1/*
2 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28import java.util.concurrent.atomic.AtomicLong;
29import java.util.function.DoubleConsumer;
30import java.util.function.IntConsumer;
31import java.util.function.LongConsumer;
32import java.util.stream.DoubleStream;
33import java.util.stream.IntStream;
34import java.util.stream.LongStream;
35import java.util.stream.StreamSupport;
36
37/**
38 * A generator of uniform pseudorandom values applicable for use in
39 * (among other contexts) isolated parallel computations that may
40 * generate subtasks. Class {@code SplittableRandom} supports methods for
41 * producing pseudorandom numbers of type {@code int}, {@code long},
42 * and {@code double} with similar usages as for class
43 * {@link java.util.Random} but differs in the following ways:
44 *
45 * <ul>
46 *
47 * <li>Series of generated values pass the DieHarder suite testing
48 * independence and uniformity properties of random number generators.
49 * (Most recently validated with <a
50 * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51 * 3.31.1</a>.) These tests validate only the methods for certain
52 * types and ranges, but similar properties are expected to hold, at
53 * least approximately, for others as well. The <em>period</em>
54 * (length of any series of generated values before it repeats) is at
55 * least 2<sup>64</sup>.
56 *
57 * <li>Method {@link #split} constructs and returns a new
58 * SplittableRandom instance that shares no mutable state with the
59 * current instance. However, with very high probability, the
60 * values collectively generated by the two objects have the same
61 * statistical properties as if the same quantity of values were
62 * generated by a single thread using a single {@code
63 * SplittableRandom} object.
64 *
65 * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66 * They are designed to be split, not shared, across threads. For
67 * example, a {@link java.util.concurrent.ForkJoinTask
68 * fork/join-style} computation using random numbers might include a
69 * construction of the form {@code new
70 * Subtask(aSplittableRandom.split()).fork()}.
71 *
72 * <li>This class provides additional methods for generating random
73 * streams, that employ the above techniques when used in {@code
74 * stream.parallel()} mode.
75 *
76 * </ul>
77 *
78 * <p>Instances of {@code SplittableRandom} are not cryptographically
79 * secure.  Consider instead using {@link java.security.SecureRandom}
80 * in security-sensitive applications. Additionally,
81 * default-constructed instances do not use a cryptographically random
82 * seed unless the {@linkplain System#getProperty system property}
83 * {@code java.util.secureRandomSeed} is set to {@code true}.
84 *
85 * @author  Guy Steele
86 * @author  Doug Lea
87 * @since   1.8
88 */
89public final class SplittableRandom {
90
91    /*
92     * Implementation Overview.
93     *
94     * This algorithm was inspired by the "DotMix" algorithm by
95     * Leiserson, Schardl, and Sukha "Deterministic Parallel
96     * Random-Number Generation for Dynamic-Multithreading Platforms",
97     * PPoPP 2012, as well as those in "Parallel random numbers: as
98     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
99     * differs mainly in simplifying and cheapening operations.
100     *
101     * The primary update step (method nextSeed()) is to add a
102     * constant ("gamma") to the current (64 bit) seed, forming a
103     * simple sequence.  The seed and the gamma values for any two
104     * SplittableRandom instances are highly likely to be different.
105     *
106     * Methods nextLong, nextInt, and derivatives do not return the
107     * sequence (seed) values, but instead a hash-like bit-mix of
108     * their bits, producing more independently distributed sequences.
109     * For nextLong, the mix64 function is based on David Stafford's
110     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111     * "Mix13" variant of the "64-bit finalizer" function in Austin
112     * Appleby's MurmurHash3 algorithm (see
113     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114     * function is based on Stafford's Mix04 mix function, but returns
115     * the upper 32 bits cast as int.
116     *
117     * The split operation uses the current generator to form the seed
118     * and gamma for another SplittableRandom.  To conservatively
119     * avoid potential correlations between seed and value generation,
120     * gamma selection (method mixGamma) uses different
121     * (Murmurhash3's) mix constants.  To avoid potential weaknesses
122     * in bit-mixing transformations, we restrict gammas to odd values
123     * with at least 24 0-1 or 1-0 bit transitions.  Rather than
124     * rejecting candidates with too few or too many bits set, method
125     * mixGamma flips some bits (which has the effect of mapping at
126     * most 4 to any given gamma value).  This reduces the effective
127     * set of 64bit odd gamma values by about 2%, and serves as an
128     * automated screening for sequence constant selection that is
129     * left as an empirical decision in some other hashing and crypto
130     * algorithms.
