1/*
2 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28import java.util.function.Consumer;
29import java.util.function.Predicate;
30import java.util.function.UnaryOperator;
31
32/**
33 * The {@code Vector} class implements a growable array of
34 * objects. Like an array, it contains components that can be
35 * accessed using an integer index. However, the size of a
36 * {@code Vector} can grow or shrink as needed to accommodate
37 * adding and removing items after the {@code Vector} has been created.
38 *
39 * <p>Each vector tries to optimize storage management by maintaining a
40 * {@code capacity} and a {@code capacityIncrement}. The
41 * {@code capacity} is always at least as large as the vector
42 * size; it is usually larger because as components are added to the
43 * vector, the vector's storage increases in chunks the size of
44 * {@code capacityIncrement}. An application can increase the
45 * capacity of a vector before inserting a large number of
46 * components; this reduces the amount of incremental reallocation.
47 *
48 * <p id="fail-fast">
49 * The iterators returned by this class's {@link #iterator() iterator} and
50 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
51 * if the vector is structurally modified at any time after the iterator is
52 * created, in any way except through the iterator's own
53 * {@link ListIterator#remove() remove} or
54 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
55 * {@link ConcurrentModificationException}.  Thus, in the face of
56 * concurrent modification, the iterator fails quickly and cleanly, rather
57 * than risking arbitrary, non-deterministic behavior at an undetermined
58 * time in the future.  The {@link Enumeration Enumerations} returned by
59 * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
60 * Vector is structurally modified at any time after the enumeration is
61 * created then the results of enumerating are undefined.
62 *
63 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
64 * as it is, generally speaking, impossible to make any hard guarantees in the
65 * presence of unsynchronized concurrent modification.  Fail-fast iterators
66 * throw {@code ConcurrentModificationException} on a best-effort basis.
67 * Therefore, it would be wrong to write a program that depended on this
68 * exception for its correctness:  <i>the fail-fast behavior of iterators
69 * should be used only to detect bugs.</i>
70 *
71 * <p>As of the Java 2 platform v1.2, this class was retrofitted to
72 * implement the {@link List} interface, making it a member of the
73 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
74 * Java Collections Framework</a>.  Unlike the new collection
75 * implementations, {@code Vector} is synchronized.  If a thread-safe
76 * implementation is not needed, it is recommended to use {@link
77 * ArrayList} in place of {@code Vector}.
78 *
79 * @param <E> Type of component elements
80 *
81 * @author  Lee Boynton
82 * @author  Jonathan Payne
83 * @see Collection
84 * @see LinkedList
85 * @since   1.0
86 */
87public class Vector<E>
88    extends AbstractList<E>
89    implements List<E>, RandomAccess, Cloneable, java.io.Serializable
90{
91    /**
92     * The array buffer into which the components of the vector are
93     * stored. The capacity of the vector is the length of this array buffer,
94     * and is at least large enough to contain all the vector's elements.
95     *
96     * <p>Any array elements following the last element in the Vector are null.
97     *
98     * @serial
99     */
100    protected Object[] elementData;
101
102    /**
103     * The number of valid components in this {@code Vector} object.
104     * Components {@code elementData[0]} through
105     * {@code elementData[elementCount-1]} are the actual items.
106     *
107     * @serial
108     */
109    protected int elementCount;
110
111    /**
112     * The amount by which the capacity of the vector is automatically
113     * incremented when its size becomes greater than its capacity.  If
114     * the capacity increment is less than or equal to zero, the capacity
115     * of the vector is doubled each time it needs to grow.
116     *
117     * @serial
118     */
119    protected int capacityIncrement;
120
121    /** use serialVersionUID from JDK 1.0.2 for interoperability */
122    private static final long serialVersionUID = -2767605614048989439L;
123
124    /**
125     * Constructs an empty vector with the specified initial capacity and
126     * capacity increment.
127     *
128     * @param   initialCapacity     the initial capacity of the vector
129     * @param   capacityIncrement   the amount by which the capacity is
130     *                              increased when the vector overflows
131     * @throws IllegalArgumentException if the specified initial capacity
132     *         is negative
133     */
134    public Vector(int initialCapacity, int capacityIncrement) {
135        super();
136        if (initialCapacity < 0)
137            throw new IllegalArgumentException("Illegal Capacity: "+
138                                               initialCapacity);
139        this.elementData = new Object[initialCapacity];
140        this.capacityIncrement = capacityIncrement;
141    }
142
143    /**
144     * Constructs an empty vector with the specified initial capacity and
145     * with its capacity increment equal to zero.
146     *
147     * @param   initialCapacity   the initial capacity of the vector
148     * @throws IllegalArgumentException if the specified initial capacity
149     *         is negative
150     */
151    public Vector(int initialCapacity) {
152        this(initialCapacity, 0);
153    }
154
155    /**
156     * Constructs an empty vector so that its internal data array
157     * has size {@code 10} and its standard capacity increment is
158     * zero.
159     */
160    public Vector() {
161        this(10);
162    }
163
164    /**
165     * Constructs a vector containing the elements of the specified
166     * collection, in the order they are returned by the collection's
167     * iterator.
168     *
169     * @param c the collection whose elements are to be placed into this
170     *       vector
171     * @throws NullPointerException if the specified collection is null
172     * @since   1.2
173     */
174    public Vector(Collection<? extends E> c) {
175        elementData = c.toArray();
176        elementCount = elementData.length;
177        // defend against c.toArray (incorrectly) not returning Object[]
178        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
179        if (elementData.getClass() != Object[].class)
180            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
181    }
182
183    /**
184     * Copies the components of this vector into the specified array.
185     * The item at index {@code k} in this vector is copied into
186     * component {@code k} of {@code anArray}.
