1/*
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28import java.lang.ref.WeakReference;
29import java.lang.ref.ReferenceQueue;
30import java.util.concurrent.ThreadLocalRandom;
31import java.util.function.BiConsumer;
32import java.util.function.BiFunction;
33import java.util.function.Consumer;
34
35
36/**
37 * Hash table based implementation of the {@code Map} interface, with
38 * <em>weak keys</em>.
39 * An entry in a {@code WeakHashMap} will automatically be removed when
40 * its key is no longer in ordinary use.  More precisely, the presence of a
41 * mapping for a given key will not prevent the key from being discarded by the
42 * garbage collector, that is, made finalizable, finalized, and then reclaimed.
43 * When a key has been discarded its entry is effectively removed from the map,
44 * so this class behaves somewhat differently from other {@code Map}
45 * implementations.
46 *
47 * <p> Both null values and the null key are supported. This class has
48 * performance characteristics similar to those of the {@code HashMap}
49 * class, and has the same efficiency parameters of <em>initial capacity</em>
50 * and <em>load factor</em>.
51 *
52 * <p> Like most collection classes, this class is not synchronized.
53 * A synchronized {@code WeakHashMap} may be constructed using the
54 * {@link Collections#synchronizedMap Collections.synchronizedMap}
55 * method.
56 *
57 * <p> This class is intended primarily for use with key objects whose
58 * {@code equals} methods test for object identity using the
59 * {@code ==} operator.  Once such a key is discarded it can never be
60 * recreated, so it is impossible to do a lookup of that key in a
61 * {@code WeakHashMap} at some later time and be surprised that its entry
62 * has been removed.  This class will work perfectly well with key objects
63 * whose {@code equals} methods are not based upon object identity, such
64 * as {@code String} instances.  With such recreatable key objects,
65 * however, the automatic removal of {@code WeakHashMap} entries whose
66 * keys have been discarded may prove to be confusing.
67 *
68 * <p> The behavior of the {@code WeakHashMap} class depends in part upon
69 * the actions of the garbage collector, so several familiar (though not
70 * required) {@code Map} invariants do not hold for this class.  Because
71 * the garbage collector may discard keys at any time, a
72 * {@code WeakHashMap} may behave as though an unknown thread is silently
73 * removing entries.  In particular, even if you synchronize on a
74 * {@code WeakHashMap} instance and invoke none of its mutator methods, it
75 * is possible for the {@code size} method to return smaller values over
76 * time, for the {@code isEmpty} method to return {@code false} and
77 * then {@code true}, for the {@code containsKey} method to return
78 * {@code true} and later {@code false} for a given key, for the
79 * {@code get} method to return a value for a given key but later return
80 * {@code null}, for the {@code put} method to return
81 * {@code null} and the {@code remove} method to return
82 * {@code false} for a key that previously appeared to be in the map, and
83 * for successive examinations of the key set, the value collection, and
84 * the entry set to yield successively smaller numbers of elements.
85 *
86 * <p> Each key object in a {@code WeakHashMap} is stored indirectly as
87 * the referent of a weak reference.  Therefore a key will automatically be
88 * removed only after the weak references to it, both inside and outside of the
89 * map, have been cleared by the garbage collector.
90 *
91 * <p> <strong>Implementation note:</strong> The value objects in a
92 * {@code WeakHashMap} are held by ordinary strong references.  Thus care
93 * should be taken to ensure that value objects do not strongly refer to their
94 * own keys, either directly or indirectly, since that will prevent the keys
95 * from being discarded.  Note that a value object may refer indirectly to its
96 * key via the {@code WeakHashMap} itself; that is, a value object may
97 * strongly refer to some other key object whose associated value object, in
98 * turn, strongly refers to the key of the first value object.  If the values
99 * in the map do not rely on the map holding strong references to them, one way
100 * to deal with this is to wrap values themselves within
101 * {@code WeakReferences} before
102 * inserting, as in: {@code m.put(key, new WeakReference(value))},
103 * and then unwrapping upon each {@code get}.
104 *
105 * <p>The iterators returned by the {@code iterator} method of the collections
106 * returned by all of this class's "collection view methods" are
107 * <i>fail-fast</i>: if the map is structurally modified at any time after the
108 * iterator is created, in any way except through the iterator's own
109 * {@code remove} method, the iterator will throw a {@link
110 * ConcurrentModificationException}.  Thus, in the face of concurrent
111 * modification, the iterator fails quickly and cleanly, rather than risking
112 * arbitrary, non-deterministic behavior at an undetermined time in the future.
113 *
114 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
115 * as it is, generally speaking, impossible to make any hard guarantees in the
116 * presence of unsynchronized concurrent modification.  Fail-fast iterators
117 * throw {@code ConcurrentModificationException} on a best-effort basis.
118 * Therefore, it would be wrong to write a program that depended on this
119 * exception for its correctness:  <i>the fail-fast behavior of iterators
120 * should be used only to detect bugs.</i>
121 *
122 * <p>This class is a member of the
123 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
124 * Java Collections Framework</a>.
