1/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25/*
26 * This file is available under and governed by the GNU General Public
27 * License version 2 only, as published by the Free Software Foundation.
28 * However, the following notice accompanied the original version of this
29 * file:
30 *
31 * Written by Doug Lea with assistance from members of JCP JSR-166
32 * Expert Group and released to the public domain, as explained at
33 * http://creativecommons.org/publicdomain/zero/1.0/
34 */
35
36package java.util.concurrent;
37
38import java.lang.invoke.MethodHandles;
39import java.lang.invoke.VarHandle;
40import java.util.AbstractQueue;
41import java.util.Arrays;
42import java.util.Collection;
43import java.util.Iterator;
44import java.util.NoSuchElementException;
45import java.util.Objects;
46import java.util.Queue;
47import java.util.Spliterator;
48import java.util.Spliterators;
49import java.util.concurrent.locks.LockSupport;
50import java.util.function.Consumer;
51import java.util.function.Predicate;
52
53/**
54 * An unbounded {@link TransferQueue} based on linked nodes.
55 * This queue orders elements FIFO (first-in-first-out) with respect
56 * to any given producer.  The <em>head</em> of the queue is that
57 * element that has been on the queue the longest time for some
58 * producer.  The <em>tail</em> of the queue is that element that has
59 * been on the queue the shortest time for some producer.
60 *
61 * <p>Beware that, unlike in most collections, the {@code size} method
62 * is <em>NOT</em> a constant-time operation. Because of the
63 * asynchronous nature of these queues, determining the current number
64 * of elements requires a traversal of the elements, and so may report
65 * inaccurate results if this collection is modified during traversal.
66 *
67 * <p>Bulk operations that add, remove, or examine multiple elements,
68 * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
69 * are <em>not</em> guaranteed to be performed atomically.
70 * For example, a {@code forEach} traversal concurrent with an {@code
71 * addAll} operation might observe only some of the added elements.
72 *
73 * <p>This class and its iterator implement all of the <em>optional</em>
74 * methods of the {@link Collection} and {@link Iterator} interfaces.
75 *
76 * <p>Memory consistency effects: As with other concurrent
77 * collections, actions in a thread prior to placing an object into a
78 * {@code LinkedTransferQueue}
79 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
80 * actions subsequent to the access or removal of that element from
81 * the {@code LinkedTransferQueue} in another thread.
82 *
83 * <p>This class is a member of the
84 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
85 * Java Collections Framework</a>.
86 *
87 * @since 1.7
88 * @author Doug Lea
89 * @param <E> the type of elements held in this queue
90 */
91public class LinkedTransferQueue<E> extends AbstractQueue<E>
92    implements TransferQueue<E>, java.io.Serializable {
93    private static final long serialVersionUID = -3223113410248163686L;
94
95    /*
96     * *** Overview of Dual Queues with Slack ***
97     *
98     * Dual Queues, introduced by Scherer and Scott
99     * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
100     * are (linked) queues in which nodes may represent either data or
101     * requests.  When a thread tries to enqueue a data node, but
102     * encounters a request node, it instead "matches" and removes it;
103     * and vice versa for enqueuing requests. Blocking Dual Queues
104     * arrange that threads enqueuing unmatched requests block until
105     * other threads provide the match. Dual Synchronous Queues (see
106     * Scherer, Lea, & Scott
107     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
108     * additionally arrange that threads enqueuing unmatched data also
109     * block.  Dual Transfer Queues support all of these modes, as
110     * dictated by callers.
111     *
112     * A FIFO dual queue may be implemented using a variation of the
113     * Michael & Scott (M&S) lock-free queue algorithm
114     * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
115     * It maintains two pointer fields, "head", pointing to a
116     * (matched) node that in turn points to the first actual
117     * (unmatched) queue node (or null if empty); and "tail" that
118     * points to the last node on the queue (or again null if
119     * empty). For example, here is a possible queue with four data
120     * elements:
121     *
122     *  head                tail
123     *    |                   |
124     *    v                   v
125     *    M -> U -> U -> U -> U
126     *
127     * The M&S queue algorithm is known to be prone to scalability and
128     * overhead limitations when maintaining (via CAS) these head and
129     * tail pointers. This has led to the development of
130     * contention-reducing variants such as elimination arrays (see
131     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
132     * optimistic back pointers (see Ladan-Mozes & Shavit
133     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
134     * However, the nature of dual queues enables a simpler tactic for
135     * improving M&S-style implementations when dual-ness is needed.
136     *
137     * In a dual queue, each node must atomically maintain its match
138     * status. While there are other possible variants, we implement
139     * this here as: for a data-mode node, matching entails CASing an
140     * "item" field from a non-null data value to null upon match, and
141     * vice-versa for request nodes, CASing from null to a data
142     * value. (Note that the linearization properties of this style of
143     * queue are easy to verify -- elements are made available by
144     * linking, and unavailable by matching.) Compared to plain M&S
145     * queues, this property of dual queues requires one additional
146     * successful atomic operation per enq/deq pair. But it also
147     * enables lower cost variants of queue maintenance mechanics. (A
148     * variation of this idea applies even for non-dual queues that
149     * support deletion of interior elements, such as
150     * j.u.c.ConcurrentLinkedQueue.)
151     *
152     * Once a node is matched, its match status can never again
153     * change.  We may thus arrange that the linked list of them
154     * contain a prefix of zero or more matched nodes, followed by a
155     * suffix of zero or more unmatched nodes. (Note that we allow
156     * both the prefix and suffix to be zero length, which in turn
157     * means that we do not use a dummy header.)  If we were not
158     * concerned with either time or space efficiency, we could
159     * correctly perform enqueue and dequeue operations by traversing
160     * from a pointer to the initial node; CASing the item of the
161     * first unmatched node on match and CASing the next field of the
162     * trailing node on appends.  While this would be a terrible idea
163     * in itself, it does have the benefit of not requiring ANY atomic
164     * updates on head/tail fields.
165     *
166     * We introduce here an approach that lies between the extremes of
167     * never versus always updating queue (head and tail) pointers.
168     * This offers a tradeoff between sometimes requiring extra
169     * traversal steps to locate the first and/or last unmatched
170     * nodes, versus the reduced overhead and contention of fewer
171     * updates to queue pointers. For example, a possible snapshot of
172     * a queue is:
173     *
174     *  head           tail
175     *    |              |
176     *    v              v
177     *    M -> M -> U -> U -> U -> U
178     *
179     * The best value for this "slack" (the targeted maximum distance
180     * between the value of "head" and the first unmatched node, and
181     * similarly for "tail") is an empirical matter. We have found
182     * that using very small constants in the range of 1-3 work best
183     * over a range of platforms. Larger values introduce increasing
184     * costs of cache misses and risks of long traversal chains, while
185     * smaller values increase CAS contention and overhead.
186     *
187     * Dual queues with slack differ from plain M&S dual queues by
188     * virtue of only sometimes updating head or tail pointers when
189     * matching, appending, or even traversing nodes; in order to
190     * maintain a targeted slack.  The idea of "sometimes" may be
191     * operationalized in several ways. The simplest is to use a
192     * per-operation counter incremented on each traversal step, and
193     * to try (via CAS) to update the associated queue pointer
194     * whenever the count exceeds a threshold. Another, that requires
195     * more overhead, is to use random number generators to update
196     * with a given probability per traversal step.
197     *
198     * In any strategy along these lines, because CASes updating
199     * fields may fail, the actual slack may exceed targeted slack.
200     * However, they may be retried at any time to maintain targets.