187     *
188     * @param  anArray the array into which the components get copied
189     * @throws NullPointerException if the given array is null
190     * @throws IndexOutOfBoundsException if the specified array is not
191     *         large enough to hold all the components of this vector
192     * @throws ArrayStoreException if a component of this vector is not of
193     *         a runtime type that can be stored in the specified array
194     * @see #toArray(Object[])
195     */
196    public synchronized void copyInto(Object[] anArray) {
197        System.arraycopy(elementData, 0, anArray, 0, elementCount);
198    }
199
200    /**
201     * Trims the capacity of this vector to be the vector's current
202     * size. If the capacity of this vector is larger than its current
203     * size, then the capacity is changed to equal the size by replacing
204     * its internal data array, kept in the field {@code elementData},
205     * with a smaller one. An application can use this operation to
206     * minimize the storage of a vector.
207     */
208    public synchronized void trimToSize() {
209        modCount++;
210        int oldCapacity = elementData.length;
211        if (elementCount < oldCapacity) {
212            elementData = Arrays.copyOf(elementData, elementCount);
213        }
214    }
215
216    /**
217     * Increases the capacity of this vector, if necessary, to ensure
218     * that it can hold at least the number of components specified by
219     * the minimum capacity argument.
220     *
221     * <p>If the current capacity of this vector is less than
222     * {@code minCapacity}, then its capacity is increased by replacing its
223     * internal data array, kept in the field {@code elementData}, with a
224     * larger one.  The size of the new data array will be the old size plus
225     * {@code capacityIncrement}, unless the value of
226     * {@code capacityIncrement} is less than or equal to zero, in which case
227     * the new capacity will be twice the old capacity; but if this new size
228     * is still smaller than {@code minCapacity}, then the new capacity will
229     * be {@code minCapacity}.
230     *
231     * @param minCapacity the desired minimum capacity
232     */
233    public synchronized void ensureCapacity(int minCapacity) {
234        if (minCapacity > 0) {
235            modCount++;
236            if (minCapacity > elementData.length)
237                grow(minCapacity);
238        }
239    }
240
241    /**
242     * The maximum size of array to allocate (unless necessary).
243     * Some VMs reserve some header words in an array.
244     * Attempts to allocate larger arrays may result in
245     * OutOfMemoryError: Requested array size exceeds VM limit
246     */
247    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
248
249    /**
250     * Increases the capacity to ensure that it can hold at least the
251     * number of elements specified by the minimum capacity argument.
252     *
253     * @param minCapacity the desired minimum capacity
254     * @throws OutOfMemoryError if minCapacity is less than zero
255     */
256    private Object[] grow(int minCapacity) {
257        return elementData = Arrays.copyOf(elementData,
258                                           newCapacity(minCapacity));
259    }
260
261    private Object[] grow() {
262        return grow(elementCount + 1);
263    }
264
265    /**
266     * Returns a capacity at least as large as the given minimum capacity.
267     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
268     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
269     *
270     * @param minCapacity the desired minimum capacity
271     * @throws OutOfMemoryError if minCapacity is less than zero
272     */
273    private int newCapacity(int minCapacity) {
274        // overflow-conscious code
275        int oldCapacity = elementData.length;
276        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
277                                         capacityIncrement : oldCapacity);
278        if (newCapacity - minCapacity <= 0) {
279            if (minCapacity < 0) // overflow
280                throw new OutOfMemoryError();
281            return minCapacity;
282        }
283        return (newCapacity - MAX_ARRAY_SIZE <= 0)
284            ? newCapacity
285            : hugeCapacity(minCapacity);
286    }
287
288    private static int hugeCapacity(int minCapacity) {
289        if (minCapacity < 0) // overflow
290            throw new OutOfMemoryError();
291        return (minCapacity > MAX_ARRAY_SIZE) ?
292            Integer.MAX_VALUE :
293            MAX_ARRAY_SIZE;
294    }
295
296    /**
297     * Sets the size of this vector. If the new size is greater than the
298     * current size, new {@code null} items are added to the end of
299     * the vector. If the new size is less than the current size, all
300     * components at index {@code newSize} and greater are discarded.
301     *
302     * @param  newSize   the new size of this vector
303     * @throws ArrayIndexOutOfBoundsException if the new size is negative
304     */
305    public synchronized void setSize(int newSize) {
306        modCount++;
307        if (newSize > elementData.length)
308            grow(newSize);
309        final Object[] es = elementData;
310        for (int to = elementCount, i = newSize; i < to; i++)
311            es[i] = null;
312        elementCount = newSize;
313    }
314
315    /**
316     * Returns the current capacity of this vector.
317     *
318     * @return  the current capacity (the length of its internal
319     *          data array, kept in the field {@code elementData}
320     *          of this vector)
321     */
322    public synchronized int capacity() {
323        return elementData.length;
324    }
325
326    /**
327     * Returns the number of components in this vector.
328     *
329     * @return  the number of components in this vector
330     */
331    public synchronized int size() {
332        return elementCount;
333    }
334
335    /**
336     * Tests if this vector has no components.
337     *
338     * @return  {@code true} if and only if this vector has
339     *          no components, that is, its size is zero;
340     *          {@code false} otherwise.
341     */
342    public synchronized boolean isEmpty() {
343        return elementCount == 0;
344    }
345
346    /**
347     * Returns an enumeration of the components of this vector. The
348     * returned {@code Enumeration} object will generate all items in
349     * this vector. The first item generated is the item at index {@code 0},
350     * then the item at index {@code 1}, and so on. If the vector is
351     * structurally modified while enumerating over the elements then the
352     * results of enumerating are undefined.
353     *
354     * @return  an enumeration of the components of this vector
355     * @see     Iterator
356     */
357    public Enumeration<E> elements() {
358        return new Enumeration<E>() {
359            int count = 0;
360
361            public boolean hasMoreElements() {
362                return count < elementCount;
363            }
364
365            public E nextElement() {
366                synchronized (Vector.this) {
367                    if (count < elementCount) {
368                        return elementData(count++);
369                    }
370                }
371                throw new NoSuchElementException("Vector Enumeration");
372            }
373        };
374    }
375
376    /**
377     * Returns {@code true} if this vector contains the specified element.
378     * More formally, returns {@code true} if and only if this vector
379     * contains at least one element {@code e} such that
380     * {@code Objects.equals(o, e)}.