125 *
126 * @param <K> the type of keys maintained by this map
127 * @param <V> the type of mapped values
128 *
129 * @author      Doug Lea
130 * @author      Josh Bloch
131 * @author      Mark Reinhold
132 * @since       1.2
133 * @see         java.util.HashMap
134 * @see         java.lang.ref.WeakReference
135 */
136public class WeakHashMap<K,V>
137    extends AbstractMap<K,V>
138    implements Map<K,V> {
139
140    /**
141     * The default initial capacity -- MUST be a power of two.
142     */
143    private static final int DEFAULT_INITIAL_CAPACITY = 16;
144
145    /**
146     * The maximum capacity, used if a higher value is implicitly specified
147     * by either of the constructors with arguments.
148     * MUST be a power of two <= 1<<30.
149     */
150    private static final int MAXIMUM_CAPACITY = 1 << 30;
151
152    /**
153     * The load factor used when none specified in constructor.
154     */
155    private static final float DEFAULT_LOAD_FACTOR = 0.75f;
156
157    /**
158     * The table, resized as necessary. Length MUST Always be a power of two.
159     */
160    Entry<K,V>[] table;
161
162    /**
163     * The number of key-value mappings contained in this weak hash map.
164     */
165    private int size;
166
167    /**
168     * The next size value at which to resize (capacity * load factor).
169     */
170    private int threshold;
171
172    /**
173     * The load factor for the hash table.
174     */
175    private final float loadFactor;
176
177    /**
178     * Reference queue for cleared WeakEntries
179     */
180    private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
181
182    /**
183     * The number of times this WeakHashMap has been structurally modified.
184     * Structural modifications are those that change the number of
185     * mappings in the map or otherwise modify its internal structure
186     * (e.g., rehash).  This field is used to make iterators on
187     * Collection-views of the map fail-fast.
188     *
189     * @see ConcurrentModificationException
190     */
191    int modCount;
192
193    @SuppressWarnings("unchecked")
194    private Entry<K,V>[] newTable(int n) {
195        return (Entry<K,V>[]) new Entry<?,?>[n];
196    }
197
198    /**
199     * Constructs a new, empty {@code WeakHashMap} with the given initial
200     * capacity and the given load factor.
201     *
202     * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
203     * @param  loadFactor      The load factor of the {@code WeakHashMap}
204     * @throws IllegalArgumentException if the initial capacity is negative,
205     *         or if the load factor is nonpositive.
206     */
207    public WeakHashMap(int initialCapacity, float loadFactor) {
208        if (initialCapacity < 0)
209            throw new IllegalArgumentException("Illegal Initial Capacity: "+
210                                               initialCapacity);
211        if (initialCapacity > MAXIMUM_CAPACITY)
212            initialCapacity = MAXIMUM_CAPACITY;
213
214        if (loadFactor <= 0 || Float.isNaN(loadFactor))
215            throw new IllegalArgumentException("Illegal Load factor: "+
216                                               loadFactor);
217        int capacity = 1;
218        while (capacity < initialCapacity)
219            capacity <<= 1;
220        table = newTable(capacity);
221        this.loadFactor = loadFactor;
222        threshold = (int)(capacity * loadFactor);
223    }
224
225    /**
226     * Constructs a new, empty {@code WeakHashMap} with the given initial
227     * capacity and the default load factor (0.75).
228     *
229     * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
230     * @throws IllegalArgumentException if the initial capacity is negative
231     */
232    public WeakHashMap(int initialCapacity) {
233        this(initialCapacity, DEFAULT_LOAD_FACTOR);
234    }
235
236    /**
237     * Constructs a new, empty {@code WeakHashMap} with the default initial
238     * capacity (16) and load factor (0.75).
239     */
240    public WeakHashMap() {
241        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
242    }
243
244    /**
245     * Constructs a new {@code WeakHashMap} with the same mappings as the
246     * specified map.  The {@code WeakHashMap} is created with the default
247     * load factor (0.75) and an initial capacity sufficient to hold the
248     * mappings in the specified map.
249     *
250     * @param   m the map whose mappings are to be placed in this map
251     * @throws  NullPointerException if the specified map is null
252     * @since   1.3
253     */
254    public WeakHashMap(Map<? extends K, ? extends V> m) {
255        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
256                DEFAULT_INITIAL_CAPACITY),
257             DEFAULT_LOAD_FACTOR);
258        putAll(m);
259    }
260
261    // internal utilities
262
263    /**
264     * Value representing null keys inside tables.
265     */
266    private static final Object NULL_KEY = new Object();
267
268    /**
269     * Use NULL_KEY for key if it is null.
270     */
271    private static Object maskNull(Object key) {
272        return (key == null) ? NULL_KEY : key;
273    }
274
275    /**
276     * Returns internal representation of null key back to caller as null.
277     */
278    static Object unmaskNull(Object key) {
279        return (key == NULL_KEY) ? null : key;
280    }
281
282    /**
283     * Checks for equality of non-null reference x and possibly-null y.  By
284     * default uses Object.equals.
285     */
286    private static boolean eq(Object x, Object y) {
287        return x == y || x.equals(y);
288    }
289
290    /**
291     * Retrieve object hash code and applies a supplemental hash function to the
292     * result hash, which defends against poor quality hash functions.  This is
293     * critical because HashMap uses power-of-two length hash tables, that
294     * otherwise encounter collisions for hashCodes that do not differ
295     * in lower bits.