201     * Even when using very small slack values, this approach works
202     * well for dual queues because it allows all operations up to the
203     * point of matching or appending an item (hence potentially
204     * allowing progress by another thread) to be read-only, thus not
205     * introducing any further contention.  As described below, we
206     * implement this by performing slack maintenance retries only
207     * after these points.
208     *
209     * As an accompaniment to such techniques, traversal overhead can
210     * be further reduced without increasing contention of head
211     * pointer updates: Threads may sometimes shortcut the "next" link
212     * path from the current "head" node to be closer to the currently
213     * known first unmatched node, and similarly for tail. Again, this
214     * may be triggered with using thresholds or randomization.
215     *
216     * These ideas must be further extended to avoid unbounded amounts
217     * of costly-to-reclaim garbage caused by the sequential "next"
218     * links of nodes starting at old forgotten head nodes: As first
219     * described in detail by Boehm
220     * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
221     * delays noticing that any arbitrarily old node has become
222     * garbage, all newer dead nodes will also be unreclaimed.
223     * (Similar issues arise in non-GC environments.)  To cope with
224     * this in our implementation, upon CASing to advance the head
225     * pointer, we set the "next" link of the previous head to point
226     * only to itself; thus limiting the length of chains of dead nodes.
227     * (We also take similar care to wipe out possibly garbage
228     * retaining values held in other Node fields.)  However, doing so
229     * adds some further complexity to traversal: If any "next"
230     * pointer links to itself, it indicates that the current thread
231     * has lagged behind a head-update, and so the traversal must
232     * continue from the "head".  Traversals trying to find the
233     * current tail starting from "tail" may also encounter
234     * self-links, in which case they also continue at "head".
235     *
236     * It is tempting in slack-based scheme to not even use CAS for
237     * updates (similarly to Ladan-Mozes & Shavit). However, this
238     * cannot be done for head updates under the above link-forgetting
239     * mechanics because an update may leave head at a detached node.
240     * And while direct writes are possible for tail updates, they
241     * increase the risk of long retraversals, and hence long garbage
242     * chains, which can be much more costly than is worthwhile
243     * considering that the cost difference of performing a CAS vs
244     * write is smaller when they are not triggered on each operation
245     * (especially considering that writes and CASes equally require
246     * additional GC bookkeeping ("write barriers") that are sometimes
247     * more costly than the writes themselves because of contention).
248     *
249     * *** Overview of implementation ***
250     *
251     * We use a threshold-based approach to updates, with a slack
252     * threshold of two -- that is, we update head/tail when the
253     * current pointer appears to be two or more steps away from the
254     * first/last node. The slack value is hard-wired: a path greater
255     * than one is naturally implemented by checking equality of
256     * traversal pointers except when the list has only one element,
257     * in which case we keep slack threshold at one. Avoiding tracking
258     * explicit counts across method calls slightly simplifies an
259     * already-messy implementation. Using randomization would
260     * probably work better if there were a low-quality dirt-cheap
261     * per-thread one available, but even ThreadLocalRandom is too
262     * heavy for these purposes.
263     *
264     * With such a small slack threshold value, it is not worthwhile
265     * to augment this with path short-circuiting (i.e., unsplicing
266     * interior nodes) except in the case of cancellation/removal (see
267     * below).
268     *
269     * All enqueue/dequeue operations are handled by the single method
270     * "xfer" with parameters indicating whether to act as some form
271     * of offer, put, poll, take, or transfer (each possibly with
272     * timeout). The relative complexity of using one monolithic
273     * method outweighs the code bulk and maintenance problems of
274     * using separate methods for each case.
275     *
276     * Operation consists of up to two phases. The first is implemented
277     * in method xfer, the second in method awaitMatch.
278     *
279     * 1. Traverse until matching or appending (method xfer)
280     *
281     *    Conceptually, we simply traverse all nodes starting from head.
282     *    If we encounter an unmatched node of opposite mode, we match
283     *    it and return, also updating head (by at least 2 hops) to
284     *    one past the matched node (or the node itself if it's the
285     *    pinned trailing node).  Traversals also check for the
286     *    possibility of falling off-list, in which case they restart.
287     *
288     *    If the trailing node of the list is reached, a match is not
289     *    possible.  If this call was untimed poll or tryTransfer
290     *    (argument "how" is NOW), return empty-handed immediately.
291     *    Else a new node is CAS-appended.  On successful append, if
292     *    this call was ASYNC (e.g. offer), an element was
293     *    successfully added to the end of the queue and we return.
294     *
295     *    Of course, this naive traversal is O(n) when no match is
296     *    possible.  We optimize the traversal by maintaining a tail
297     *    pointer, which is expected to be "near" the end of the list.
298     *    It is only safe to fast-forward to tail (in the presence of
299     *    arbitrary concurrent changes) if it is pointing to a node of
300     *    the same mode, even if it is dead (in this case no preceding
301     *    node could still be matchable by this traversal).  If we
302     *    need to restart due to falling off-list, we can again
303     *    fast-forward to tail, but only if it has changed since the
304     *    last traversal (else we might loop forever).  If tail cannot
305     *    be used, traversal starts at head (but in this case we
306     *    expect to be able to match near head).  As with head, we
307     *    CAS-advance the tail pointer by at least two hops.
308     *
309     * 2. Await match or cancellation (method awaitMatch)
310     *
311     *    Wait for another thread to match node; instead cancelling if
312     *    the current thread was interrupted or the wait timed out. On
313     *    multiprocessors, we use front-of-queue spinning: If a node
314     *    appears to be the first unmatched node in the queue, it
315     *    spins a bit before blocking. In either case, before blocking
316     *    it tries to unsplice any nodes between the current "head"
317     *    and the first unmatched node.
318     *
319     *    Front-of-queue spinning vastly improves performance of
320     *    heavily contended queues. And so long as it is relatively
321     *    brief and "quiet", spinning does not much impact performance
322     *    of less-contended queues.  During spins threads check their
323     *    interrupt status and generate a thread-local random number
324     *    to decide to occasionally perform a Thread.yield. While
325     *    yield has underdefined specs, we assume that it might help,
326     *    and will not hurt, in limiting impact of spinning on busy
327     *    systems.  We also use smaller (1/2) spins for nodes that are
328     *    not known to be front but whose predecessors have not
329     *    blocked -- these "chained" spins avoid artifacts of
330     *    front-of-queue rules which otherwise lead to alternating
331     *    nodes spinning vs blocking. Further, front threads that
332     *    represent phase changes (from data to request node or vice
333     *    versa) compared to their predecessors receive additional
334     *    chained spins, reflecting longer paths typically required to
335     *    unblock threads during phase changes.
336     *
337     *
338     * ** Unlinking removed interior nodes **
339     *
340     * In addition to minimizing garbage retention via self-linking
341     * described above, we also unlink removed interior nodes. These
342     * may arise due to timed out or interrupted waits, or calls to
343     * remove(x) or Iterator.remove.  Normally, given a node that was
344     * at one time known to be the predecessor of some node s that is
345     * to be removed, we can unsplice s by CASing the next field of
346     * its predecessor if it still points to s (otherwise s must
347     * already have been removed or is now offlist). But there are two
348     * situations in which we cannot guarantee to make node s
349     * unreachable in this way: (1) If s is the trailing node of list
350     * (i.e., with null next), then it is pinned as the target node
351     * for appends, so can only be removed later after other nodes are
352     * appended. (2) We cannot necessarily unlink s given a
353     * predecessor node that is matched (including the case of being
354     * cancelled): the predecessor may already be unspliced, in which
355     * case some previous reachable node may still point to s.