381     *
382     * @param o element whose presence in this vector is to be tested
383     * @return {@code true} if this vector contains the specified element
384     */
385    public boolean contains(Object o) {
386        return indexOf(o, 0) >= 0;
387    }
388
389    /**
390     * Returns the index of the first occurrence of the specified element
391     * in this vector, or -1 if this vector does not contain the element.
392     * More formally, returns the lowest index {@code i} such that
393     * {@code Objects.equals(o, get(i))},
394     * or -1 if there is no such index.
395     *
396     * @param o element to search for
397     * @return the index of the first occurrence of the specified element in
398     *         this vector, or -1 if this vector does not contain the element
399     */
400    public int indexOf(Object o) {
401        return indexOf(o, 0);
402    }
403
404    /**
405     * Returns the index of the first occurrence of the specified element in
406     * this vector, searching forwards from {@code index}, or returns -1 if
407     * the element is not found.
408     * More formally, returns the lowest index {@code i} such that
409     * {@code (i >= index && Objects.equals(o, get(i)))},
410     * or -1 if there is no such index.
411     *
412     * @param o element to search for
413     * @param index index to start searching from
414     * @return the index of the first occurrence of the element in
415     *         this vector at position {@code index} or later in the vector;
416     *         {@code -1} if the element is not found.
417     * @throws IndexOutOfBoundsException if the specified index is negative
418     * @see     Object#equals(Object)
419     */
420    public synchronized int indexOf(Object o, int index) {
421        if (o == null) {
422            for (int i = index ; i < elementCount ; i++)
423                if (elementData[i]==null)
424                    return i;
425        } else {
426            for (int i = index ; i < elementCount ; i++)
427                if (o.equals(elementData[i]))
428                    return i;
429        }
430        return -1;
431    }
432
433    /**
434     * Returns the index of the last occurrence of the specified element
435     * in this vector, or -1 if this vector does not contain the element.
436     * More formally, returns the highest index {@code i} such that
437     * {@code Objects.equals(o, get(i))},
438     * or -1 if there is no such index.
439     *
440     * @param o element to search for
441     * @return the index of the last occurrence of the specified element in
442     *         this vector, or -1 if this vector does not contain the element
443     */
444    public synchronized int lastIndexOf(Object o) {
445        return lastIndexOf(o, elementCount-1);
446    }
447
448    /**
449     * Returns the index of the last occurrence of the specified element in
450     * this vector, searching backwards from {@code index}, or returns -1 if
451     * the element is not found.
452     * More formally, returns the highest index {@code i} such that
453     * {@code (i <= index && Objects.equals(o, get(i)))},
454     * or -1 if there is no such index.
455     *
456     * @param o element to search for
457     * @param index index to start searching backwards from
458     * @return the index of the last occurrence of the element at position
459     *         less than or equal to {@code index} in this vector;
460     *         -1 if the element is not found.
461     * @throws IndexOutOfBoundsException if the specified index is greater
462     *         than or equal to the current size of this vector
463     */
464    public synchronized int lastIndexOf(Object o, int index) {
465        if (index >= elementCount)
466            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
467
468        if (o == null) {
469            for (int i = index; i >= 0; i--)
470                if (elementData[i]==null)
471                    return i;
472        } else {
473            for (int i = index; i >= 0; i--)
474                if (o.equals(elementData[i]))
475                    return i;
476        }
477        return -1;
478    }
479
480    /**
481     * Returns the component at the specified index.
482     *
483     * <p>This method is identical in functionality to the {@link #get(int)}
484     * method (which is part of the {@link List} interface).
485     *
486     * @param      index   an index into this vector
487     * @return     the component at the specified index
488     * @throws ArrayIndexOutOfBoundsException if the index is out of range
489     *         ({@code index < 0 || index >= size()})
490     */
491    public synchronized E elementAt(int index) {
492        if (index >= elementCount) {
493            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
494        }
495
496        return elementData(index);
497    }
498
499    /**
500     * Returns the first component (the item at index {@code 0}) of
501     * this vector.
502     *
503     * @return     the first component of this vector
504     * @throws NoSuchElementException if this vector has no components
505     */
506    public synchronized E firstElement() {
507        if (elementCount == 0) {
508            throw new NoSuchElementException();
509        }
510        return elementData(0);
511    }
512
513    /**
514     * Returns the last component of the vector.
515     *
516     * @return  the last component of the vector, i.e., the component at index
517     *          {@code size() - 1}
518     * @throws NoSuchElementException if this vector is empty
519     */
520    public synchronized E lastElement() {
521        if (elementCount == 0) {
522            throw new NoSuchElementException();
523        }
524        return elementData(elementCount - 1);
525    }
526
527    /**
528     * Sets the component at the specified {@code index} of this
529     * vector to be the specified object. The previous component at that
530     * position is discarded.
531     *
532     * <p>The index must be a value greater than or equal to {@code 0}
533     * and less than the current size of the vector.
534     *
535     * <p>This method is identical in functionality to the
536     * {@link #set(int, Object) set(int, E)}
537     * method (which is part of the {@link List} interface). Note that the
538     * {@code set} method reverses the order of the parameters, to more closely
539     * match array usage.  Note also that the {@code set} method returns the
540     * old value that was stored at the specified position.
541     *
542     * @param      obj     what the component is to be set to
543     * @param      index   the specified index
544     * @throws ArrayIndexOutOfBoundsException if the index is out of range
545     *         ({@code index < 0 || index >= size()})
546     */
547    public synchronized void setElementAt(E obj, int index) {
548        if (index >= elementCount) {
549            throw new ArrayIndexOutOfBoundsException(index + " >= " +
550                                                     elementCount);
551        }
552        elementData[index] = obj;
553    }
554
555    /**
556     * Deletes the component at the specified index. Each component in
557     * this vector with an index greater or equal to the specified
558     * {@code index} is shifted downward to have an index one
559     * smaller than the value it had previously. The size of this vector
560     * is decreased by {@code 1}.
561     *
562     * <p>The index must be a value greater than or equal to {@code 0}
563     * and less than the current size of the vector.
564     *
565     * <p>This method is identical in functionality to the {@link #remove(int)}
566     * method (which is part of the {@link List} interface).  Note that the
567     * {@code remove} method returns the old value that was stored at the
568     * specified position.