131     *
132     * The resulting generator thus transforms a sequence in which
133     * (typically) many bits change on each step, with an inexpensive
134     * mixer with good (but less than cryptographically secure)
135     * avalanching.
136     *
137     * The default (no-argument) constructor, in essence, invokes
138     * split() for a common "defaultGen" SplittableRandom.  Unlike
139     * other cases, this split must be performed in a thread-safe
140     * manner, so we use an AtomicLong to represent the seed rather
141     * than use an explicit SplittableRandom. To bootstrap the
142     * defaultGen, we start off using a seed based on current time
143     * unless the java.util.secureRandomSeed property is set. This
144     * serves as a slimmed-down (and insecure) variant of SecureRandom
145     * that also avoids stalls that may occur when using /dev/random.
146     *
147     * It is a relatively simple matter to apply the basic design here
148     * to use 128 bit seeds. However, emulating 128bit arithmetic and
149     * carrying around twice the state add more overhead than appears
150     * warranted for current usages.
151     *
152     * File organization: First the non-public methods that constitute
153     * the main algorithm, then the main public methods, followed by
154     * some custom spliterator classes needed for stream methods.
155     */
156
157    /**
158     * The golden ratio scaled to 64bits, used as the initial gamma
159     * value for (unsplit) SplittableRandoms.
160     */
161    private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162
163    /**
164     * The least non-zero value returned by nextDouble(). This value
165     * is scaled by a random value of 53 bits to produce a result.
166     */
167    private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168
169    /**
170     * The seed. Updated only via method nextSeed.
171     */
172    private long seed;
173
174    /**
175     * The step value.
176     */
177    private final long gamma;
178
179    /**
180     * Internal constructor used by all others except default constructor.
181     */
182    private SplittableRandom(long seed, long gamma) {
183        this.seed = seed;
184        this.gamma = gamma;
185    }
186
187    /**
188     * Computes Stafford variant 13 of 64bit mix function.
189     */
190    private static long mix64(long z) {
191        z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192        z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193        return z ^ (z >>> 31);
194    }
195
196    /**
197     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198     */
199    private static int mix32(long z) {
200        z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201        return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202    }
203
204    /**
205     * Returns the gamma value to use for a new split instance.
206     */
207    private static long mixGamma(long z) {
208        z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209        z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210        z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
211        int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
212        return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213    }
214
215    /**
216     * Adds gamma to seed.
217     */
218    private long nextSeed() {
219        return seed += gamma;
220    }
221
222    // IllegalArgumentException messages
223    static final String BAD_BOUND = "bound must be positive";
224    static final String BAD_RANGE = "bound must be greater than origin";
225    static final String BAD_SIZE  = "size must be non-negative";
226
227    /**
228     * The seed generator for default constructors.
229     */
230    private static final AtomicLong defaultGen
231        = new AtomicLong(mix64(System.currentTimeMillis()) ^
232                         mix64(System.nanoTime()));
233
234    // at end of <clinit> to survive static initialization circularity
235    static {
236        if (java.security.AccessController.doPrivileged(
237            new java.security.PrivilegedAction<Boolean>() {
238                public Boolean run() {
239                    return Boolean.getBoolean("java.util.secureRandomSeed");
240                }})) {
241            byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242            long s = (long)seedBytes[0] & 0xffL;
243            for (int i = 1; i < 8; ++i)
244                s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245            defaultGen.set(s);
246        }
247    }
248
249    /*
250     * Internal versions of nextX methods used by streams, as well as
251     * the public nextX(origin, bound) methods.  These exist mainly to
252     * avoid the need for multiple versions of stream spliterators
253     * across the different exported forms of streams.
254     */
255
256    /**
257     * The form of nextLong used by LongStream Spliterators.  If
258     * origin is greater than bound, acts as unbounded form of
259     * nextLong, else as bounded form.