356     * (For further explanation see Herlihy & Shavit "The Art of
357     * Multiprocessor Programming" chapter 9).  Although, in both
358     * cases, we can rule out the need for further action if either s
359     * or its predecessor are (or can be made to be) at, or fall off
360     * from, the head of list.
361     *
362     * Without taking these into account, it would be possible for an
363     * unbounded number of supposedly removed nodes to remain reachable.
364     * Situations leading to such buildup are uncommon but can occur
365     * in practice; for example when a series of short timed calls to
366     * poll repeatedly time out at the trailing node but otherwise
367     * never fall off the list because of an untimed call to take() at
368     * the front of the queue.
369     *
370     * When these cases arise, rather than always retraversing the
371     * entire list to find an actual predecessor to unlink (which
372     * won't help for case (1) anyway), we record a conservative
373     * estimate of possible unsplice failures (in "sweepVotes").
374     * We trigger a full sweep when the estimate exceeds a threshold
375     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
376     * removal failures to tolerate before sweeping through, unlinking
377     * cancelled nodes that were not unlinked upon initial removal.
378     * We perform sweeps by the thread hitting threshold (rather than
379     * background threads or by spreading work to other threads)
380     * because in the main contexts in which removal occurs, the
381     * caller is timed-out or cancelled, which are not time-critical
382     * enough to warrant the overhead that alternatives would impose
383     * on other threads.
384     *
385     * Because the sweepVotes estimate is conservative, and because
386     * nodes become unlinked "naturally" as they fall off the head of
387     * the queue, and because we allow votes to accumulate even while
388     * sweeps are in progress, there are typically significantly fewer
389     * such nodes than estimated.  Choice of a threshold value
390     * balances the likelihood of wasted effort and contention, versus
391     * providing a worst-case bound on retention of interior nodes in
392     * quiescent queues. The value defined below was chosen
393     * empirically to balance these under various timeout scenarios.
394     *
395     * Because traversal operations on the linked list of nodes are a
396     * natural opportunity to sweep dead nodes, we generally do so,
397     * including all the operations that might remove elements as they
398     * traverse, such as removeIf and Iterator.remove.  This largely
399     * eliminates long chains of dead interior nodes, except from
400     * cancelled or timed out blocking operations.
401     *
402     * Note that we cannot self-link unlinked interior nodes during
403     * sweeps. However, the associated garbage chains terminate when
404     * some successor ultimately falls off the head of the list and is
405     * self-linked.
406     */
407
408    /** True if on multiprocessor */
409    private static final boolean MP =
410        Runtime.getRuntime().availableProcessors() > 1;
411
412    /**
413     * The number of times to spin (with randomly interspersed calls
414     * to Thread.yield) on multiprocessor before blocking when a node
415     * is apparently the first waiter in the queue.  See above for
416     * explanation. Must be a power of two. The value is empirically
417     * derived -- it works pretty well across a variety of processors,
418     * numbers of CPUs, and OSes.
419     */
420    private static final int FRONT_SPINS   = 1 << 7;
421
422    /**
423     * The number of times to spin before blocking when a node is
424     * preceded by another node that is apparently spinning.  Also
425     * serves as an increment to FRONT_SPINS on phase changes, and as
426     * base average frequency for yielding during spins. Must be a
427     * power of two.
428     */
429    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
430
431    /**
432     * The maximum number of estimated removal failures (sweepVotes)
433     * to tolerate before sweeping through the queue unlinking
434     * cancelled nodes that were not unlinked upon initial
435     * removal. See above for explanation. The value must be at least
436     * two to avoid useless sweeps when removing trailing nodes.
437     */
438    static final int SWEEP_THRESHOLD = 32;
439
440    /**
441     * Queue nodes. Uses Object, not E, for items to allow forgetting
442     * them after use.  Writes that are intrinsically ordered wrt
443     * other accesses or CASes use simple relaxed forms.
444     */
445    static final class Node {
446        final boolean isData;   // false if this is a request node
447        volatile Object item;   // initially non-null if isData; CASed to match
448        volatile Node next;
449        volatile Thread waiter; // null when not waiting for a match
450
451        /**
452         * Constructs a data node holding item if item is non-null,
453         * else a request node.  Uses relaxed write because item can
454         * only be seen after piggy-backing publication via CAS.
455         */
456        Node(Object item) {
457            ITEM.set(this, item);
458            isData = (item != null);
459        }
460
461        /** Constructs a (matched data) dummy node. */
462        Node() {
463            isData = true;
464        }
465
466        final boolean casNext(Node cmp, Node val) {
467            // assert val != null;
468            return NEXT.compareAndSet(this, cmp, val);
469        }
470
471        final boolean casItem(Object cmp, Object val) {
472            // assert isData == (cmp != null);
473            // assert isData == (val == null);
474            // assert !(cmp instanceof Node);
475            return ITEM.compareAndSet(this, cmp, val);
476        }
477
478        /**
479         * Links node to itself to avoid garbage retention.  Called
480         * only after CASing head field, so uses relaxed write.
481         */
482        final void selfLink() {
483            // assert isMatched();
484            NEXT.setRelease(this, this);
485        }
486
487        final void appendRelaxed(Node next) {
488            // assert next != null;
489            // assert this.next == null;
490            NEXT.set(this, next);
491        }
492
493        /**
494         * Sets item (of a request node) to self and waiter to null,
495         * to avoid garbage retention after matching or cancelling.
496         * Uses relaxed writes because order is already constrained in
497         * the only calling contexts: item is forgotten only after
498         * volatile/atomic mechanics that extract items, and visitors
499         * of request nodes only ever check whether item is null.
500         * Similarly, clearing waiter follows either CAS or return
501         * from park (if ever parked; else we don't care).
502         */
503        final void forgetContents() {
504            // assert isMatched();
505            if (!isData)
506                ITEM.set(this, this);
507            WAITER.set(this, null);
508        }
509
510        /**
511         * Returns true if this node has been matched, including the
512         * case of artificial matches due to cancellation.
513         */
514        final boolean isMatched() {
515            return isData == (item == null);
516        }
517
518        /** Tries to CAS-match this node; if successful, wakes waiter. */
519        final boolean tryMatch(Object cmp, Object val) {
520            if (casItem(cmp, val)) {
521                LockSupport.unpark(waiter);
522                return true;
523            }
524            return false;
525        }
526
527        /**
528         * Returns true if a node with the given mode cannot be
529         * appended to this node because this node is unmatched and
530         * has opposite data mode.
531         */
532        final boolean cannotPrecede(boolean haveData) {
533            boolean d = isData;
534            return d != haveData && d != (item == null);
535        }
536
537        private static final long serialVersionUID = -3375979862319811754L;
538    }
539
540    /**
541     * A node from which the first live (non-matched) node (if any)
542     * can be reached in O(1) time.
543     * Invariants:
544     * - all live nodes are reachable from head via .next
545     * - head != null
546     * - (tmp = head).next != tmp || tmp != head
547     * Non-invariants:
548     * - head may or may not be live
549     * - it is permitted for tail to lag behind head, that is, for tail
550     *   to not be reachable from head!
551     */
552    transient volatile Node head;
553
554    /**
555     * A node from which the last node on list (that is, the unique
556     * node with node.next == null) can be reached in O(1) time.
557     * Invariants:
558     * - the last node is always reachable from tail via .next
559     * - tail != null
560     * Non-invariants:
561     * - tail may or may not be live
562     * - it is permitted for tail to lag behind head, that is, for tail
563     *   to not be reachable from head!
564     * - tail.next may or may not be self-linked.