569     *
570     * @param      index   the index of the object to remove
571     * @throws ArrayIndexOutOfBoundsException if the index is out of range
572     *         ({@code index < 0 || index >= size()})
573     */
574    public synchronized void removeElementAt(int index) {
575        if (index >= elementCount) {
576            throw new ArrayIndexOutOfBoundsException(index + " >= " +
577                                                     elementCount);
578        }
579        else if (index < 0) {
580            throw new ArrayIndexOutOfBoundsException(index);
581        }
582        int j = elementCount - index - 1;
583        if (j > 0) {
584            System.arraycopy(elementData, index + 1, elementData, index, j);
585        }
586        modCount++;
587        elementCount--;
588        elementData[elementCount] = null; /* to let gc do its work */
589    }
590
591    /**
592     * Inserts the specified object as a component in this vector at the
593     * specified {@code index}. Each component in this vector with
594     * an index greater or equal to the specified {@code index} is
595     * shifted upward to have an index one greater than the value it had
596     * previously.
597     *
598     * <p>The index must be a value greater than or equal to {@code 0}
599     * and less than or equal to the current size of the vector. (If the
600     * index is equal to the current size of the vector, the new element
601     * is appended to the Vector.)
602     *
603     * <p>This method is identical in functionality to the
604     * {@link #add(int, Object) add(int, E)}
605     * method (which is part of the {@link List} interface).  Note that the
606     * {@code add} method reverses the order of the parameters, to more closely
607     * match array usage.
608     *
609     * @param      obj     the component to insert
610     * @param      index   where to insert the new component
611     * @throws ArrayIndexOutOfBoundsException if the index is out of range
612     *         ({@code index < 0 || index > size()})
613     */
614    public synchronized void insertElementAt(E obj, int index) {
615        if (index > elementCount) {
616            throw new ArrayIndexOutOfBoundsException(index
617                                                     + " > " + elementCount);
618        }
619        modCount++;
620        final int s = elementCount;
621        Object[] elementData = this.elementData;
622        if (s == elementData.length)
623            elementData = grow();
624        System.arraycopy(elementData, index,
625                         elementData, index + 1,
626                         s - index);
627        elementData[index] = obj;
628        elementCount = s + 1;
629    }
630
631    /**
632     * Adds the specified component to the end of this vector,
633     * increasing its size by one. The capacity of this vector is
634     * increased if its size becomes greater than its capacity.
635     *
636     * <p>This method is identical in functionality to the
637     * {@link #add(Object) add(E)}
638     * method (which is part of the {@link List} interface).
639     *
640     * @param   obj   the component to be added
641     */
642    public synchronized void addElement(E obj) {
643        modCount++;
644        add(obj, elementData, elementCount);
645    }
646
647    /**
648     * Removes the first (lowest-indexed) occurrence of the argument
649     * from this vector. If the object is found in this vector, each
650     * component in the vector with an index greater or equal to the
651     * object's index is shifted downward to have an index one smaller
652     * than the value it had previously.
653     *
654     * <p>This method is identical in functionality to the
655     * {@link #remove(Object)} method (which is part of the
656     * {@link List} interface).
657     *
658     * @param   obj   the component to be removed
659     * @return  {@code true} if the argument was a component of this
660     *          vector; {@code false} otherwise.
661     */
662    public synchronized boolean removeElement(Object obj) {
663        modCount++;
664        int i = indexOf(obj);
665        if (i >= 0) {
666            removeElementAt(i);
667            return true;
668        }
669        return false;
670    }
671
672    /**
673     * Removes all components from this vector and sets its size to zero.
674     *
675     * <p>This method is identical in functionality to the {@link #clear}
676     * method (which is part of the {@link List} interface).
677     */
678    public synchronized void removeAllElements() {
679        final Object[] es = elementData;
680        for (int to = elementCount, i = elementCount = 0; i < to; i++)
681            es[i] = null;
682        modCount++;
683    }
684
685    /**
686     * Returns a clone of this vector. The copy will contain a
687     * reference to a clone of the internal data array, not a reference
688     * to the original internal data array of this {@code Vector} object.
689     *
690     * @return  a clone of this vector
691     */
692    public synchronized Object clone() {
693        try {
694            @SuppressWarnings("unchecked")
695            Vector<E> v = (Vector<E>) super.clone();
696            v.elementData = Arrays.copyOf(elementData, elementCount);
697            v.modCount = 0;
698            return v;
699        } catch (CloneNotSupportedException e) {
700            // this shouldn't happen, since we are Cloneable
701            throw new InternalError(e);
702        }
703    }
704
705    /**
706     * Returns an array containing all of the elements in this Vector
707     * in the correct order.
708     *
709     * @since 1.2
710     */
711    public synchronized Object[] toArray() {
712        return Arrays.copyOf(elementData, elementCount);
713    }
714
715    /**
716     * Returns an array containing all of the elements in this Vector in the
717     * correct order; the runtime type of the returned array is that of the
718     * specified array.  If the Vector fits in the specified array, it is
719     * returned therein.  Otherwise, a new array is allocated with the runtime
720     * type of the specified array and the size of this Vector.
721     *
722     * <p>If the Vector fits in the specified array with room to spare
723     * (i.e., the array has more elements than the Vector),
724     * the element in the array immediately following the end of the
725     * Vector is set to null.  (This is useful in determining the length
726     * of the Vector <em>only</em> if the caller knows that the Vector
727     * does not contain any null elements.)
728     *
729     * @param <T> type of array elements. The same type as {@code <E>} or a
730     * supertype of {@code <E>}.
731     * @param a the array into which the elements of the Vector are to
732     *          be stored, if it is big enough; otherwise, a new array of the
733     *          same runtime type is allocated for this purpose.