260     *
261     * @param origin the least value, unless greater than bound
262     * @param bound the upper bound (exclusive), must not equal origin
263     * @return a pseudorandom value
264     */
265    final long internalNextLong(long origin, long bound) {
266        /*
267         * Four Cases:
268         *
269         * 1. If the arguments indicate unbounded form, act as
270         * nextLong().
271         *
272         * 2. If the range is an exact power of two, apply the
273         * associated bit mask.
274         *
275         * 3. If the range is positive, loop to avoid potential bias
276         * when the implicit nextLong() bound (2<sup>64</sup>) is not
277         * evenly divisible by the range. The loop rejects candidates
278         * computed from otherwise over-represented values.  The
279         * expected number of iterations under an ideal generator
280         * varies from 1 to 2, depending on the bound. The loop itself
281         * takes an unlovable form. Because the first candidate is
282         * already available, we need a break-in-the-middle
283         * construction, which is concisely but cryptically performed
284         * within the while-condition of a body-less for loop.
285         *
286         * 4. Otherwise, the range cannot be represented as a positive
287         * long.  The loop repeatedly generates unbounded longs until
288         * obtaining a candidate meeting constraints (with an expected
289         * number of iterations of less than two).
290         */
291
292        long r = mix64(nextSeed());
293        if (origin < bound) {
294            long n = bound - origin, m = n - 1;
295            if ((n & m) == 0L)  // power of two
296                r = (r & m) + origin;
297            else if (n > 0L) {  // reject over-represented candidates
298                for (long u = r >>> 1;            // ensure nonnegative
299                     u + m - (r = u % n) < 0L;    // rejection check
300                     u = mix64(nextSeed()) >>> 1) // retry
301                    ;
302                r += origin;
303            }
304            else {              // range not representable as long
305                while (r < origin || r >= bound)
306                    r = mix64(nextSeed());
307            }
308        }
309        return r;
310    }
311
312    /**
313     * The form of nextInt used by IntStream Spliterators.
314     * Exactly the same as long version, except for types.
315     *
316     * @param origin the least value, unless greater than bound
317     * @param bound the upper bound (exclusive), must not equal origin
318     * @return a pseudorandom value
319     */
320    final int internalNextInt(int origin, int bound) {
321        int r = mix32(nextSeed());
322        if (origin < bound) {
323            int n = bound - origin, m = n - 1;
324            if ((n & m) == 0)
325                r = (r & m) + origin;
326            else if (n > 0) {
327                for (int u = r >>> 1;
328                     u + m - (r = u % n) < 0;
329                     u = mix32(nextSeed()) >>> 1)
330                    ;
331                r += origin;
332            }
333            else {
334                while (r < origin || r >= bound)
335                    r = mix32(nextSeed());
336            }
337        }
338        return r;
339    }
340
341    /**
342     * The form of nextDouble used by DoubleStream Spliterators.
343     *
344     * @param origin the least value, unless greater than bound
345     * @param bound the upper bound (exclusive), must not equal origin
346     * @return a pseudorandom value
347     */
348    final double internalNextDouble(double origin, double bound) {
349        double r = (nextLong() >>> 11) * DOUBLE_UNIT;
350        if (origin < bound) {
351            r = r * (bound - origin) + origin;
352            if (r >= bound) // correct for rounding
353                r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
354        }
355        return r;
356    }
357
358    /* ---------------- public methods ---------------- */
359
360    /**
361     * Creates a new SplittableRandom instance using the specified
362     * initial seed. SplittableRandom instances created with the same
363     * seed in the same program generate identical sequences of values.
364     *
365     * @param seed the initial seed
366     */
367    public SplittableRandom(long seed) {
368        this(seed, GOLDEN_GAMMA);
369    }
370
371    /**
372     * Creates a new SplittableRandom instance that is likely to
373     * generate sequences of values that are statistically independent
374     * of those of any other instances in the current program; and
375     * may, and typically does, vary across program invocations.