565     */
566    private transient volatile Node tail;
567
568    /** The number of apparent failures to unsplice cancelled nodes */
569    private transient volatile int sweepVotes;
570
571    private boolean casTail(Node cmp, Node val) {
572        // assert cmp != null;
573        // assert val != null;
574        return TAIL.compareAndSet(this, cmp, val);
575    }
576
577    private boolean casHead(Node cmp, Node val) {
578        return HEAD.compareAndSet(this, cmp, val);
579    }
580
581    /** Atomic version of ++sweepVotes. */
582    private int incSweepVotes() {
583        return (int) SWEEPVOTES.getAndAdd(this, 1) + 1;
584    }
585
586    /**
587     * Tries to CAS pred.next (or head, if pred is null) from c to p.
588     * Caller must ensure that we're not unlinking the trailing node.
589     */
590    private boolean tryCasSuccessor(Node pred, Node c, Node p) {
591        // assert p != null;
592        // assert c.isData != (c.item != null);
593        // assert c != p;
594        if (pred != null)
595            return pred.casNext(c, p);
596        if (casHead(c, p)) {
597            c.selfLink();
598            return true;
599        }
600        return false;
601    }
602
603    /**
604     * Collapses dead (matched) nodes between pred and q.
605     * @param pred the last known live node, or null if none
606     * @param c the first dead node
607     * @param p the last dead node
608     * @param q p.next: the next live node, or null if at end
609     * @return pred if pred still alive and CAS succeeded; else p
610     */
611    private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
612        // assert pred != c;
613        // assert p != q;
614        // assert c.isMatched();
615        // assert p.isMatched();
616        if (q == null) {
617            // Never unlink trailing node.
618            if (c == p) return pred;
619            q = p;
620        }
621        return (tryCasSuccessor(pred, c, q)
622                && (pred == null || !pred.isMatched()))
623            ? pred : p;
624    }
625
626    /**
627     * Collapses dead (matched) nodes from h (which was once head) to p.
628     * Caller ensures all nodes from h up to and including p are dead.
629     */
630    private void skipDeadNodesNearHead(Node h, Node p) {
631        // assert h != null;
632        // assert h != p;
633        // assert p.isMatched();
634        for (;;) {
635            final Node q;
636            if ((q = p.next) == null) break;
637            else if (!q.isMatched()) { p = q; break; }
638            else if (p == (p = q)) return;
639        }
640        if (casHead(h, p))
641            h.selfLink();
642    }
643
644    /* Possible values for "how" argument in xfer method. */
645
646    private static final int NOW   = 0; // for untimed poll, tryTransfer
647    private static final int ASYNC = 1; // for offer, put, add
648    private static final int SYNC  = 2; // for transfer, take
649    private static final int TIMED = 3; // for timed poll, tryTransfer
650
651    /**
652     * Implements all queuing methods. See above for explanation.
653     *
654     * @param e the item or null for take
655     * @param haveData true if this is a put, else a take
656     * @param how NOW, ASYNC, SYNC, or TIMED
657     * @param nanos timeout in nanosecs, used only if mode is TIMED
658     * @return an item if matched, else e
659     * @throws NullPointerException if haveData mode but e is null
660     */
661    @SuppressWarnings("unchecked")
662    private E xfer(E e, boolean haveData, int how, long nanos) {
663        if (haveData && (e == null))
664            throw new NullPointerException();
665
666        restart: for (Node s = null, t = null, h = null;;) {
667            for (Node p = (t != (t = tail) && t.isData == haveData) ? t
668                     : (h = head);; ) {
669                final Node q; final Object item;
670                if (p.isData != haveData
671                    && haveData == ((item = p.item) == null)) {
672                    if (h == null) h = head;
673                    if (p.tryMatch(item, e)) {
674                        if (h != p) skipDeadNodesNearHead(h, p);
675                        return (E) item;
676                    }
677                }
678                if ((q = p.next) == null) {
679                    if (how == NOW) return e;
680                    if (s == null) s = new Node(e);
681                    if (!p.casNext(null, s)) continue;
682                    if (p != t) casTail(t, s);
683                    if (how == ASYNC) return e;
684                    return awaitMatch(s, p, e, (how == TIMED), nanos);
685                }
686                if (p == (p = q)) continue restart;
687            }
688        }
689    }
690
691    /**
692     * Spins/yields/blocks until node s is matched or caller gives up.
693     *
694     * @param s the waiting node
695     * @param pred the predecessor of s, or null if unknown (the null
696     * case does not occur in any current calls but may in possible
697     * future extensions)
698     * @param e the comparison value for checking match
699     * @param timed if true, wait only until timeout elapses
700     * @param nanos timeout in nanosecs, used only if timed is true
701     * @return matched item, or e if unmatched on interrupt or timeout
702     */
703    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
704        final long deadline = timed ? System.nanoTime() + nanos : 0L;
705        Thread w = Thread.currentThread();
706        int spins = -1; // initialized after first item and cancel checks
707        ThreadLocalRandom randomYields = null; // bound if needed
708
709        for (;;) {
710            final Object item;
711            if ((item = s.item) != e) {       // matched
712                // assert item != s;
713                s.forgetContents();           // avoid garbage
714                @SuppressWarnings("unchecked") E itemE = (E) item;
715                return itemE;
716            }
717            else if (w.isInterrupted() || (timed && nanos <= 0L)) {
718                // try to cancel and unlink
719                if (s.casItem(e, s.isData ? null : s)) {
720                    unsplice(pred, s);
721                    return e;
722                }
723                // return normally if lost CAS
724            }
725            else if (spins < 0) {            // establish spins at/near front
726                if ((spins = spinsFor(pred, s.isData)) > 0)
727                    randomYields = ThreadLocalRandom.current();
728            }
729            else if (spins > 0) {             // spin
730                --spins;
731                if (randomYields.nextInt(CHAINED_SPINS) == 0)
732                    Thread.yield();           // occasionally yield
733            }
734            else if (s.waiter == null) {
735                s.waiter = w;                 // request unpark then recheck
736            }
737            else if (timed) {
738                nanos = deadline - System.nanoTime();
739                if (nanos > 0L)
740                    LockSupport.parkNanos(this, nanos);
741            }
742            else {
743                LockSupport.park(this);
744            }
745        }
746    }
747
748    /**
749     * Returns spin/yield value for a node with given predecessor and
750     * data mode. See above for explanation.
751     */
752    private static int spinsFor(Node pred, boolean haveData) {
753        if (MP && pred != null) {
754            if (pred.isData != haveData)      // phase change
755                return FRONT_SPINS + CHAINED_SPINS;
756            if (pred.isMatched())             // probably at front
757                return FRONT_SPINS;
758            if (pred.waiter == null)          // pred apparently spinning
759                return CHAINED_SPINS;
760        }
761        return 0;
762    }
763
764    /* -------------- Traversal methods -------------- */
765
766    /**
767     * Returns the first unmatched data node, or null if none.
768     * Callers must recheck if the returned node is unmatched
769     * before using.
770     */
771    final Node firstDataNode() {
772        Node first = null;
773        restartFromHead: for (;;) {
774            Node h = head, p = h;
775            for (; p != null;) {
776                final Object item;
777                if ((item = p.item) != null) {
778                    if (p.isData) {
779                        first = p;
780                        break;
781                    }
782                }
783                else if (!p.isData)
784                    break;
785                final Node q;
786                if ((q = p.next) == null)
787                    break;
788                if (p == (p = q))
789                    continue restartFromHead;
790            }
791            if (p != h && casHead(h, p))
792                h.selfLink();
793            return first;
794        }
795    }
796
797    /**
798     * Traverses and counts unmatched nodes of the given mode.
799     * Used by methods size and getWaitingConsumerCount.