734     * @return an array containing the elements of the Vector
735     * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
736     * a supertype of the runtime type, {@code <E>}, of every element in this
737     * Vector
738     * @throws NullPointerException if the given array is null
739     * @since 1.2
740     */
741    @SuppressWarnings("unchecked")
742    public synchronized <T> T[] toArray(T[] a) {
743        if (a.length < elementCount)
744            return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
745
746        System.arraycopy(elementData, 0, a, 0, elementCount);
747
748        if (a.length > elementCount)
749            a[elementCount] = null;
750
751        return a;
752    }
753
754    // Positional Access Operations
755
756    @SuppressWarnings("unchecked")
757    E elementData(int index) {
758        return (E) elementData[index];
759    }
760
761    @SuppressWarnings("unchecked")
762    static <E> E elementAt(Object[] es, int index) {
763        return (E) es[index];
764    }
765
766    /**
767     * Returns the element at the specified position in this Vector.
768     *
769     * @param index index of the element to return
770     * @return object at the specified index
771     * @throws ArrayIndexOutOfBoundsException if the index is out of range
772     *            ({@code index < 0 || index >= size()})
773     * @since 1.2
774     */
775    public synchronized E get(int index) {
776        if (index >= elementCount)
777            throw new ArrayIndexOutOfBoundsException(index);
778
779        return elementData(index);
780    }
781
782    /**
783     * Replaces the element at the specified position in this Vector with the
784     * specified element.
785     *
786     * @param index index of the element to replace
787     * @param element element to be stored at the specified position
788     * @return the element previously at the specified position
789     * @throws ArrayIndexOutOfBoundsException if the index is out of range
790     *         ({@code index < 0 || index >= size()})
791     * @since 1.2
792     */
793    public synchronized E set(int index, E element) {
794        if (index >= elementCount)
795            throw new ArrayIndexOutOfBoundsException(index);
796
797        E oldValue = elementData(index);
798        elementData[index] = element;
799        return oldValue;
800    }
801
802    /**
803     * This helper method split out from add(E) to keep method
804     * bytecode size under 35 (the -XX:MaxInlineSize default value),
805     * which helps when add(E) is called in a C1-compiled loop.
806     */
807    private void add(E e, Object[] elementData, int s) {
808        if (s == elementData.length)
809            elementData = grow();
810        elementData[s] = e;
811        elementCount = s + 1;
812    }
813
814    /**
815     * Appends the specified element to the end of this Vector.
816     *
817     * @param e element to be appended to this Vector
818     * @return {@code true} (as specified by {@link Collection#add})
819     * @since 1.2
820     */
821    public synchronized boolean add(E e) {
822        modCount++;
823        add(e, elementData, elementCount);
824        return true;
825    }
826
827    /**
828     * Removes the first occurrence of the specified element in this Vector
829     * If the Vector does not contain the element, it is unchanged.  More
830     * formally, removes the element with the lowest index i such that
831     * {@code Objects.equals(o, get(i))} (if such
832     * an element exists).
833     *
834     * @param o element to be removed from this Vector, if present
835     * @return true if the Vector contained the specified element
836     * @since 1.2
837     */
838    public boolean remove(Object o) {
839        return removeElement(o);
840    }
841
842    /**
843     * Inserts the specified element at the specified position in this Vector.
844     * Shifts the element currently at that position (if any) and any
845     * subsequent elements to the right (adds one to their indices).
846     *
847     * @param index index at which the specified element is to be inserted
848     * @param element element to be inserted
849     * @throws ArrayIndexOutOfBoundsException if the index is out of range
850     *         ({@code index < 0 || index > size()})
851     * @since 1.2
852     */
853    public void add(int index, E element) {
854        insertElementAt(element, index);
855    }
856
857    /**
858     * Removes the element at the specified position in this Vector.
859     * Shifts any subsequent elements to the left (subtracts one from their
860     * indices).  Returns the element that was removed from the Vector.
861     *
862     * @param index the index of the element to be removed
863     * @return element that was removed
864     * @throws ArrayIndexOutOfBoundsException if the index is out of range
865     *         ({@code index < 0 || index >= size()})
866     * @since 1.2
867     */
868    public synchronized E remove(int index) {
869        modCount++;
870        if (index >= elementCount)
871            throw new ArrayIndexOutOfBoundsException(index);
872        E oldValue = elementData(index);
873
874        int numMoved = elementCount - index - 1;
875        if (numMoved > 0)
876            System.arraycopy(elementData, index+1, elementData, index,
877                             numMoved);
878        elementData[--elementCount] = null; // Let gc do its work
879
880        return oldValue;
881    }
882
883    /**
884     * Removes all of the elements from this Vector.  The Vector will
885     * be empty after this call returns (unless it throws an exception).
886     *
887     * @since 1.2
888     */
889    public void clear() {
890        removeAllElements();
891    }
892
893    // Bulk Operations
894
895    /**
896     * Returns true if this Vector contains all of the elements in the
897     * specified Collection.
898     *
899     * @param   c a collection whose elements will be tested for containment
900     *          in this Vector
901     * @return true if this Vector contains all of the elements in the
902     *         specified collection
903     * @throws NullPointerException if the specified collection is null
904     */
905    public synchronized boolean containsAll(Collection<?> c) {
906        return super.containsAll(c);
907    }
908
909    /**
910     * Appends all of the elements in the specified Collection to the end of
911     * this Vector, in the order that they are returned by the specified
912     * Collection's Iterator.  The behavior of this operation is undefined if
913     * the specified Collection is modified while the operation is in progress.
914     * (This implies that the behavior of this call is undefined if the
915     * specified Collection is this Vector, and this Vector is nonempty.)
916     *
917     * @param c elements to be inserted into this Vector
918     * @return {@code true} if this Vector changed as a result of the call
919     * @throws NullPointerException if the specified collection is null
920     * @since 1.2
921     */
922    public boolean addAll(Collection<? extends E> c) {
923        Object[] a = c.toArray();
924        modCount++;
925        int numNew = a.length;
926        if (numNew == 0)
927            return false;
928        synchronized (this) {
929            Object[] elementData = this.elementData;
930            final int s = elementCount;
931            if (numNew > elementData.length - s)
932                elementData = grow(s + numNew);
933            System.arraycopy(a, 0, elementData, s, numNew);
934            elementCount = s + numNew;
935            return true;
936        }
937    }
938
939    /**
940     * Removes from this Vector all of its elements that are contained in the
941     * specified Collection.