376     */
377    public SplittableRandom() { // emulate defaultGen.split()
378        long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
379        this.seed = mix64(s);
380        this.gamma = mixGamma(s + GOLDEN_GAMMA);
381    }
382
383    /**
384     * Constructs and returns a new SplittableRandom instance that
385     * shares no mutable state with this instance. However, with very
386     * high probability, the set of values collectively generated by
387     * the two objects has the same statistical properties as if the
388     * same quantity of values were generated by a single thread using
389     * a single SplittableRandom object.  Either or both of the two
390     * objects may be further split using the {@code split()} method,
391     * and the same expected statistical properties apply to the
392     * entire set of generators constructed by such recursive
393     * splitting.
394     *
395     * @return the new SplittableRandom instance
396     */
397    public SplittableRandom split() {
398        return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399    }
400
401    /**
402     * Returns a pseudorandom {@code int} value.
403     *
404     * @return a pseudorandom {@code int} value
405     */
406    public int nextInt() {
407        return mix32(nextSeed());
408    }
409
410    /**
411     * Returns a pseudorandom {@code int} value between zero (inclusive)
412     * and the specified bound (exclusive).
413     *
414     * @param bound the upper bound (exclusive).  Must be positive.
415     * @return a pseudorandom {@code int} value between zero
416     *         (inclusive) and the bound (exclusive)
417     * @throws IllegalArgumentException if {@code bound} is not positive
418     */
419    public int nextInt(int bound) {
420        if (bound <= 0)
421            throw new IllegalArgumentException(BAD_BOUND);
422        // Specialize internalNextInt for origin 0
423        int r = mix32(nextSeed());
424        int m = bound - 1;
425        if ((bound & m) == 0) // power of two
426            r &= m;
427        else { // reject over-represented candidates
428            for (int u = r >>> 1;
429                 u + m - (r = u % bound) < 0;
430                 u = mix32(nextSeed()) >>> 1)
431                ;
432        }
433        return r;
434    }
435
436    /**
437     * Returns a pseudorandom {@code int} value between the specified
438     * origin (inclusive) and the specified bound (exclusive).
439     *
440     * @param origin the least value returned
441     * @param bound the upper bound (exclusive)
442     * @return a pseudorandom {@code int} value between the origin
443     *         (inclusive) and the bound (exclusive)
444     * @throws IllegalArgumentException if {@code origin} is greater than
445     *         or equal to {@code bound}
446     */
447    public int nextInt(int origin, int bound) {
448        if (origin >= bound)
449            throw new IllegalArgumentException(BAD_RANGE);
450        return internalNextInt(origin, bound);
451    }
452
453    /**
454     * Returns a pseudorandom {@code long} value.
455     *
456     * @return a pseudorandom {@code long} value
457     */
458    public long nextLong() {
459        return mix64(nextSeed());
460    }
461
462    /**
463     * Returns a pseudorandom {@code long} value between zero (inclusive)
464     * and the specified bound (exclusive).
465     *
466     * @param bound the upper bound (exclusive).  Must be positive.
467     * @return a pseudorandom {@code long} value between zero
468     *         (inclusive) and the bound (exclusive)
469     * @throws IllegalArgumentException if {@code bound} is not positive
470     */
471    public long nextLong(long bound) {
472        if (bound <= 0)
473            throw new IllegalArgumentException(BAD_BOUND);
474        // Specialize internalNextLong for origin 0
475        long r = mix64(nextSeed());
476        long m = bound - 1;
477        if ((bound & m) == 0L) // power of two
478            r &= m;
479        else { // reject over-represented candidates
480            for (long u = r >>> 1;
481                 u + m - (r = u % bound) < 0L;
482                 u = mix64(nextSeed()) >>> 1)
483                ;
484        }
485        return r;
486    }
487
488    /**
489     * Returns a pseudorandom {@code long} value between the specified
490     * origin (inclusive) and the specified bound (exclusive).
491     *
492     * @param origin the least value returned
493     * @param bound the upper bound (exclusive)
494     * @return a pseudorandom {@code long} value between the origin
495     *         (inclusive) and the bound (exclusive)
496     * @throws IllegalArgumentException if {@code origin} is greater than
497     *         or equal to {@code bound}
498     */
499    public long nextLong(long origin, long bound) {
500        if (origin >= bound)
501            throw new IllegalArgumentException(BAD_RANGE);
502        return internalNextLong(origin, bound);
503    }
504
505    /**
506     * Returns a pseudorandom {@code double} value between zero
507     * (inclusive) and one (exclusive).