800     */
801    private int countOfMode(boolean data) {
802        restartFromHead: for (;;) {
803            int count = 0;
804            for (Node p = head; p != null;) {
805                if (!p.isMatched()) {
806                    if (p.isData != data)
807                        return 0;
808                    if (++count == Integer.MAX_VALUE)
809                        break;  // @see Collection.size()
810                }
811                if (p == (p = p.next))
812                    continue restartFromHead;
813            }
814            return count;
815        }
816    }
817
818    public String toString() {
819        String[] a = null;
820        restartFromHead: for (;;) {
821            int charLength = 0;
822            int size = 0;
823            for (Node p = head; p != null;) {
824                Object item = p.item;
825                if (p.isData) {
826                    if (item != null) {
827                        if (a == null)
828                            a = new String[4];
829                        else if (size == a.length)
830                            a = Arrays.copyOf(a, 2 * size);
831                        String s = item.toString();
832                        a[size++] = s;
833                        charLength += s.length();
834                    }
835                } else if (item == null)
836                    break;
837                if (p == (p = p.next))
838                    continue restartFromHead;
839            }
840
841            if (size == 0)
842                return "[]";
843
844            return Helpers.toString(a, size, charLength);
845        }
846    }
847
848    private Object[] toArrayInternal(Object[] a) {
849        Object[] x = a;
850        restartFromHead: for (;;) {
851            int size = 0;
852            for (Node p = head; p != null;) {
853                Object item = p.item;
854                if (p.isData) {
855                    if (item != null) {
856                        if (x == null)
857                            x = new Object[4];
858                        else if (size == x.length)
859                            x = Arrays.copyOf(x, 2 * (size + 4));
860                        x[size++] = item;
861                    }
862                } else if (item == null)
863                    break;
864                if (p == (p = p.next))
865                    continue restartFromHead;
866            }
867            if (x == null)
868                return new Object[0];
869            else if (a != null && size <= a.length) {
870                if (a != x)
871                    System.arraycopy(x, 0, a, 0, size);
872                if (size < a.length)
873                    a[size] = null;
874                return a;
875            }
876            return (size == x.length) ? x : Arrays.copyOf(x, size);
877        }
878    }
879
880    /**
881     * Returns an array containing all of the elements in this queue, in
882     * proper sequence.
883     *
884     * <p>The returned array will be "safe" in that no references to it are
885     * maintained by this queue.  (In other words, this method must allocate
886     * a new array).  The caller is thus free to modify the returned array.
887     *
888     * <p>This method acts as bridge between array-based and collection-based
889     * APIs.
890     *
891     * @return an array containing all of the elements in this queue
892     */
893    public Object[] toArray() {
894        return toArrayInternal(null);
895    }
896
897    /**
898     * Returns an array containing all of the elements in this queue, in
899     * proper sequence; the runtime type of the returned array is that of
900     * the specified array.  If the queue fits in the specified array, it
901     * is returned therein.  Otherwise, a new array is allocated with the
902     * runtime type of the specified array and the size of this queue.
903     *
904     * <p>If this queue fits in the specified array with room to spare
905     * (i.e., the array has more elements than this queue), the element in
906     * the array immediately following the end of the queue is set to
907     * {@code null}.
908     *
909     * <p>Like the {@link #toArray()} method, this method acts as bridge between
910     * array-based and collection-based APIs.  Further, this method allows
911     * precise control over the runtime type of the output array, and may,
912     * under certain circumstances, be used to save allocation costs.
913     *
914     * <p>Suppose {@code x} is a queue known to contain only strings.
915     * The following code can be used to dump the queue into a newly
916     * allocated array of {@code String}:
917     *
918     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
919     *
920     * Note that {@code toArray(new Object[0])} is identical in function to
921     * {@code toArray()}.
922     *
923     * @param a the array into which the elements of the queue are to
924     *          be stored, if it is big enough; otherwise, a new array of the
925     *          same runtime type is allocated for this purpose
926     * @return an array containing all of the elements in this queue
927     * @throws ArrayStoreException if the runtime type of the specified array
928     *         is not a supertype of the runtime type of every element in
929     *         this queue
930     * @throws NullPointerException if the specified array is null
931     */
932    @SuppressWarnings("unchecked")
933    public <T> T[] toArray(T[] a) {
934        Objects.requireNonNull(a);
935        return (T[]) toArrayInternal(a);
936    }
937
938    /**
939     * Weakly-consistent iterator.
940     *
941     * Lazily updated ancestor is expected to be amortized O(1) remove(),
942     * but O(n) in the worst case, when lastRet is concurrently deleted.
943     */
944    final class Itr implements Iterator<E> {
945        private Node nextNode;   // next node to return item for
946        private E nextItem;      // the corresponding item
947        private Node lastRet;    // last returned node, to support remove
948        private Node ancestor;   // Helps unlink lastRet on remove()
949
950        /**
951         * Moves to next node after pred, or first node if pred null.
952         */
953        @SuppressWarnings("unchecked")
954        private void advance(Node pred) {
955            for (Node p = (pred == null) ? head : pred.next, c = p;
956                 p != null; ) {
957                final Object item;
958                if ((item = p.item) != null && p.isData) {
959                    nextNode = p;
960                    nextItem = (E) item;
961                    if (c != p)
962                        tryCasSuccessor(pred, c, p);
963                    return;
964                }
965                else if (!p.isData && item == null)
966                    break;
967                if (c != p && !tryCasSuccessor(pred, c, c = p)) {
968                    pred = p;
969                    c = p = p.next;
970                }
971                else if (p == (p = p.next)) {
972                    pred = null;
973                    c = p = head;
974                }
975            }
976            nextItem = null;
977            nextNode = null;
978        }
979
980        Itr() {
981            advance(null);
982        }
983
984        public final boolean hasNext() {
985            return nextNode != null;
986        }
987
988        public final E next() {
989            final Node p;
990            if ((p = nextNode) == null) throw new NoSuchElementException();
991            E e = nextItem;
992            advance(lastRet = p);
993            return e;
994        }
995
996        public void forEachRemaining(Consumer<? super E> action) {
997            Objects.requireNonNull(action);
998            Node q = null;
999            for (Node p; (p = nextNode) != null; advance(q = p))
1000                action.accept(nextItem);
1001            if (q != null)
1002                lastRet = q;
1003        }
1004
1005        public final void remove() {
1006            final Node lastRet = this.lastRet;
1007            if (lastRet == null)
1008                throw new IllegalStateException();
1009            this.lastRet = null;
1010            if (lastRet.item == null)   // already deleted?
1011                return;
1012            // Advance ancestor, collapsing intervening dead nodes
1013            Node pred = ancestor;
1014            for (Node p = (pred == null) ? head : pred.next, c = p, q;
1015                 p != null; ) {
1016                if (p == lastRet) {
1017                    final Object item;
1018                    if ((item = p.item) != null)
1019                        p.tryMatch(item, null);
1020                    if ((q = p.next) == null) q = p;
1021                    if (c != q) tryCasSuccessor(pred, c, q);
1022                    ancestor = pred;
1023                    return;
1024                }
1025                final Object item; final boolean pAlive;
1026                if (pAlive = ((item = p.item) != null && p.isData)) {
1027                    // exceptionally, nothing to do
1028                }
1029                else if (!p.isData && item == null)
1030                    break;
1031                if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1032                    pred = p;
1033                    c = p = p.next;
1034                }
1035                else if (p == (p = p.next)) {
1036                    pred = null;
1037                    c = p = head;
1038                }
1039            }
1040            // traversal failed to find lastRet; must have been deleted;
1041            // leave ancestor at original location to avoid overshoot;
1042            // better luck next time!