296     */
297    final int hash(Object k) {
298        int h = k.hashCode();
299
300        // This function ensures that hashCodes that differ only by
301        // constant multiples at each bit position have a bounded
302        // number of collisions (approximately 8 at default load factor).
303        h ^= (h >>> 20) ^ (h >>> 12);
304        return h ^ (h >>> 7) ^ (h >>> 4);
305    }
306
307    /**
308     * Returns index for hash code h.
309     */
310    private static int indexFor(int h, int length) {
311        return h & (length-1);
312    }
313
314    /**
315     * Expunges stale entries from the table.
316     */
317    private void expungeStaleEntries() {
318        for (Object x; (x = queue.poll()) != null; ) {
319            synchronized (queue) {
320                @SuppressWarnings("unchecked")
321                    Entry<K,V> e = (Entry<K,V>) x;
322                int i = indexFor(e.hash, table.length);
323
324                Entry<K,V> prev = table[i];
325                Entry<K,V> p = prev;
326                while (p != null) {
327                    Entry<K,V> next = p.next;
328                    if (p == e) {
329                        if (prev == e)
330                            table[i] = next;
331                        else
332                            prev.next = next;
333                        // Must not null out e.next;
334                        // stale entries may be in use by a HashIterator
335                        e.value = null; // Help GC
336                        size--;
337                        break;
338                    }
339                    prev = p;
340                    p = next;
341                }
342            }
343        }
344    }
345
346    /**
347     * Returns the table after first expunging stale entries.
348     */
349    private Entry<K,V>[] getTable() {
350        expungeStaleEntries();
351        return table;
352    }
353
354    /**
355     * Returns the number of key-value mappings in this map.
356     * This result is a snapshot, and may not reflect unprocessed
357     * entries that will be removed before next attempted access
358     * because they are no longer referenced.
359     */
360    public int size() {
361        if (size == 0)
362            return 0;
363        expungeStaleEntries();
364        return size;
365    }
366
367    /**
368     * Returns {@code true} if this map contains no key-value mappings.
369     * This result is a snapshot, and may not reflect unprocessed
370     * entries that will be removed before next attempted access
371     * because they are no longer referenced.
372     */
373    public boolean isEmpty() {
374        return size() == 0;
375    }
376
377    /**
378     * Returns the value to which the specified key is mapped,
379     * or {@code null} if this map contains no mapping for the key.
380     *
381     * <p>More formally, if this map contains a mapping from a key
382     * {@code k} to a value {@code v} such that
383     * {@code Objects.equals(key, k)},
384     * then this method returns {@code v}; otherwise
385     * it returns {@code null}.  (There can be at most one such mapping.)
386     *
387     * <p>A return value of {@code null} does not <i>necessarily</i>
388     * indicate that the map contains no mapping for the key; it's also
389     * possible that the map explicitly maps the key to {@code null}.
390     * The {@link #containsKey containsKey} operation may be used to
391     * distinguish these two cases.
392     *
393     * @see #put(Object, Object)
394     */
395    public V get(Object key) {
396        Object k = maskNull(key);
397        int h = hash(k);
398        Entry<K,V>[] tab = getTable();
399        int index = indexFor(h, tab.length);
400        Entry<K,V> e = tab[index];
401        while (e != null) {
402            if (e.hash == h && eq(k, e.get()))
403                return e.value;
404            e = e.next;
405        }
406        return null;
407    }
408
409    /**
410     * Returns {@code true} if this map contains a mapping for the
411     * specified key.
412     *
413     * @param  key   The key whose presence in this map is to be tested
414     * @return {@code true} if there is a mapping for {@code key};
415     *         {@code false} otherwise
416     */
417    public boolean containsKey(Object key) {
418        return getEntry(key) != null;
419    }
420
421    /**
422     * Returns the entry associated with the specified key in this map.
423     * Returns null if the map contains no mapping for this key.
424     */
425    Entry<K,V> getEntry(Object key) {
426        Object k = maskNull(key);
427        int h = hash(k);
428        Entry<K,V>[] tab = getTable();
429        int index = indexFor(h, tab.length);
430        Entry<K,V> e = tab[index];
431        while (e != null && !(e.hash == h && eq(k, e.get())))
432            e = e.next;
433        return e;
434    }
435
436    /**
437     * Associates the specified value with the specified key in this map.
438     * If the map previously contained a mapping for this key, the old
439     * value is replaced.
440     *
441     * @param key key with which the specified value is to be associated.
442     * @param value value to be associated with the specified key.
443     * @return the previous value associated with {@code key}, or
444     *         {@code null} if there was no mapping for {@code key}.
445     *         (A {@code null} return can also indicate that the map
446     *         previously associated {@code null} with {@code key}.)
447     */
448    public V put(K key, V value) {
449        Object k = maskNull(key);
450        int h = hash(k);
451        Entry<K,V>[] tab = getTable();
452        int i = indexFor(h, tab.length);
453
454        for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
455            if (h == e.hash && eq(k, e.get())) {
456                V oldValue = e.value;
457                if (value != oldValue)
458                    e.value = value;
459                return oldValue;
460            }
461        }
462
463        modCount++;
464        Entry<K,V> e = tab[i];
465        tab[i] = new Entry<>(k, value, queue, h, e);
466        if (++size >= threshold)
467            resize(tab.length * 2);
468        return null;
469    }
470
471    /**
472     * Rehashes the contents of this map into a new array with a
473     * larger capacity.  This method is called automatically when the
474     * number of keys in this map reaches its threshold.