508     *
509     * @return a pseudorandom {@code double} value between zero
510     *         (inclusive) and one (exclusive)
511     */
512    public double nextDouble() {
513        return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
514    }
515
516    /**
517     * Returns a pseudorandom {@code double} value between 0.0
518     * (inclusive) and the specified bound (exclusive).
519     *
520     * @param bound the upper bound (exclusive).  Must be positive.
521     * @return a pseudorandom {@code double} value between zero
522     *         (inclusive) and the bound (exclusive)
523     * @throws IllegalArgumentException if {@code bound} is not positive
524     */
525    public double nextDouble(double bound) {
526        if (!(bound > 0.0))
527            throw new IllegalArgumentException(BAD_BOUND);
528        double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
529        return (result < bound) ?  result : // correct for rounding
530            Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
531    }
532
533    /**
534     * Returns a pseudorandom {@code double} value between the specified
535     * origin (inclusive) and bound (exclusive).
536     *
537     * @param origin the least value returned
538     * @param bound the upper bound (exclusive)
539     * @return a pseudorandom {@code double} value between the origin
540     *         (inclusive) and the bound (exclusive)
541     * @throws IllegalArgumentException if {@code origin} is greater than
542     *         or equal to {@code bound}
543     */
544    public double nextDouble(double origin, double bound) {
545        if (!(origin < bound))
546            throw new IllegalArgumentException(BAD_RANGE);
547        return internalNextDouble(origin, bound);
548    }
549
550    /**
551     * Returns a pseudorandom {@code boolean} value.
552     *
553     * @return a pseudorandom {@code boolean} value
554     */
555    public boolean nextBoolean() {
556        return mix32(nextSeed()) < 0;
557    }
558
559    // stream methods, coded in a way intended to better isolate for
560    // maintenance purposes the small differences across forms.
561
562    /**
563     * Returns a stream producing the given {@code streamSize} number
564     * of pseudorandom {@code int} values from this generator and/or
565     * one split from it.
566     *
567     * @param streamSize the number of values to generate
568     * @return a stream of pseudorandom {@code int} values
569     * @throws IllegalArgumentException if {@code streamSize} is
570     *         less than zero
571     */
572    public IntStream ints(long streamSize) {
573        if (streamSize < 0L)
574            throw new IllegalArgumentException(BAD_SIZE);
575        return StreamSupport.intStream
576            (new RandomIntsSpliterator
577             (this, 0L, streamSize, Integer.MAX_VALUE, 0),
578             false);
579    }
580
581    /**
582     * Returns an effectively unlimited stream of pseudorandom {@code int}
583     * values from this generator and/or one split from it.
584     *
585     * @implNote This method is implemented to be equivalent to {@code
586     * ints(Long.MAX_VALUE)}.
587     *
588     * @return a stream of pseudorandom {@code int} values
589     */
590    public IntStream ints() {
591        return StreamSupport.intStream
592            (new RandomIntsSpliterator
593             (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
594             false);
595    }
596
597    /**
598     * Returns a stream producing the given {@code streamSize} number
599     * of pseudorandom {@code int} values from this generator and/or one split
600     * from it; each value conforms to the given origin (inclusive) and bound
601     * (exclusive).
602     *
603     * @param streamSize the number of values to generate
604     * @param randomNumberOrigin the origin (inclusive) of each random value
605     * @param randomNumberBound the bound (exclusive) of each random value
606     * @return a stream of pseudorandom {@code int} values,
607     *         each with the given origin (inclusive) and bound (exclusive)
608     * @throws IllegalArgumentException if {@code streamSize} is
609     *         less than zero, or {@code randomNumberOrigin}
610     *         is greater than or equal to {@code randomNumberBound}
611     */
612    public IntStream ints(long streamSize, int randomNumberOrigin,
613                          int randomNumberBound) {
614        if (streamSize < 0L)
615            throw new IllegalArgumentException(BAD_SIZE);
616        if (randomNumberOrigin >= randomNumberBound)
617            throw new IllegalArgumentException(BAD_RANGE);
618        return StreamSupport.intStream
619            (new RandomIntsSpliterator
620             (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
621             false);
622    }
623
624    /**
625     * Returns an effectively unlimited stream of pseudorandom {@code
626     * int} values from this generator and/or one split from it; each value
627     * conforms to the given origin (inclusive) and bound (exclusive).