1043
1044            // assert lastRet.isMatched();
1045        }
1046    }
1047
1048    /** A customized variant of Spliterators.IteratorSpliterator */
1049    final class LTQSpliterator implements Spliterator<E> {
1050        static final int MAX_BATCH = 1 << 25;  // max batch array size;
1051        Node current;       // current node; null until initialized
1052        int batch;          // batch size for splits
1053        boolean exhausted;  // true when no more nodes
1054        LTQSpliterator() {}
1055
1056        public Spliterator<E> trySplit() {
1057            Node p, q;
1058            if ((p = current()) == null || (q = p.next) == null)
1059                return null;
1060            int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1061            Object[] a = null;
1062            do {
1063                final Object item = p.item;
1064                if (p.isData) {
1065                    if (item != null) {
1066                        if (a == null)
1067                            a = new Object[n];
1068                        a[i++] = item;
1069                    }
1070                } else if (item == null) {
1071                    p = null;
1072                    break;
1073                }
1074                if (p == (p = q))
1075                    p = firstDataNode();
1076            } while (p != null && (q = p.next) != null && i < n);
1077            setCurrent(p);
1078            return (i == 0) ? null :
1079                Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1080                                                   Spliterator.NONNULL |
1081                                                   Spliterator.CONCURRENT));
1082        }
1083
1084        public void forEachRemaining(Consumer<? super E> action) {
1085            Objects.requireNonNull(action);
1086            final Node p;
1087            if ((p = current()) != null) {
1088                current = null;
1089                exhausted = true;
1090                forEachFrom(action, p);
1091            }
1092        }
1093
1094        @SuppressWarnings("unchecked")
1095        public boolean tryAdvance(Consumer<? super E> action) {
1096            Objects.requireNonNull(action);
1097            Node p;
1098            if ((p = current()) != null) {
1099                E e = null;
1100                do {
1101                    final Object item = p.item;
1102                    final boolean isData = p.isData;
1103                    if (p == (p = p.next))
1104                        p = head;
1105                    if (isData) {
1106                        if (item != null) {
1107                            e = (E) item;
1108                            break;
1109                        }
1110                    }
1111                    else if (item == null)
1112                        p = null;
1113                } while (p != null);
1114                setCurrent(p);
1115                if (e != null) {
1116                    action.accept(e);
1117                    return true;
1118                }
1119            }
1120            return false;
1121        }
1122
1123        private void setCurrent(Node p) {
1124            if ((current = p) == null)
1125                exhausted = true;
1126        }
1127
1128        private Node current() {
1129            Node p;
1130            if ((p = current) == null && !exhausted)
1131                setCurrent(p = firstDataNode());
1132            return p;
1133        }
1134
1135        public long estimateSize() { return Long.MAX_VALUE; }
1136
1137        public int characteristics() {
1138            return (Spliterator.ORDERED |
1139                    Spliterator.NONNULL |
1140                    Spliterator.CONCURRENT);
1141        }
1142    }
1143
1144    /**
1145     * Returns a {@link Spliterator} over the elements in this queue.
1146     *
1147     * <p>The returned spliterator is
1148     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1149     *
1150     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1151     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1152     *
1153     * @implNote
1154     * The {@code Spliterator} implements {@code trySplit} to permit limited
1155     * parallelism.
1156     *
1157     * @return a {@code Spliterator} over the elements in this queue
1158     * @since 1.8
1159     */
1160    public Spliterator<E> spliterator() {
1161        return new LTQSpliterator();
1162    }
1163
1164    /* -------------- Removal methods -------------- */
1165
1166    /**
1167     * Unsplices (now or later) the given deleted/cancelled node with
1168     * the given predecessor.
1169     *
1170     * @param pred a node that was at one time known to be the
1171     * predecessor of s
1172     * @param s the node to be unspliced
1173     */
1174    final void unsplice(Node pred, Node s) {
1175        // assert pred != null;
1176        // assert pred != s;
1177        // assert s != null;
1178        // assert s.isMatched();
1179        // assert (SWEEP_THRESHOLD & (SWEEP_THRESHOLD - 1)) == 0;
1180        s.waiter = null; // disable signals
1181        /*
1182         * See above for rationale. Briefly: if pred still points to
1183         * s, try to unlink s.  If s cannot be unlinked, because it is
1184         * trailing node or pred might be unlinked, and neither pred
1185         * nor s are head or offlist, add to sweepVotes, and if enough
1186         * votes have accumulated, sweep.
1187         */
1188        if (pred != null && pred.next == s) {
1189            Node n = s.next;
1190            if (n == null ||
1191                (n != s && pred.casNext(s, n) && pred.isMatched())) {
1192                for (;;) {               // check if at, or could be, head
1193                    Node h = head;
1194                    if (h == pred || h == s)
1195                        return;          // at head or list empty
1196                    if (!h.isMatched())
1197                        break;
1198                    Node hn = h.next;
1199                    if (hn == null)
1200                        return;          // now empty
1201                    if (hn != h && casHead(h, hn))
1202                        h.selfLink();  // advance head
1203                }
1204                // sweep every SWEEP_THRESHOLD votes
1205                if (pred.next != pred && s.next != s // recheck if offlist
1206                    && (incSweepVotes() & (SWEEP_THRESHOLD - 1)) == 0)
1207                    sweep();
1208            }
1209        }
1210    }
1211
1212    /**
1213     * Unlinks matched (typically cancelled) nodes encountered in a
1214     * traversal from head.
1215     */
1216    private void sweep() {
1217        for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1218            if (!s.isMatched())
1219                // Unmatched nodes are never self-linked
1220                p = s;
1221            else if ((n = s.next) == null) // trailing node is pinned
1222                break;
1223            else if (s == n)    // stale
1224                // No need to also check for p == s, since that implies s == n
1225                p = head;
1226            else
1227                p.casNext(s, n);
1228        }
1229    }
1230
1231    /**
1232     * Creates an initially empty {@code LinkedTransferQueue}.
1233     */
1234    public LinkedTransferQueue() {
1235        head = tail = new Node();
1236    }
1237
1238    /**
1239     * Creates a {@code LinkedTransferQueue}
1240     * initially containing the elements of the given collection,
1241     * added in traversal order of the collection's iterator.
1242     *
1243     * @param c the collection of elements to initially contain
1244     * @throws NullPointerException if the specified collection or any
1245     *         of its elements are null
1246     */
1247    public LinkedTransferQueue(Collection<? extends E> c) {
1248        Node h = null, t = null;
1249        for (E e : c) {
1250            Node newNode = new Node(Objects.requireNonNull(e));
1251            if (h == null)
1252                h = t = newNode;
1253            else
1254                t.appendRelaxed(t = newNode);
1255        }
1256        if (h == null)
1257            h = t = new Node();
1258        head = h;
1259        tail = t;
1260    }
1261
1262    /**
1263     * Inserts the specified element at the tail of this queue.
1264     * As the queue is unbounded, this method will never block.
1265     *
1266     * @throws NullPointerException if the specified element is null
1267     */
1268    public void put(E e) {
1269        xfer(e, true, ASYNC, 0);
1270    }
1271
1272    /**
1273     * Inserts the specified element at the tail of this queue.
1274     * As the queue is unbounded, this method will never block or
1275     * return {@code false}.
1276     *
1277     * @return {@code true} (as specified by
1278     *  {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1279     *  BlockingQueue.offer})
1280     * @throws NullPointerException if the specified element is null
1281     */
1282    public boolean offer(E e, long timeout, TimeUnit unit) {
1283        xfer(e, true, ASYNC, 0);
1284        return true;
1285    }
1286
1287    /**
1288     * Inserts the specified element at the tail of this queue.