475     *
476     * If current capacity is MAXIMUM_CAPACITY, this method does not
477     * resize the map, but sets threshold to Integer.MAX_VALUE.
478     * This has the effect of preventing future calls.
479     *
480     * @param newCapacity the new capacity, MUST be a power of two;
481     *        must be greater than current capacity unless current
482     *        capacity is MAXIMUM_CAPACITY (in which case value
483     *        is irrelevant).
484     */
485    void resize(int newCapacity) {
486        Entry<K,V>[] oldTable = getTable();
487        int oldCapacity = oldTable.length;
488        if (oldCapacity == MAXIMUM_CAPACITY) {
489            threshold = Integer.MAX_VALUE;
490            return;
491        }
492
493        Entry<K,V>[] newTable = newTable(newCapacity);
494        transfer(oldTable, newTable);
495        table = newTable;
496
497        /*
498         * If ignoring null elements and processing ref queue caused massive
499         * shrinkage, then restore old table.  This should be rare, but avoids
500         * unbounded expansion of garbage-filled tables.
501         */
502        if (size >= threshold / 2) {
503            threshold = (int)(newCapacity * loadFactor);
504        } else {
505            expungeStaleEntries();
506            transfer(newTable, oldTable);
507            table = oldTable;
508        }
509    }
510
511    /** Transfers all entries from src to dest tables */
512    private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
513        for (int j = 0; j < src.length; ++j) {
514            Entry<K,V> e = src[j];
515            src[j] = null;
516            while (e != null) {
517                Entry<K,V> next = e.next;
518                Object key = e.get();
519                if (key == null) {
520                    e.next = null;  // Help GC
521                    e.value = null; //  "   "
522                    size--;
523                } else {
524                    int i = indexFor(e.hash, dest.length);
525                    e.next = dest[i];
526                    dest[i] = e;
527                }
528                e = next;
529            }
530        }
531    }
532
533    /**
534     * Copies all of the mappings from the specified map to this map.
535     * These mappings will replace any mappings that this map had for any
536     * of the keys currently in the specified map.
537     *
538     * @param m mappings to be stored in this map.
539     * @throws  NullPointerException if the specified map is null.
540     */
541    public void putAll(Map<? extends K, ? extends V> m) {
542        int numKeysToBeAdded = m.size();
543        if (numKeysToBeAdded == 0)
544            return;
545
546        /*
547         * Expand the map if the map if the number of mappings to be added
548         * is greater than or equal to threshold.  This is conservative; the
549         * obvious condition is (m.size() + size) >= threshold, but this
550         * condition could result in a map with twice the appropriate capacity,
551         * if the keys to be added overlap with the keys already in this map.
552         * By using the conservative calculation, we subject ourself
553         * to at most one extra resize.
554         */
555        if (numKeysToBeAdded > threshold) {
556            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
557            if (targetCapacity > MAXIMUM_CAPACITY)
558                targetCapacity = MAXIMUM_CAPACITY;
559            int newCapacity = table.length;
560            while (newCapacity < targetCapacity)
561                newCapacity <<= 1;
562            if (newCapacity > table.length)
563                resize(newCapacity);
564        }
565
566        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
567            put(e.getKey(), e.getValue());
568    }
569
570    /**
571     * Removes the mapping for a key from this weak hash map if it is present.
572     * More formally, if this map contains a mapping from key {@code k} to
573     * value {@code v} such that <code>(key==null ?  k==null :
574     * key.equals(k))</code>, that mapping is removed.  (The map can contain
575     * at most one such mapping.)
576     *
577     * <p>Returns the value to which this map previously associated the key,
578     * or {@code null} if the map contained no mapping for the key.  A
579     * return value of {@code null} does not <i>necessarily</i> indicate
580     * that the map contained no mapping for the key; it's also possible
581     * that the map explicitly mapped the key to {@code null}.
582     *
583     * <p>The map will not contain a mapping for the specified key once the
584     * call returns.
585     *
586     * @param key key whose mapping is to be removed from the map
587     * @return the previous value associated with {@code key}, or
588     *         {@code null} if there was no mapping for {@code key}
589     */
590    public V remove(Object key) {
591        Object k = maskNull(key);
592        int h = hash(k);
593        Entry<K,V>[] tab = getTable();
594        int i = indexFor(h, tab.length);
595        Entry<K,V> prev = tab[i];
596        Entry<K,V> e = prev;
597
598        while (e != null) {
599            Entry<K,V> next = e.next;
600            if (h == e.hash && eq(k, e.get())) {
601                modCount++;
602                size--;
603                if (prev == e)
604                    tab[i] = next;
605                else
606                    prev.next = next;
607                return e.value;
608            }
609            prev = e;
610            e = next;
611        }
612
613        return null;
614    }
615
616    /** Special version of remove needed by Entry set */
617    boolean removeMapping(Object o) {
618        if (!(o instanceof Map.Entry))
619            return false;
620        Entry<K,V>[] tab = getTable();
621        Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
622        Object k = maskNull(entry.getKey());
623        int h = hash(k);
624        int i = indexFor(h, tab.length);
625        Entry<K,V> prev = tab[i];
626        Entry<K,V> e = prev;
627
628        while (e != null) {
629            Entry<K,V> next = e.next;
630            if (h == e.hash && e.equals(entry)) {
631                modCount++;
632                size--;
633                if (prev == e)
634                    tab[i] = next;
635                else
636                    prev.next = next;
637                return true;
638            }
639            prev = e;
640            e = next;
641        }
642
643        return false;
644    }
645
646    /**
647     * Removes all of the mappings from this map.