628     *
629     * @implNote This method is implemented to be equivalent to {@code
630     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
631     *
632     * @param randomNumberOrigin the origin (inclusive) of each random value
633     * @param randomNumberBound the bound (exclusive) of each random value
634     * @return a stream of pseudorandom {@code int} values,
635     *         each with the given origin (inclusive) and bound (exclusive)
636     * @throws IllegalArgumentException if {@code randomNumberOrigin}
637     *         is greater than or equal to {@code randomNumberBound}
638     */
639    public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
640        if (randomNumberOrigin >= randomNumberBound)
641            throw new IllegalArgumentException(BAD_RANGE);
642        return StreamSupport.intStream
643            (new RandomIntsSpliterator
644             (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
645             false);
646    }
647
648    /**
649     * Returns a stream producing the given {@code streamSize} number
650     * of pseudorandom {@code long} values from this generator and/or
651     * one split from it.
652     *
653     * @param streamSize the number of values to generate
654     * @return a stream of pseudorandom {@code long} values
655     * @throws IllegalArgumentException if {@code streamSize} is
656     *         less than zero
657     */
658    public LongStream longs(long streamSize) {
659        if (streamSize < 0L)
660            throw new IllegalArgumentException(BAD_SIZE);
661        return StreamSupport.longStream
662            (new RandomLongsSpliterator
663             (this, 0L, streamSize, Long.MAX_VALUE, 0L),
664             false);
665    }
666
667    /**
668     * Returns an effectively unlimited stream of pseudorandom {@code
669     * long} values from this generator and/or one split from it.
670     *
671     * @implNote This method is implemented to be equivalent to {@code
672     * longs(Long.MAX_VALUE)}.
673     *
674     * @return a stream of pseudorandom {@code long} values
675     */
676    public LongStream longs() {
677        return StreamSupport.longStream
678            (new RandomLongsSpliterator
679             (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
680             false);
681    }
682
683    /**
684     * Returns a stream producing the given {@code streamSize} number of
685     * pseudorandom {@code long} values from this generator and/or one split
686     * from it; each value conforms to the given origin (inclusive) and bound
687     * (exclusive).
688     *
689     * @param streamSize the number of values to generate
690     * @param randomNumberOrigin the origin (inclusive) of each random value
691     * @param randomNumberBound the bound (exclusive) of each random value
692     * @return a stream of pseudorandom {@code long} values,
693     *         each with the given origin (inclusive) and bound (exclusive)
694     * @throws IllegalArgumentException if {@code streamSize} is
695     *         less than zero, or {@code randomNumberOrigin}
696     *         is greater than or equal to {@code randomNumberBound}
697     */
698    public LongStream longs(long streamSize, long randomNumberOrigin,
699                            long randomNumberBound) {
700        if (streamSize < 0L)
701            throw new IllegalArgumentException(BAD_SIZE);
702        if (randomNumberOrigin >= randomNumberBound)
703            throw new IllegalArgumentException(BAD_RANGE);
704        return StreamSupport.longStream
705            (new RandomLongsSpliterator
706             (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
707             false);
708    }
709
710    /**
711     * Returns an effectively unlimited stream of pseudorandom {@code
712     * long} values from this generator and/or one split from it; each value
713     * conforms to the given origin (inclusive) and bound (exclusive).
714     *
715     * @implNote This method is implemented to be equivalent to {@code
716     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
717     *
718     * @param randomNumberOrigin the origin (inclusive) of each random value
719     * @param randomNumberBound the bound (exclusive) of each random value
720     * @return a stream of pseudorandom {@code long} values,
721     *         each with the given origin (inclusive) and bound (exclusive)
722     * @throws IllegalArgumentException if {@code randomNumberOrigin}
723     *         is greater than or equal to {@code randomNumberBound}
724     */
725    public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
726        if (randomNumberOrigin >= randomNumberBound)
727            throw new IllegalArgumentException(BAD_RANGE);
728        return StreamSupport.longStream
729            (new RandomLongsSpliterator
730             (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
731             false);
732    }
733
734    /**
735     * Returns a stream producing the given {@code streamSize} number of
736     * pseudorandom {@code double} values from this generator and/or one split
737     * from it; each value is between zero (inclusive) and one (exclusive).