1289     * As the queue is unbounded, this method will never return {@code false}.
1290     *
1291     * @return {@code true} (as specified by {@link Queue#offer})
1292     * @throws NullPointerException if the specified element is null
1293     */
1294    public boolean offer(E e) {
1295        xfer(e, true, ASYNC, 0);
1296        return true;
1297    }
1298
1299    /**
1300     * Inserts the specified element at the tail of this queue.
1301     * As the queue is unbounded, this method will never throw
1302     * {@link IllegalStateException} or return {@code false}.
1303     *
1304     * @return {@code true} (as specified by {@link Collection#add})
1305     * @throws NullPointerException if the specified element is null
1306     */
1307    public boolean add(E e) {
1308        xfer(e, true, ASYNC, 0);
1309        return true;
1310    }
1311
1312    /**
1313     * Transfers the element to a waiting consumer immediately, if possible.
1314     *
1315     * <p>More precisely, transfers the specified element immediately
1316     * if there exists a consumer already waiting to receive it (in
1317     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1318     * otherwise returning {@code false} without enqueuing the element.
1319     *
1320     * @throws NullPointerException if the specified element is null
1321     */
1322    public boolean tryTransfer(E e) {
1323        return xfer(e, true, NOW, 0) == null;
1324    }
1325
1326    /**
1327     * Transfers the element to a consumer, waiting if necessary to do so.
1328     *
1329     * <p>More precisely, transfers the specified element immediately
1330     * if there exists a consumer already waiting to receive it (in
1331     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1332     * else inserts the specified element at the tail of this queue
1333     * and waits until the element is received by a consumer.
1334     *
1335     * @throws NullPointerException if the specified element is null
1336     */
1337    public void transfer(E e) throws InterruptedException {
1338        if (xfer(e, true, SYNC, 0) != null) {
1339            Thread.interrupted(); // failure possible only due to interrupt
1340            throw new InterruptedException();
1341        }
1342    }
1343
1344    /**
1345     * Transfers the element to a consumer if it is possible to do so
1346     * before the timeout elapses.
1347     *
1348     * <p>More precisely, transfers the specified element immediately
1349     * if there exists a consumer already waiting to receive it (in
1350     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1351     * else inserts the specified element at the tail of this queue
1352     * and waits until the element is received by a consumer,
1353     * returning {@code false} if the specified wait time elapses
1354     * before the element can be transferred.
1355     *
1356     * @throws NullPointerException if the specified element is null
1357     */
1358    public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1359        throws InterruptedException {
1360        if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1361            return true;
1362        if (!Thread.interrupted())
1363            return false;
1364        throw new InterruptedException();
1365    }
1366
1367    public E take() throws InterruptedException {
1368        E e = xfer(null, false, SYNC, 0);
1369        if (e != null)
1370            return e;
1371        Thread.interrupted();
1372        throw new InterruptedException();
1373    }
1374
1375    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1376        E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1377        if (e != null || !Thread.interrupted())
1378            return e;
1379        throw new InterruptedException();
1380    }
1381
1382    public E poll() {
1383        return xfer(null, false, NOW, 0);
1384    }
1385
1386    /**
1387     * @throws NullPointerException     {@inheritDoc}
1388     * @throws IllegalArgumentException {@inheritDoc}
1389     */
1390    public int drainTo(Collection<? super E> c) {
1391        Objects.requireNonNull(c);
1392        if (c == this)
1393            throw new IllegalArgumentException();
1394        int n = 0;
1395        for (E e; (e = poll()) != null; n++)
1396            c.add(e);
1397        return n;
1398    }
1399
1400    /**
1401     * @throws NullPointerException     {@inheritDoc}
1402     * @throws IllegalArgumentException {@inheritDoc}
1403     */
1404    public int drainTo(Collection<? super E> c, int maxElements) {
1405        Objects.requireNonNull(c);
1406        if (c == this)
1407            throw new IllegalArgumentException();
1408        int n = 0;
1409        for (E e; n < maxElements && (e = poll()) != null; n++)
1410            c.add(e);
1411        return n;
1412    }
1413
1414    /**
1415     * Returns an iterator over the elements in this queue in proper sequence.
1416     * The elements will be returned in order from first (head) to last (tail).
1417     *
1418     * <p>The returned iterator is
1419     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1420     *
1421     * @return an iterator over the elements in this queue in proper sequence
1422     */
1423    public Iterator<E> iterator() {
1424        return new Itr();
1425    }
1426
1427    public E peek() {
1428        restartFromHead: for (;;) {
1429            for (Node p = head; p != null;) {
1430                Object item = p.item;
1431                if (p.isData) {
1432                    if (item != null) {
1433                        @SuppressWarnings("unchecked") E e = (E) item;
1434                        return e;
1435                    }
1436                }
1437                else if (item == null)
1438                    break;
1439                if (p == (p = p.next))
1440                    continue restartFromHead;
1441            }
1442            return null;
1443        }
1444    }
1445
1446    /**
1447     * Returns {@code true} if this queue contains no elements.
1448     *
1449     * @return {@code true} if this queue contains no elements
1450     */
1451    public boolean isEmpty() {
1452        return firstDataNode() == null;
1453    }
1454
1455    public boolean hasWaitingConsumer() {
1456        restartFromHead: for (;;) {
1457            for (Node p = head; p != null;) {
1458                Object item = p.item;
1459                if (p.isData) {
1460                    if (item != null)
1461                        break;
1462                }
1463                else if (item == null)
1464                    return true;
1465                if (p == (p = p.next))
1466                    continue restartFromHead;
1467            }
1468            return false;
1469        }
1470    }
1471
1472    /**
1473     * Returns the number of elements in this queue.  If this queue
1474     * contains more than {@code Integer.MAX_VALUE} elements, returns
1475     * {@code Integer.MAX_VALUE}.
1476     *
1477     * <p>Beware that, unlike in most collections, this method is
1478     * <em>NOT</em> a constant-time operation. Because of the
1479     * asynchronous nature of these queues, determining the current
1480     * number of elements requires an O(n) traversal.
1481     *
1482     * @return the number of elements in this queue
1483     */
1484    public int size() {
1485        return countOfMode(true);
1486    }
1487
1488    public int getWaitingConsumerCount() {
1489        return countOfMode(false);
1490    }
1491
1492    /**
1493     * Removes a single instance of the specified element from this queue,
1494     * if it is present.  More formally, removes an element {@code e} such
1495     * that {@code o.equals(e)}, if this queue contains one or more such
1496     * elements.
1497     * Returns {@code true} if this queue contained the specified element
1498     * (or equivalently, if this queue changed as a result of the call).
1499     *
1500     * @param o element to be removed from this queue, if present
1501     * @return {@code true} if this queue changed as a result of the call
1502     */
1503    public boolean remove(Object o) {
1504        if (o == null) return false;
1505        restartFromHead: for (;;) {
1506            for (Node p = head, pred = null; p != null; ) {
1507                Node q = p.next;
1508                final Object item;
1509                if ((item = p.item) != null) {
1510                    if (p.isData) {
1511                        if (o.equals(item) && p.tryMatch(item, null)) {
1512                            skipDeadNodes(pred, p, p, q);
1513                            return true;
1514                        }
1515                        pred = p; p = q; continue;
1516                    }
1517                }
1518                else if (!p.isData)
1519                    break;
1520                for (Node c = p;; q = p.next) {
1521                    if (q == null || !q.isMatched()) {
1522                        pred = skipDeadNodes(pred, c, p, q); p = q; break;
1523                    }
1524                    if (p == (p = q)) continue restartFromHead;
1525                }
1526            }
1527            return false;
1528        }
1529    }
1530
1531    /**
1532     * Returns {@code true} if this queue contains the specified element.