648     * The map will be empty after this call returns.
649     */
650    public void clear() {
651        // clear out ref queue. We don't need to expunge entries
652        // since table is getting cleared.
653        while (queue.poll() != null)
654            ;
655
656        modCount++;
657        Arrays.fill(table, null);
658        size = 0;
659
660        // Allocation of array may have caused GC, which may have caused
661        // additional entries to go stale.  Removing these entries from the
662        // reference queue will make them eligible for reclamation.
663        while (queue.poll() != null)
664            ;
665    }
666
667    /**
668     * Returns {@code true} if this map maps one or more keys to the
669     * specified value.
670     *
671     * @param value value whose presence in this map is to be tested
672     * @return {@code true} if this map maps one or more keys to the
673     *         specified value
674     */
675    public boolean containsValue(Object value) {
676        if (value==null)
677            return containsNullValue();
678
679        Entry<K,V>[] tab = getTable();
680        for (int i = tab.length; i-- > 0;)
681            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
682                if (value.equals(e.value))
683                    return true;
684        return false;
685    }
686
687    /**
688     * Special-case code for containsValue with null argument
689     */
690    private boolean containsNullValue() {
691        Entry<K,V>[] tab = getTable();
692        for (int i = tab.length; i-- > 0;)
693            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
694                if (e.value==null)
695                    return true;
696        return false;
697    }
698
699    /**
700     * The entries in this hash table extend WeakReference, using its main ref
701     * field as the key.
702     */
703    private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
704        V value;
705        final int hash;
706        Entry<K,V> next;
707
708        /**
709         * Creates new entry.
710         */
711        Entry(Object key, V value,
712              ReferenceQueue<Object> queue,
713              int hash, Entry<K,V> next) {
714            super(key, queue);
715            this.value = value;
716            this.hash  = hash;
717            this.next  = next;
718        }
719
720        @SuppressWarnings("unchecked")
721        public K getKey() {
722            return (K) WeakHashMap.unmaskNull(get());
723        }
724
725        public V getValue() {
726            return value;
727        }
728
729        public V setValue(V newValue) {
730            V oldValue = value;
731            value = newValue;
732            return oldValue;
733        }
734
735        public boolean equals(Object o) {
736            if (!(o instanceof Map.Entry))
737                return false;
738            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
739            K k1 = getKey();
740            Object k2 = e.getKey();
741            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
742                V v1 = getValue();
743                Object v2 = e.getValue();
744                if (v1 == v2 || (v1 != null && v1.equals(v2)))
745                    return true;
746            }
747            return false;
748        }
749
750        public int hashCode() {
751            K k = getKey();
752            V v = getValue();
753            return Objects.hashCode(k) ^ Objects.hashCode(v);
754        }
755
756        public String toString() {
757            return getKey() + "=" + getValue();
758        }
759    }
760
761    private abstract class HashIterator<T> implements Iterator<T> {
762        private int index;
763        private Entry<K,V> entry;
764        private Entry<K,V> lastReturned;
765        private int expectedModCount = modCount;
766
767        /**
768         * Strong reference needed to avoid disappearance of key
769         * between hasNext and next
770         */
771        private Object nextKey;
772
773        /**
774         * Strong reference needed to avoid disappearance of key
775         * between nextEntry() and any use of the entry
776         */
777        private Object currentKey;
778
779        HashIterator() {
780            index = isEmpty() ? 0 : table.length;
781        }
782
783        public boolean hasNext() {
784            Entry<K,V>[] t = table;
785
786            while (nextKey == null) {
787                Entry<K,V> e = entry;
788                int i = index;
789                while (e == null && i > 0)
790                    e = t[--i];
791                entry = e;
792                index = i;
793                if (e == null) {
794                    currentKey = null;
795                    return false;
796                }
797                nextKey = e.get(); // hold on to key in strong ref
798                if (nextKey == null)
799                    entry = entry.next;
800            }
801            return true;
802        }
803
804        /** The common parts of next() across different types of iterators */
805        protected Entry<K,V> nextEntry() {
806            if (modCount != expectedModCount)
807                throw new ConcurrentModificationException();
808            if (nextKey == null && !hasNext())
809                throw new NoSuchElementException();
810
811            lastReturned = entry;
812            entry = entry.next;
813            currentKey = nextKey;
814            nextKey = null;
815            return lastReturned;
816        }
817
818        public void remove() {
819            if (lastReturned == null)
820                throw new IllegalStateException();
821            if (modCount != expectedModCount)
822                throw new ConcurrentModificationException();
823
824            WeakHashMap.this.remove(currentKey);
825            expectedModCount = modCount;
826            lastReturned = null;
827            currentKey = null;
828        }
829
830    }
831
832    private class ValueIterator extends HashIterator<V> {
833        public V next() {
834            return nextEntry().value;
835        }
836    }
837
838    private class KeyIterator extends HashIterator<K> {
839        public K next() {
840            return nextEntry().getKey();
841        }
842    }
843
844    private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
845        public Map.Entry<K,V> next() {
846            return nextEntry();
847        }
848    }
849
850    // Views
851
852    private transient Set<Map.Entry<K,V>> entrySet;
853
854    /**
855     * Returns a {@link Set} view of the keys contained in this map.