942     *
943     * @param c a collection of elements to be removed from the Vector
944     * @return true if this Vector changed as a result of the call
945     * @throws ClassCastException if the types of one or more elements
946     *         in this vector are incompatible with the specified
947     *         collection
948     * (<a href="Collection.html#optional-restrictions">optional</a>)
949     * @throws NullPointerException if this vector contains one or more null
950     *         elements and the specified collection does not support null
951     *         elements
952     * (<a href="Collection.html#optional-restrictions">optional</a>),
953     *         or if the specified collection is null
954     * @since 1.2
955     */
956    public boolean removeAll(Collection<?> c) {
957        Objects.requireNonNull(c);
958        return bulkRemove(e -> c.contains(e));
959    }
960
961    /**
962     * Retains only the elements in this Vector that are contained in the
963     * specified Collection.  In other words, removes from this Vector all
964     * of its elements that are not contained in the specified Collection.
965     *
966     * @param c a collection of elements to be retained in this Vector
967     *          (all other elements are removed)
968     * @return true if this Vector changed as a result of the call
969     * @throws ClassCastException if the types of one or more elements
970     *         in this vector are incompatible with the specified
971     *         collection
972     * (<a href="Collection.html#optional-restrictions">optional</a>)
973     * @throws NullPointerException if this vector contains one or more null
974     *         elements and the specified collection does not support null
975     *         elements
976     *         (<a href="Collection.html#optional-restrictions">optional</a>),
977     *         or if the specified collection is null
978     * @since 1.2
979     */
980    public boolean retainAll(Collection<?> c) {
981        Objects.requireNonNull(c);
982        return bulkRemove(e -> !c.contains(e));
983    }
984
985    /**
986     * @throws NullPointerException {@inheritDoc}
987     */
988    @Override
989    public boolean removeIf(Predicate<? super E> filter) {
990        Objects.requireNonNull(filter);
991        return bulkRemove(filter);
992    }
993
994    // A tiny bit set implementation
995
996    private static long[] nBits(int n) {
997        return new long[((n - 1) >> 6) + 1];
998    }
999    private static void setBit(long[] bits, int i) {
1000        bits[i >> 6] |= 1L << i;
1001    }
1002    private static boolean isClear(long[] bits, int i) {
1003        return (bits[i >> 6] & (1L << i)) == 0;
1004    }
1005
1006    private synchronized boolean bulkRemove(Predicate<? super E> filter) {
1007        int expectedModCount = modCount;
1008        final Object[] es = elementData;
1009        final int end = elementCount;
1010        int i;
1011        // Optimize for initial run of survivors
1012        for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
1013            ;
1014        // Tolerate predicates that reentrantly access the collection for
1015        // read (but writers still get CME), so traverse once to find
1016        // elements to delete, a second pass to physically expunge.
1017        if (i < end) {
1018            final int beg = i;
1019            final long[] deathRow = nBits(end - beg);
1020            deathRow[0] = 1L;   // set bit 0
1021            for (i = beg + 1; i < end; i++)
1022                if (filter.test(elementAt(es, i)))
1023                    setBit(deathRow, i - beg);
1024            if (modCount != expectedModCount)
1025                throw new ConcurrentModificationException();
1026            expectedModCount++;
1027            modCount++;
1028            int w = beg;
1029            for (i = beg; i < end; i++)
1030                if (isClear(deathRow, i - beg))
1031                    es[w++] = es[i];
1032            for (i = elementCount = w; i < end; i++)
1033                es[i] = null;
1034            return true;
1035        } else {
1036            if (modCount != expectedModCount)
1037                throw new ConcurrentModificationException();
1038            return false;
1039        }
1040    }
1041
1042    /**
1043     * Inserts all of the elements in the specified Collection into this
1044     * Vector at the specified position.  Shifts the element currently at
1045     * that position (if any) and any subsequent elements to the right
1046     * (increases their indices).  The new elements will appear in the Vector
1047     * in the order that they are returned by the specified Collection's
1048     * iterator.
1049     *
1050     * @param index index at which to insert the first element from the
1051     *              specified collection
1052     * @param c elements to be inserted into this Vector
1053     * @return {@code true} if this Vector changed as a result of the call
1054     * @throws ArrayIndexOutOfBoundsException if the index is out of range
1055     *         ({@code index < 0 || index > size()})
1056     * @throws NullPointerException if the specified collection is null
1057     * @since 1.2
1058     */
1059    public synchronized boolean addAll(int index, Collection<? extends E> c) {
1060        if (index < 0 || index > elementCount)
1061            throw new ArrayIndexOutOfBoundsException(index);
1062
1063        Object[] a = c.toArray();
1064        modCount++;
1065        int numNew = a.length;
1066        if (numNew == 0)
1067            return false;
1068        Object[] elementData = this.elementData;
1069        final int s = elementCount;
1070        if (numNew > elementData.length - s)
1071            elementData = grow(s + numNew);
1072
1073        int numMoved = s - index;
1074        if (numMoved > 0)
1075            System.arraycopy(elementData, index,
1076                             elementData, index + numNew,
1077                             numMoved);
1078        System.arraycopy(a, 0, elementData, index, numNew);
1079        elementCount = s + numNew;
1080        return true;
1081    }
1082
1083    /**
1084     * Compares the specified Object with this Vector for equality.  Returns
1085     * true if and only if the specified Object is also a List, both Lists
1086     * have the same size, and all corresponding pairs of elements in the two
1087     * Lists are <em>equal</em>.  (Two elements {@code e1} and
1088     * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1089     * In other words, two Lists are defined to be
1090     * equal if they contain the same elements in the same order.
1091     *
1092     * @param o the Object to be compared for equality with this Vector
1093     * @return true if the specified Object is equal to this Vector
1094     */
1095    public synchronized boolean equals(Object o) {
1096        return super.equals(o);
1097    }
1098
1099    /**
1100     * Returns the hash code value for this Vector.
1101     */
1102    public synchronized int hashCode() {
1103        return super.hashCode();
1104    }
1105
1106    /**
1107     * Returns a string representation of this Vector, containing
1108     * the String representation of each element.