738     *
739     * @param streamSize the number of values to generate
740     * @return a stream of {@code double} values
741     * @throws IllegalArgumentException if {@code streamSize} is
742     *         less than zero
743     */
744    public DoubleStream doubles(long streamSize) {
745        if (streamSize < 0L)
746            throw new IllegalArgumentException(BAD_SIZE);
747        return StreamSupport.doubleStream
748            (new RandomDoublesSpliterator
749             (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
750             false);
751    }
752
753    /**
754     * Returns an effectively unlimited stream of pseudorandom {@code
755     * double} values from this generator and/or one split from it; each value
756     * is between zero (inclusive) and one (exclusive).
757     *
758     * @implNote This method is implemented to be equivalent to {@code
759     * doubles(Long.MAX_VALUE)}.
760     *
761     * @return a stream of pseudorandom {@code double} values
762     */
763    public DoubleStream doubles() {
764        return StreamSupport.doubleStream
765            (new RandomDoublesSpliterator
766             (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
767             false);
768    }
769
770    /**
771     * Returns a stream producing the given {@code streamSize} number of
772     * pseudorandom {@code double} values from this generator and/or one split
773     * from it; each value conforms to the given origin (inclusive) and bound
774     * (exclusive).
775     *
776     * @param streamSize the number of values to generate
777     * @param randomNumberOrigin the origin (inclusive) of each random value
778     * @param randomNumberBound the bound (exclusive) of each random value
779     * @return a stream of pseudorandom {@code double} values,
780     *         each with the given origin (inclusive) and bound (exclusive)
781     * @throws IllegalArgumentException if {@code streamSize} is
782     *         less than zero, or {@code randomNumberOrigin}
783     *         is greater than or equal to {@code randomNumberBound}
784     */
785    public DoubleStream doubles(long streamSize, double randomNumberOrigin,
786                                double randomNumberBound) {
787        if (streamSize < 0L)
788            throw new IllegalArgumentException(BAD_SIZE);
789        if (!(randomNumberOrigin < randomNumberBound))
790            throw new IllegalArgumentException(BAD_RANGE);
791        return StreamSupport.doubleStream
792            (new RandomDoublesSpliterator
793             (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
794             false);
795    }
796
797    /**
798     * Returns an effectively unlimited stream of pseudorandom {@code
799     * double} values from this generator and/or one split from it; each value
800     * conforms to the given origin (inclusive) and bound (exclusive).
801     *
802     * @implNote This method is implemented to be equivalent to {@code
803     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
804     *
805     * @param randomNumberOrigin the origin (inclusive) of each random value
806     * @param randomNumberBound the bound (exclusive) of each random value
807     * @return a stream of pseudorandom {@code double} values,
808     *         each with the given origin (inclusive) and bound (exclusive)
809     * @throws IllegalArgumentException if {@code randomNumberOrigin}
810     *         is greater than or equal to {@code randomNumberBound}
811     */
812    public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
813        if (!(randomNumberOrigin < randomNumberBound))
814            throw new IllegalArgumentException(BAD_RANGE);
815        return StreamSupport.doubleStream
816            (new RandomDoublesSpliterator
817             (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
818             false);
819    }
820
821    /**
822     * Spliterator for int streams.  We multiplex the four int
823     * versions into one class by treating a bound less than origin as
824     * unbounded, and also by treating "infinite" as equivalent to
825     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
826     * approach. The long and double versions of this class are
827     * identical except for types.