856     * The set is backed by the map, so changes to the map are
857     * reflected in the set, and vice-versa.  If the map is modified
858     * while an iteration over the set is in progress (except through
859     * the iterator's own {@code remove} operation), the results of
860     * the iteration are undefined.  The set supports element removal,
861     * which removes the corresponding mapping from the map, via the
862     * {@code Iterator.remove}, {@code Set.remove},
863     * {@code removeAll}, {@code retainAll}, and {@code clear}
864     * operations.  It does not support the {@code add} or {@code addAll}
865     * operations.
866     */
867    public Set<K> keySet() {
868        Set<K> ks = keySet;
869        if (ks == null) {
870            ks = new KeySet();
871            keySet = ks;
872        }
873        return ks;
874    }
875
876    private class KeySet extends AbstractSet<K> {
877        public Iterator<K> iterator() {
878            return new KeyIterator();
879        }
880
881        public int size() {
882            return WeakHashMap.this.size();
883        }
884
885        public boolean contains(Object o) {
886            return containsKey(o);
887        }
888
889        public boolean remove(Object o) {
890            if (containsKey(o)) {
891                WeakHashMap.this.remove(o);
892                return true;
893            }
894            else
895                return false;
896        }
897
898        public void clear() {
899            WeakHashMap.this.clear();
900        }
901
902        public Spliterator<K> spliterator() {
903            return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
904        }
905    }
906
907    /**
908     * Returns a {@link Collection} view of the values contained in this map.
909     * The collection is backed by the map, so changes to the map are
910     * reflected in the collection, and vice-versa.  If the map is
911     * modified while an iteration over the collection is in progress
912     * (except through the iterator's own {@code remove} operation),
913     * the results of the iteration are undefined.  The collection
914     * supports element removal, which removes the corresponding
915     * mapping from the map, via the {@code Iterator.remove},
916     * {@code Collection.remove}, {@code removeAll},
917     * {@code retainAll} and {@code clear} operations.  It does not
918     * support the {@code add} or {@code addAll} operations.
919     */
920    public Collection<V> values() {
921        Collection<V> vs = values;
922        if (vs == null) {
923            vs = new Values();
924            values = vs;
925        }
926        return vs;
927    }
928
929    private class Values extends AbstractCollection<V> {
930        public Iterator<V> iterator() {
931            return new ValueIterator();
932        }
933
934        public int size() {
935            return WeakHashMap.this.size();
936        }
937
938        public boolean contains(Object o) {
939            return containsValue(o);
940        }
941
942        public void clear() {
943            WeakHashMap.this.clear();
944        }
945
946        public Spliterator<V> spliterator() {
947            return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
948        }
949    }
950
951    /**
952     * Returns a {@link Set} view of the mappings contained in this map.
953     * The set is backed by the map, so changes to the map are
954     * reflected in the set, and vice-versa.  If the map is modified
955     * while an iteration over the set is in progress (except through
956     * the iterator's own {@code remove} operation, or through the
957     * {@code setValue} operation on a map entry returned by the
958     * iterator) the results of the iteration are undefined.  The set
959     * supports element removal, which removes the corresponding
960     * mapping from the map, via the {@code Iterator.remove},
961     * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
962     * {@code clear} operations.  It does not support the
963     * {@code add} or {@code addAll} operations.