1109     */
1110    public synchronized String toString() {
1111        return super.toString();
1112    }
1113
1114    /**
1115     * Returns a view of the portion of this List between fromIndex,
1116     * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1117     * equal, the returned List is empty.)  The returned List is backed by this
1118     * List, so changes in the returned List are reflected in this List, and
1119     * vice-versa.  The returned List supports all of the optional List
1120     * operations supported by this List.
1121     *
1122     * <p>This method eliminates the need for explicit range operations (of
1123     * the sort that commonly exist for arrays).  Any operation that expects
1124     * a List can be used as a range operation by operating on a subList view
1125     * instead of a whole List.  For example, the following idiom
1126     * removes a range of elements from a List:
1127     * <pre>
1128     *      list.subList(from, to).clear();
1129     * </pre>
1130     * Similar idioms may be constructed for indexOf and lastIndexOf,
1131     * and all of the algorithms in the Collections class can be applied to
1132     * a subList.
1133     *
1134     * <p>The semantics of the List returned by this method become undefined if
1135     * the backing list (i.e., this List) is <i>structurally modified</i> in
1136     * any way other than via the returned List.  (Structural modifications are
1137     * those that change the size of the List, or otherwise perturb it in such
1138     * a fashion that iterations in progress may yield incorrect results.)
1139     *
1140     * @param fromIndex low endpoint (inclusive) of the subList
1141     * @param toIndex high endpoint (exclusive) of the subList
1142     * @return a view of the specified range within this List
1143     * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1144     *         {@code (fromIndex < 0 || toIndex > size)}
1145     * @throws IllegalArgumentException if the endpoint indices are out of order
1146     *         {@code (fromIndex > toIndex)}
1147     */
1148    public synchronized List<E> subList(int fromIndex, int toIndex) {
1149        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1150                                            this);
1151    }
1152
1153    /**
1154     * Removes from this list all of the elements whose index is between
1155     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1156     * Shifts any succeeding elements to the left (reduces their index).
1157     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1158     * (If {@code toIndex==fromIndex}, this operation has no effect.)
1159     */
1160    protected synchronized void removeRange(int fromIndex, int toIndex) {
1161        modCount++;
1162        shiftTailOverGap(elementData, fromIndex, toIndex);
1163    }
1164
1165    /** Erases the gap from lo to hi, by sliding down following elements. */
1166    private void shiftTailOverGap(Object[] es, int lo, int hi) {
1167        System.arraycopy(es, hi, es, lo, elementCount - hi);
1168        for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1169            es[i] = null;
1170    }
1171
1172    /**
1173     * Saves the state of the {@code Vector} instance to a stream
1174     * (that is, serializes it).
1175     * This method performs synchronization to ensure the consistency
1176     * of the serialized data.
1177     *
1178     * @param s the stream
1179     * @throws java.io.IOException if an I/O error occurs
1180     */
1181    private void writeObject(java.io.ObjectOutputStream s)
1182            throws java.io.IOException {
1183        final java.io.ObjectOutputStream.PutField fields = s.putFields();
1184        final Object[] data;
1185        synchronized (this) {
1186            fields.put("capacityIncrement", capacityIncrement);
1187            fields.put("elementCount", elementCount);
1188            data = elementData.clone();
1189        }
1190        fields.put("elementData", data);
1191        s.writeFields();
1192    }
1193
1194    /**
1195     * Returns a list iterator over the elements in this list (in proper
1196     * sequence), starting at the specified position in the list.
1197     * The specified index indicates the first element that would be
1198     * returned by an initial call to {@link ListIterator#next next}.
1199     * An initial call to {@link ListIterator#previous previous} would
1200     * return the element with the specified index minus one.
1201     *
1202     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1203     *
1204     * @throws IndexOutOfBoundsException {@inheritDoc}
1205     */
1206    public synchronized ListIterator<E> listIterator(int index) {
1207        if (index < 0 || index > elementCount)
1208            throw new IndexOutOfBoundsException("Index: "+index);
1209        return new ListItr(index);
1210    }
1211
1212    /**
1213     * Returns a list iterator over the elements in this list (in proper
1214     * sequence).
1215     *
1216     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1217     *
1218     * @see #listIterator(int)
1219     */
1220    public synchronized ListIterator<E> listIterator() {
1221        return new ListItr(0);
1222    }
1223
1224    /**
1225     * Returns an iterator over the elements in this list in proper sequence.