828     */
829    private static final class RandomIntsSpliterator
830            implements Spliterator.OfInt {
831        final SplittableRandom rng;
832        long index;
833        final long fence;
834        final int origin;
835        final int bound;
836        RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
837                              int origin, int bound) {
838            this.rng = rng; this.index = index; this.fence = fence;
839            this.origin = origin; this.bound = bound;
840        }
841
842        public RandomIntsSpliterator trySplit() {
843            long i = index, m = (i + fence) >>> 1;
844            return (m <= i) ? null :
845                new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
846        }
847
848        public long estimateSize() {
849            return fence - index;
850        }
851
852        public int characteristics() {
853            return (Spliterator.SIZED | Spliterator.SUBSIZED |
854                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
855        }
856
857        public boolean tryAdvance(IntConsumer consumer) {
858            if (consumer == null) throw new NullPointerException();
859            long i = index, f = fence;
860            if (i < f) {
861                consumer.accept(rng.internalNextInt(origin, bound));
862                index = i + 1;
863                return true;
864            }
865            return false;
866        }
867
868        public void forEachRemaining(IntConsumer consumer) {
869            if (consumer == null) throw new NullPointerException();
870            long i = index, f = fence;
871            if (i < f) {
872                index = f;
873                SplittableRandom r = rng;
874                int o = origin, b = bound;
875                do {
876                    consumer.accept(r.internalNextInt(o, b));
877                } while (++i < f);
878            }
879        }
880    }
881
882    /**
883     * Spliterator for long streams.
884     */
885    private static final class RandomLongsSpliterator
886            implements Spliterator.OfLong {
887        final SplittableRandom rng;
888        long index;
889        final long fence;
890        final long origin;
891        final long bound;
892        RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
893                               long origin, long bound) {
894            this.rng = rng; this.index = index; this.fence = fence;
895            this.origin = origin; this.bound = bound;
896        }
897
898        public RandomLongsSpliterator trySplit() {
899            long i = index, m = (i + fence) >>> 1;
900            return (m <= i) ? null :
901                new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
902        }
903
904        public long estimateSize() {
905            return fence - index;
906        }
907
908        public int characteristics() {
909            return (Spliterator.SIZED | Spliterator.SUBSIZED |
910                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
911        }
912
913        public boolean tryAdvance(LongConsumer consumer) {
914            if (consumer == null) throw new NullPointerException();
915            long i = index, f = fence;
916            if (i < f) {
917                consumer.accept(rng.internalNextLong(origin, bound));
918                index = i + 1;
919                return true;
920            }
921            return false;
922        }
923
924        public void forEachRemaining(LongConsumer consumer) {
925            if (consumer == null) throw new NullPointerException();
926            long i = index, f = fence;
927            if (i < f) {
928                index = f;
929                SplittableRandom r = rng;
930                long o = origin, b = bound;
931                do {
932                    consumer.accept(r.internalNextLong(o, b));
933                } while (++i < f);
934            }
935        }
936
937    }
938
939    /**
940     * Spliterator for double streams.
941     */
942    private static final class RandomDoublesSpliterator
943            implements Spliterator.OfDouble {
944        final SplittableRandom rng;
945        long index;
946        final long fence;
947        final double origin;
948        final double bound;
949        RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
950                                 double origin, double bound) {
951            this.rng = rng; this.index = index; this.fence = fence;
952            this.origin = origin; this.bound = bound;
953        }
954
955        public RandomDoublesSpliterator trySplit() {
956            long i = index, m = (i + fence) >>> 1;
957            return (m <= i) ? null :
958                new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
959        }
960
961        public long estimateSize() {
962            return fence - index;
963        }
964
965        public int characteristics() {
966            return (Spliterator.SIZED | Spliterator.SUBSIZED |
967                    Spliterator.NONNULL | Spliterator.IMMUTABLE);
968        }
969
970        public boolean tryAdvance(DoubleConsumer consumer) {
971            if (consumer == null) throw new NullPointerException();
972            long i = index, f = fence;
973            if (i < f) {
974                consumer.accept(rng.internalNextDouble(origin, bound));
975                index = i + 1;
976                return true;
977            }
978            return false;
979        }
980
981        public void forEachRemaining(DoubleConsumer consumer) {
982            if (consumer == null) throw new NullPointerException();
983            long i = index, f = fence;
984            if (i < f) {
985                index = f;
986                SplittableRandom r = rng;
987                double o = origin, b = bound;
988                do {
989                    consumer.accept(r.internalNextDouble(o, b));
990                } while (++i < f);
991            }
992        }
993    }
994
995}
996