964     */
965    public Set<Map.Entry<K,V>> entrySet() {
966        Set<Map.Entry<K,V>> es = entrySet;
967        return es != null ? es : (entrySet = new EntrySet());
968    }
969
970    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
971        public Iterator<Map.Entry<K,V>> iterator() {
972            return new EntryIterator();
973        }
974
975        public boolean contains(Object o) {
976            if (!(o instanceof Map.Entry))
977                return false;
978            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
979            Entry<K,V> candidate = getEntry(e.getKey());
980            return candidate != null && candidate.equals(e);
981        }
982
983        public boolean remove(Object o) {
984            return removeMapping(o);
985        }
986
987        public int size() {
988            return WeakHashMap.this.size();
989        }
990
991        public void clear() {
992            WeakHashMap.this.clear();
993        }
994
995        private List<Map.Entry<K,V>> deepCopy() {
996            List<Map.Entry<K,V>> list = new ArrayList<>(size());
997            for (Map.Entry<K,V> e : this)
998                list.add(new AbstractMap.SimpleEntry<>(e));
999            return list;
1000        }
1001
1002        public Object[] toArray() {
1003            return deepCopy().toArray();
1004        }
1005
1006        public <T> T[] toArray(T[] a) {
1007            return deepCopy().toArray(a);
1008        }
1009
1010        public Spliterator<Map.Entry<K,V>> spliterator() {
1011            return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1012        }
1013    }
1014
1015    @SuppressWarnings("unchecked")
1016    @Override
1017    public void forEach(BiConsumer<? super K, ? super V> action) {
1018        Objects.requireNonNull(action);
1019        int expectedModCount = modCount;
1020
1021        Entry<K, V>[] tab = getTable();
1022        for (Entry<K, V> entry : tab) {
1023            while (entry != null) {
1024                Object key = entry.get();
1025                if (key != null) {
1026                    action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1027                }
1028                entry = entry.next;
1029
1030                if (expectedModCount != modCount) {
1031                    throw new ConcurrentModificationException();
1032                }
1033            }
1034        }
1035    }
1036
1037    @SuppressWarnings("unchecked")
1038    @Override
1039    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1040        Objects.requireNonNull(function);
1041        int expectedModCount = modCount;
1042
1043        Entry<K, V>[] tab = getTable();;
1044        for (Entry<K, V> entry : tab) {
1045            while (entry != null) {
1046                Object key = entry.get();
1047                if (key != null) {
1048                    entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1049                }
1050                entry = entry.next;
1051
1052                if (expectedModCount != modCount) {
1053                    throw new ConcurrentModificationException();
1054                }
1055            }
1056        }
1057    }
1058
1059    /**
1060     * Similar form as other hash Spliterators, but skips dead
1061     * elements.
1062     */
1063    static class WeakHashMapSpliterator<K,V> {
1064        final WeakHashMap<K,V> map;
1065        WeakHashMap.Entry<K,V> current; // current node
1066        int index;             // current index, modified on advance/split
1067        int fence;             // -1 until first use; then one past last index
1068        int est;               // size estimate
1069        int expectedModCount;  // for comodification checks
1070
1071        WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1072                               int fence, int est,
1073                               int expectedModCount) {
1074            this.map = m;
1075            this.index = origin;
1076            this.fence = fence;
1077            this.est = est;
1078            this.expectedModCount = expectedModCount;
1079        }
1080
1081        final int getFence() { // initialize fence and size on first use
1082            int hi;
1083            if ((hi = fence) < 0) {
1084                WeakHashMap<K,V> m = map;
1085                est = m.size();
1086                expectedModCount = m.modCount;
1087                hi = fence = m.table.length;
1088            }
1089            return hi;
1090        }
1091
1092        public final long estimateSize() {
1093            getFence(); // force init
1094            return (long) est;
1095        }
1096    }
1097
1098    static final class KeySpliterator<K,V>
1099        extends WeakHashMapSpliterator<K,V>
1100        implements Spliterator<K> {
1101        KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1102                       int expectedModCount) {
1103            super(m, origin, fence, est, expectedModCount);
1104        }
1105
1106        public KeySpliterator<K,V> trySplit() {
1107            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1108            return (lo >= mid) ? null :
1109                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1110                                     expectedModCount);
1111        }
1112
1113        public void forEachRemaining(Consumer<? super K> action) {
1114            int i, hi, mc;
1115            if (action == null)
1116                throw new NullPointerException();
1117            WeakHashMap<K,V> m = map;
1118            WeakHashMap.Entry<K,V>[] tab = m.table;
1119            if ((hi = fence) < 0) {
1120                mc = expectedModCount = m.modCount;
1121                hi = fence = tab.length;
1122            }
1123            else
1124                mc = expectedModCount;
1125            if (tab.length >= hi && (i = index) >= 0 &&
1126                (i < (index = hi) || current != null)) {
1127                WeakHashMap.Entry<K,V> p = current;
1128                current = null; // exhaust
1129                do {
1130                    if (p == null)
1131                        p = tab[i++];
1132                    else {
1133                        Object x = p.get();
1134                        p = p.next;
1135                        if (x != null) {
1136                            @SuppressWarnings("unchecked") K k =
1137                                (K) WeakHashMap.unmaskNull(x);
1138                            action.accept(k);
1139                        }
1140                    }
1141                } while (p != null || i < hi);
1142            }
1143            if (m.modCount != mc)
1144                throw new ConcurrentModificationException();
1145        }
1146
1147        public boolean tryAdvance(Consumer<? super K> action) {
1148            int hi;
1149            if (action == null)
1150                throw new NullPointerException();
1151            WeakHashMap.Entry<K,V>[] tab = map.table;
1152            if (tab.length >= (hi = getFence()) && index >= 0) {
1153                while (current != null || index < hi) {
1154                    if (current == null)
1155                        current = tab[index++];
1156                    else {
1157                        Object x = current.get();
1158                        current = current.next;
1159                        if (x != null) {