1226     *
1227     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1228     *
1229     * @return an iterator over the elements in this list in proper sequence
1230     */
1231    public synchronized Iterator<E> iterator() {
1232        return new Itr();
1233    }
1234
1235    /**
1236     * An optimized version of AbstractList.Itr
1237     */
1238    private class Itr implements Iterator<E> {
1239        int cursor;       // index of next element to return
1240        int lastRet = -1; // index of last element returned; -1 if no such
1241        int expectedModCount = modCount;
1242
1243        public boolean hasNext() {
1244            // Racy but within spec, since modifications are checked
1245            // within or after synchronization in next/previous
1246            return cursor != elementCount;
1247        }
1248
1249        public E next() {
1250            synchronized (Vector.this) {
1251                checkForComodification();
1252                int i = cursor;
1253                if (i >= elementCount)
1254                    throw new NoSuchElementException();
1255                cursor = i + 1;
1256                return elementData(lastRet = i);
1257            }
1258        }
1259
1260        public void remove() {
1261            if (lastRet == -1)
1262                throw new IllegalStateException();
1263            synchronized (Vector.this) {
1264                checkForComodification();
1265                Vector.this.remove(lastRet);
1266                expectedModCount = modCount;
1267            }
1268            cursor = lastRet;
1269            lastRet = -1;
1270        }
1271
1272        @Override
1273        public void forEachRemaining(Consumer<? super E> action) {
1274            Objects.requireNonNull(action);
1275            synchronized (Vector.this) {
1276                final int size = elementCount;
1277                int i = cursor;
1278                if (i >= size) {
1279                    return;
1280                }
1281                final Object[] es = elementData;
1282                if (i >= es.length)
1283                    throw new ConcurrentModificationException();
1284                while (i < size && modCount == expectedModCount)
1285                    action.accept(elementAt(es, i++));
1286                // update once at end of iteration to reduce heap write traffic
1287                cursor = i;
1288                lastRet = i - 1;
1289                checkForComodification();
1290            }
1291        }
1292
1293        final void checkForComodification() {
1294            if (modCount != expectedModCount)
1295                throw new ConcurrentModificationException();
1296        }
1297    }
1298
1299    /**
1300     * An optimized version of AbstractList.ListItr
1301     */
1302    final class ListItr extends Itr implements ListIterator<E> {
1303        ListItr(int index) {
1304            super();
1305            cursor = index;
1306        }
1307
1308        public boolean hasPrevious() {
1309            return cursor != 0;
1310        }
1311
1312        public int nextIndex() {
1313            return cursor;
1314        }
1315
1316        public int previousIndex() {
1317            return cursor - 1;
1318        }
1319
1320        public E previous() {
1321            synchronized (Vector.this) {
1322                checkForComodification();
1323                int i = cursor - 1;
1324                if (i < 0)
1325                    throw new NoSuchElementException();
1326                cursor = i;
1327                return elementData(lastRet = i);
1328            }
1329        }
1330
1331        public void set(E e) {
1332            if (lastRet == -1)
1333                throw new IllegalStateException();
1334            synchronized (Vector.this) {
1335                checkForComodification();
1336                Vector.this.set(lastRet, e);
1337            }
1338        }
1339
1340        public void add(E e) {
1341            int i = cursor;
1342            synchronized (Vector.this) {
1343                checkForComodification();
1344                Vector.this.add(i, e);
1345                expectedModCount = modCount;
1346            }
1347            cursor = i + 1;
1348            lastRet = -1;
1349        }
1350    }
1351
1352    /**
1353     * @throws NullPointerException {@inheritDoc}
1354     */
1355    @Override
1356    public synchronized void forEach(Consumer<? super E> action) {
1357        Objects.requireNonNull(action);
1358        final int expectedModCount = modCount;
1359        final Object[] es = elementData;
1360        final int size = elementCount;
1361        for (int i = 0; modCount == expectedModCount && i < size; i++)
1362            action.accept(elementAt(es, i));
1363        if (modCount != expectedModCount)
1364            throw new ConcurrentModificationException();
1365    }
1366
1367    /**
1368     * @throws NullPointerException {@inheritDoc}
1369     */
1370    @Override
1371    public synchronized void replaceAll(UnaryOperator<E> operator) {
1372        Objects.requireNonNull(operator);
1373        final int expectedModCount = modCount;
1374        final Object[] es = elementData;
1375        final int size = elementCount;
1376        for (int i = 0; modCount == expectedModCount && i < size; i++)
1377            es[i] = operator.apply(elementAt(es, i));
1378        if (modCount != expectedModCount)
1379            throw new ConcurrentModificationException();
1380        modCount++;
1381    }
1382
1383    @SuppressWarnings("unchecked")
1384    @Override
1385    public synchronized void sort(Comparator<? super E> c) {
1386        final int expectedModCount = modCount;
1387        Arrays.sort((E[]) elementData, 0, elementCount, c);
1388        if (modCount != expectedModCount)
1389            throw new ConcurrentModificationException();
1390        modCount++;
1391    }
1392
1393    /**
1394     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1395     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1396     * list.
1397     *
1398     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1399     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1400     * Overriding implementations should document the reporting of additional
1401     * characteristic values.
1402     *
1403     * @return a {@code Spliterator} over the elements in this list
1404     * @since 1.8
1405     */
1406    @Override
1407    public Spliterator<E> spliterator() {
1408        return new VectorSpliterator(null, 0, -1, 0);
1409    }
1410
1411    /** Similar to ArrayList Spliterator */
1412    final class VectorSpliterator implements Spliterator<E> {
1413        private Object[] array;
1414        private int index; // current index, modified on advance/split
1415        private int fence; // -1 until used; then one past last index
1416        private int expectedModCount; // initialized when fence set
1417
1418        /** Creates new spliterator covering the given range. */
1419        VectorSpliterator(Object[] array, int origin, int fence,
1420                          int expectedModCount) {
1421            this.array = array;
1422            this.index = origin;
1423            this.fence = fence;
1424            this.expectedModCount = expectedModCount;
1425        }
1426
1427        private int getFence() { // initialize on first use
1428            int hi;
1429            if ((hi = fence) < 0) {
1430                synchronized (Vector.this) {
1431                    array = elementData;
1432                    expectedModCount = modCount;
1433                    hi = fence = elementCount;
1434                }
1435            }
1436            return hi;
1437        }
1438
1439        public Spliterator<E> trySplit() {
1440            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1441            return (lo >= mid) ? null :
1442                new VectorSpliterator(array, lo, index = mid, expectedModCount);
1443        }
1444
1445        @SuppressWarnings("unchecked")
1446        public boolean tryAdvance(Consumer<? super E> action) {
1447            Objects.requireNonNull(action);
1448            int i;
1449            if (getFence() > (i = index)) {
1450                index = i + 1;
1451                action.accept((E)array[i]);
1452                if (modCount != expectedModCount)
1453                    throw new ConcurrentModificationException();
1454                return true;
1455            }
1456            return false;
1457        }
1458
1459        @SuppressWarnings("unchecked")
1460        public void forEachRemaining(Consumer<? super E> action) {
1461            Objects.requireNonNull(action);
1462            final int hi = getFence();
1463            final Object[] a = array;
1464            int i;
1465            for (i = index, index = hi; i < hi; i++)
1466                action.accept((E) a[i]);
1467            if (modCount != expectedModCount)
1468                throw new ConcurrentModificationException();
1469        }
1470
1471        public long estimateSize() {
1472            return getFence() - index;
1473        }
1474
1475        public int characteristics() {
1476            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1477        }
1478    }
1479
1480    void checkInvariants() {
1481        // assert elementCount >= 0;
1482        // assert elementCount == elementData.length || elementData[elementCount] == null;
1483    }
1484}
1485