1533     * More formally, returns {@code true} if and only if this queue contains
1534     * at least one element {@code e} such that {@code o.equals(e)}.
1535     *
1536     * @param o object to be checked for containment in this queue
1537     * @return {@code true} if this queue contains the specified element
1538     */
1539    public boolean contains(Object o) {
1540        if (o == null) return false;
1541        restartFromHead: for (;;) {
1542            for (Node p = head, pred = null; p != null; ) {
1543                Node q = p.next;
1544                final Object item;
1545                if ((item = p.item) != null) {
1546                    if (p.isData) {
1547                        if (o.equals(item))
1548                            return true;
1549                        pred = p; p = q; continue;
1550                    }
1551                }
1552                else if (!p.isData)
1553                    break;
1554                for (Node c = p;; q = p.next) {
1555                    if (q == null || !q.isMatched()) {
1556                        pred = skipDeadNodes(pred, c, p, q); p = q; break;
1557                    }
1558                    if (p == (p = q)) continue restartFromHead;
1559                }
1560            }
1561            return false;
1562        }
1563    }
1564
1565    /**
1566     * Always returns {@code Integer.MAX_VALUE} because a
1567     * {@code LinkedTransferQueue} is not capacity constrained.
1568     *
1569     * @return {@code Integer.MAX_VALUE} (as specified by
1570     *         {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1571     *         BlockingQueue.remainingCapacity})
1572     */
1573    public int remainingCapacity() {
1574        return Integer.MAX_VALUE;
1575    }
1576
1577    /**
1578     * Saves this queue to a stream (that is, serializes it).
1579     *
1580     * @param s the stream
1581     * @throws java.io.IOException if an I/O error occurs
1582     * @serialData All of the elements (each an {@code E}) in
1583     * the proper order, followed by a null
1584     */
1585    private void writeObject(java.io.ObjectOutputStream s)
1586        throws java.io.IOException {
1587        s.defaultWriteObject();
1588        for (E e : this)
1589            s.writeObject(e);
1590        // Use trailing null as sentinel
1591        s.writeObject(null);
1592    }
1593
1594    /**
1595     * Reconstitutes this queue from a stream (that is, deserializes it).
1596     * @param s the stream
1597     * @throws ClassNotFoundException if the class of a serialized object
1598     *         could not be found
1599     * @throws java.io.IOException if an I/O error occurs
1600     */
1601    private void readObject(java.io.ObjectInputStream s)
1602        throws java.io.IOException, ClassNotFoundException {
1603
1604        // Read in elements until trailing null sentinel found
1605        Node h = null, t = null;
1606        for (Object item; (item = s.readObject()) != null; ) {
1607            @SuppressWarnings("unchecked")
1608            Node newNode = new Node((E) item);
1609            if (h == null)
1610                h = t = newNode;
1611            else
1612                t.appendRelaxed(t = newNode);
1613        }
1614        if (h == null)
1615            h = t = new Node();
1616        head = h;
1617        tail = t;
1618    }
1619
1620    /**
1621     * @throws NullPointerException {@inheritDoc}
1622     */
1623    public boolean removeIf(Predicate<? super E> filter) {
1624        Objects.requireNonNull(filter);
1625        return bulkRemove(filter);
1626    }
1627
1628    /**
1629     * @throws NullPointerException {@inheritDoc}
1630     */
1631    public boolean removeAll(Collection<?> c) {
1632        Objects.requireNonNull(c);
1633        return bulkRemove(e -> c.contains(e));
1634    }
1635
1636    /**
1637     * @throws NullPointerException {@inheritDoc}
1638     */
1639    public boolean retainAll(Collection<?> c) {
1640        Objects.requireNonNull(c);
1641        return bulkRemove(e -> !c.contains(e));
1642    }
1643
1644    public void clear() {
1645        bulkRemove(e -> true);
1646    }
1647
1648    /**
1649     * Tolerate this many consecutive dead nodes before CAS-collapsing.
1650     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1651     */
1652    private static final int MAX_HOPS = 8;
1653
1654    /** Implementation of bulk remove methods. */
1655    @SuppressWarnings("unchecked")
1656    private boolean bulkRemove(Predicate<? super E> filter) {
1657        boolean removed = false;
1658        restartFromHead: for (;;) {
1659            int hops = MAX_HOPS;
1660            // c will be CASed to collapse intervening dead nodes between
1661            // pred (or head if null) and p.
1662            for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1663                q = p.next;
1664                final Object item; boolean pAlive;
1665                if (pAlive = ((item = p.item) != null && p.isData)) {
1666                    if (filter.test((E) item)) {
1667                        if (p.tryMatch(item, null))
1668                            removed = true;
1669                        pAlive = false;
1670                    }
1671                }
1672                else if (!p.isData && item == null)
1673                    break;
1674                if (pAlive || q == null || --hops == 0) {
1675                    // p might already be self-linked here, but if so:
1676                    // - CASing head will surely fail
1677                    // - CASing pred's next will be useless but harmless.
1678                    if ((c != p && !tryCasSuccessor(pred, c, c = p))
1679                        || pAlive) {
1680                        // if CAS failed or alive, abandon old pred
1681                        hops = MAX_HOPS;
1682                        pred = p;
1683                        c = q;
1684                    }
1685                } else if (p == q)
1686                    continue restartFromHead;
1687            }
1688            return removed;
1689        }
1690    }
1691
1692    /**
1693     * Runs action on each element found during a traversal starting at p.
1694     * If p is null, the action is not run.
1695     */
1696    @SuppressWarnings("unchecked")
1697    void forEachFrom(Consumer<? super E> action, Node p) {
1698        for (Node pred = null; p != null; ) {
1699            Node q = p.next;
1700            final Object item;
1701            if ((item = p.item) != null) {
1702                if (p.isData) {
1703                    action.accept((E) item);
1704                    pred = p; p = q; continue;
1705                }
1706            }
1707            else if (!p.isData)
1708                break;
1709            for (Node c = p;; q = p.next) {
1710                if (q == null || !q.isMatched()) {
1711                    pred = skipDeadNodes(pred, c, p, q); p = q; break;
1712                }
1713                if (p == (p = q)) { pred = null; p = head; break; }
1714            }
1715        }
1716    }
1717
1718    /**
1719     * @throws NullPointerException {@inheritDoc}
1720     */
1721    public void forEach(Consumer<? super E> action) {
1722        Objects.requireNonNull(action);
1723        forEachFrom(action, head);
1724    }
1725
1726    // VarHandle mechanics
1727    private static final VarHandle HEAD;
1728    private static final VarHandle TAIL;
1729    private static final VarHandle SWEEPVOTES;
1730    static final VarHandle ITEM;
1731    static final VarHandle NEXT;
1732    static final VarHandle WAITER;
1733    static {
1734        try {
1735            MethodHandles.Lookup l = MethodHandles.lookup();
1736            HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1737                                   Node.class);
1738            TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1739                                   Node.class);
1740            SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1741                                         int.class);
1742            ITEM = l.findVarHandle(Node.class, "item", Object.class);
1743            NEXT = l.findVarHandle(Node.class, "next", Node.class);
1744            WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1745        } catch (ReflectiveOperationException e) {
1746            throw new Error(e);
1747        }
1748
1749        // Reduce the risk of rare disastrous classloading in first call to
1750        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1751        Class<?> ensureLoaded = LockSupport.class;
1752    }
1753}
1754