTable7[crc >>> 24];
265                }
266            }
267
268            if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) {
269                crc = Integer.reverseBytes(crc);
270            }
271        }
272
273        // Tail
274        for (; off < end; off++) {
275            crc = (crc >>> 8) ^ byteTable[(crc ^ b[off]) & 0xFF];
276        }
277
278        return crc;
279    }
280
281    /**
282     * Updates the CRC-32C checksum reading from the specified address.
283     */
284    @HotSpotIntrinsicCandidate
285    private static int updateDirectByteBuffer(int crc, long address,
286                                              int off, int end) {
287
288        // Do only byte reads for arrays so short they can't be aligned
289        if (end - off >= 8) {
290
291            // align on 8 bytes
292            int alignLength = (8 - (int) ((address + off) & 0x7)) & 0x7;
293            for (int alignEnd = off + alignLength; off < alignEnd; off++) {
294                crc = (crc >>> 8)
295                        ^ byteTable[(crc ^ UNSAFE.getByte(address + off)) & 0xFF];
296            }
297
298            if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) {
299                crc = Integer.reverseBytes(crc);
300            }
301
302            // slicing-by-8
303            for (; off <= (end - Long.BYTES); off += Long.BYTES) {
304                // Always reading two ints as reading a long followed by
305                // shifting and casting was slower.
306                int firstHalf = UNSAFE.getInt(address + off);
307                int secondHalf = UNSAFE.getInt(address + off + Integer.BYTES);
308                crc ^= firstHalf;
309                if (ByteOrder.nativeOrder() == ByteOrder.LITTLE_ENDIAN) {
310                    crc = byteTable7[crc & 0xFF]
311                            ^ byteTable6[(crc >>> 8) & 0xFF]
312                            ^ byteTable5[(crc >>> 16) & 0xFF]
313                            ^ byteTable4[crc >>> 24]
314                            ^ byteTable3[secondHalf & 0xFF]
315                            ^ byteTable2[(secondHalf >>> 8) & 0xFF]
316                            ^ byteTable1[(secondHalf >>> 16) & 0xFF]
317                            ^ byteTable0[secondHalf >>> 24];
318                } else { // ByteOrder.BIG_ENDIAN
319                    crc = byteTable0[secondHalf & 0xFF]
320                            ^ byteTable1[(secondHalf >>> 8) & 0xFF]
321                            ^ byteTable2[(secondHalf >>> 16) & 0xFF]
322                            ^ byteTable3[secondHalf >>> 24]
323                            ^ byteTable4[crc & 0xFF]
324                            ^ byteTable5[(crc >>> 8) & 0xFF]
325                            ^ byteTable6[(crc >>> 16) & 0xFF]
326                            ^ byteTable7[crc >>> 24];
327                }
328            }
329
330            if (ByteOrder.nativeOrder() == ByteOrder.BIG_ENDIAN) {
331                crc = Integer.reverseBytes(crc);
332            }
333        }
334
335        // Tail
336        for (; off < end; off++) {
337            crc = (crc >>> 8)
338                    ^ byteTable[(crc ^ UNSAFE.getByte(address + off)) & 0xFF];
339        }
340
341        return crc;
342    }
343}
344