1160                            @SuppressWarnings("unchecked") K k =
1161                                (K) WeakHashMap.unmaskNull(x);
1162                            action.accept(k);
1163                            if (map.modCount != expectedModCount)
1164                                throw new ConcurrentModificationException();
1165                            return true;
1166                        }
1167                    }
1168                }
1169            }
1170            return false;
1171        }
1172
1173        public int characteristics() {
1174            return Spliterator.DISTINCT;
1175        }
1176    }
1177
1178    static final class ValueSpliterator<K,V>
1179        extends WeakHashMapSpliterator<K,V>
1180        implements Spliterator<V> {
1181        ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1182                         int expectedModCount) {
1183            super(m, origin, fence, est, expectedModCount);
1184        }
1185
1186        public ValueSpliterator<K,V> trySplit() {
1187            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1188            return (lo >= mid) ? null :
1189                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1190                                       expectedModCount);
1191        }
1192
1193        public void forEachRemaining(Consumer<? super V> action) {
1194            int i, hi, mc;
1195            if (action == null)
1196                throw new NullPointerException();
1197            WeakHashMap<K,V> m = map;
1198            WeakHashMap.Entry<K,V>[] tab = m.table;
1199            if ((hi = fence) < 0) {
1200                mc = expectedModCount = m.modCount;
1201                hi = fence = tab.length;
1202            }
1203            else
1204                mc = expectedModCount;
1205            if (tab.length >= hi && (i = index) >= 0 &&
1206                (i < (index = hi) || current != null)) {
1207                WeakHashMap.Entry<K,V> p = current;
1208                current = null; // exhaust
1209                do {
1210                    if (p == null)
1211                        p = tab[i++];
1212                    else {
1213                        Object x = p.get();
1214                        V v = p.value;
1215                        p = p.next;
1216                        if (x != null)
1217                            action.accept(v);
1218                    }
1219                } while (p != null || i < hi);
1220            }
1221            if (m.modCount != mc)
1222                throw new ConcurrentModificationException();
1223        }
1224
1225        public boolean tryAdvance(Consumer<? super V> action) {
1226            int hi;
1227            if (action == null)
1228                throw new NullPointerException();
1229            WeakHashMap.Entry<K,V>[] tab = map.table;
1230            if (tab.length >= (hi = getFence()) && index >= 0) {
1231                while (current != null || index < hi) {
1232                    if (current == null)
1233                        current = tab[index++];
1234                    else {
1235                        Object x = current.get();
1236                        V v = current.value;
1237                        current = current.next;
1238                        if (x != null) {
1239                            action.accept(v);
1240                            if (map.modCount != expectedModCount)
1241                                throw new ConcurrentModificationException();
1242                            return true;
1243                        }
1244                    }
1245                }
1246            }
1247            return false;
1248        }
1249
1250        public int characteristics() {
1251            return 0;
1252        }
1253    }
1254
1255    static final class EntrySpliterator<K,V>
1256        extends WeakHashMapSpliterator<K,V>
1257        implements Spliterator<Map.Entry<K,V>> {
1258        EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1259                       int expectedModCount) {
1260            super(m, origin, fence, est, expectedModCount);
1261        }
1262
1263        public EntrySpliterator<K,V> trySplit() {
1264            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1265            return (lo >= mid) ? null :
1266                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1267                                       expectedModCount);
1268        }
1269
1270
1271        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1272            int i, hi, mc;
1273            if (action == null)
1274                throw new NullPointerException();
1275            WeakHashMap<K,V> m = map;
1276            WeakHashMap.Entry<K,V>[] tab = m.table;
1277            if ((hi = fence) < 0) {
1278                mc = expectedModCount = m.modCount;
1279                hi = fence = tab.length;
1280            }
1281            else
1282                mc = expectedModCount;
1283            if (tab.length >= hi && (i = index) >= 0 &&
1284                (i < (index = hi) || current != null)) {
1285                WeakHashMap.Entry<K,V> p = current;
1286                current = null; // exhaust
1287                do {
1288                    if (p == null)
1289                        p = tab[i++];
1290                    else {
1291                        Object x = p.get();
1292                        V v = p.value;
1293                        p = p.next;
1294                        if (x != null) {
1295                            @SuppressWarnings("unchecked") K k =
1296                                (K) WeakHashMap.unmaskNull(x);
1297                            action.accept
1298                                (new AbstractMap.SimpleImmutableEntry<>(k, v));
1299                        }
1300                    }
1301                } while (p != null || i < hi);
1302            }
1303            if (m.modCount != mc)
1304                throw new ConcurrentModificationException();
1305        }
1306
1307        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1308            int hi;
1309            if (action == null)
1310                throw new NullPointerException();
1311            WeakHashMap.Entry<K,V>[] tab = map.table;
1312            if (tab.length >= (hi = getFence()) && index >= 0) {
1313                while (current != null || index < hi) {
1314                    if (current == null)
1315                        current = tab[index++];
1316                    else {
1317                        Object x = current.get();
1318                        V v = current.value;
1319                        current = current.next;
1320                        if (x != null) {
1321                            @SuppressWarnings("unchecked") K k =
1322                                (K) WeakHashMap.unmaskNull(x);
1323                            action.accept
1324                                (new AbstractMap.SimpleImmutableEntry<>(k, v));
1325                            if (map.modCount != expectedModCount)
1326                                throw new ConcurrentModificationException();
1327                            return true;
1328                        }
1329                    }
1330                }
1331            }
1332            return false;
1333        }
1334
1335        public int characteristics() {
1336            return Spliterator.DISTINCT;
1337        }
1338    }
1339
1340}
1341