1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.security.cert;
27
28import java.math.BigInteger;
29import java.security.*;
30import java.util.Collection;
31import java.util.Date;
32import java.util.List;
33import javax.security.auth.x500.X500Principal;
34
35import sun.security.x509.X509CertImpl;
36
37/**
38 * <p>
39 * Abstract class for X.509 certificates. This provides a standard
40 * way to access all the attributes of an X.509 certificate.
41 * <p>
42 * In June of 1996, the basic X.509 v3 format was completed by
43 * ISO/IEC and ANSI X9, which is described below in ASN.1:
44 * <pre>
45 * Certificate  ::=  SEQUENCE  {
46 *     tbsCertificate       TBSCertificate,
47 *     signatureAlgorithm   AlgorithmIdentifier,
48 *     signature            BIT STRING  }
49 * </pre>
50 * <p>
51 * These certificates are widely used to support authentication and
52 * other functionality in Internet security systems. Common applications
53 * include Privacy Enhanced Mail (PEM), Transport Layer Security (SSL),
54 * code signing for trusted software distribution, and Secure Electronic
55 * Transactions (SET).
56 * <p>
57 * These certificates are managed and vouched for by <em>Certificate
58 * Authorities</em> (CAs). CAs are services which create certificates by
59 * placing data in the X.509 standard format and then digitally signing
60 * that data. CAs act as trusted third parties, making introductions
61 * between principals who have no direct knowledge of each other.
62 * CA certificates are either signed by themselves, or by some other
63 * CA such as a "root" CA.
64 * <p>
65 * More information can be found in
66 * <a href="http://tools.ietf.org/html/rfc5280">RFC 5280: Internet X.509
67 * Public Key Infrastructure Certificate and CRL Profile</a>.
68 * <p>
69 * The ASN.1 definition of {@code tbsCertificate} is:
70 * <pre>
71 * TBSCertificate  ::=  SEQUENCE  {
72 *     version         [0]  EXPLICIT Version DEFAULT v1,
73 *     serialNumber         CertificateSerialNumber,
74 *     signature            AlgorithmIdentifier,
75 *     issuer               Name,
76 *     validity             Validity,
77 *     subject              Name,
78 *     subjectPublicKeyInfo SubjectPublicKeyInfo,
79 *     issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL,
80 *                          -- If present, version must be v2 or v3
81 *     subjectUniqueID [2]  IMPLICIT UniqueIdentifier OPTIONAL,
82 *                          -- If present, version must be v2 or v3
83 *     extensions      [3]  EXPLICIT Extensions OPTIONAL
84 *                          -- If present, version must be v3
85 *     }
86 * </pre>
87 * <p>
88 * Certificates are instantiated using a certificate factory. The following is
89 * an example of how to instantiate an X.509 certificate:
90 * <pre>
91 * try (InputStream inStream = new FileInputStream("fileName-of-cert")) {
92 *     CertificateFactory cf = CertificateFactory.getInstance("X.509");
93 *     X509Certificate cert = (X509Certificate)cf.generateCertificate(inStream);
94 * }
95 * </pre>
96 *
97 * @author Hemma Prafullchandra
98 * @since 1.2
99 *
100 *
101 * @see Certificate
102 * @see CertificateFactory
103 * @see X509Extension
104 */
105
106public abstract class X509Certificate extends Certificate
107implements X509Extension {
108
109    private static final long serialVersionUID = -2491127588187038216L;
110
111    private transient X500Principal subjectX500Principal, issuerX500Principal;
112
113    /**
114     * Constructor for X.509 certificates.
115     */
116    protected X509Certificate() {
117        super("X.509");
118    }
119
120    /**
121     * Checks that the certificate is currently valid. It is if
122     * the current date and time are within the validity period given in the
123     * certificate.
124     * <p>
125     * The validity period consists of two date/time values:
126     * the first and last dates (and times) on which the certificate
127     * is valid. It is defined in
128     * ASN.1 as:
129     * <pre>
130     * validity             Validity
131     *
132     * Validity ::= SEQUENCE {
133     *     notBefore      CertificateValidityDate,
134     *     notAfter       CertificateValidityDate }
135     *
136     * CertificateValidityDate ::= CHOICE {
137     *     utcTime        UTCTime,
138     *     generalTime    GeneralizedTime }
139     * </pre>
140     *
141     * @exception CertificateExpiredException if the certificate has expired.
142     * @exception CertificateNotYetValidException if the certificate is not
143     * yet valid.
144     */
145    public abstract void checkValidity()
146        throws CertificateExpiredException, CertificateNotYetValidException;
147
148    /**
149     * Checks that the given date is within the certificate's
150     * validity period. In other words, this determines whether the
151     * certificate would be valid at the given date/time.
152     *
153     * @param date the Date to check against to see if this certificate
154     *        is valid at that date/time.
155     *
156     * @exception CertificateExpiredException if the certificate has expired
157     * with respect to the {@code date} supplied.
158     * @exception CertificateNotYetValidException if the certificate is not
159     * yet valid with respect to the {@code date} supplied.
160     *
161     * @see #checkValidity()
162     */
163    public abstract void checkValidity(Date date)
164        throws CertificateExpiredException, CertificateNotYetValidException;
165
166    /**
167     * Gets the {@code version} (version number) value from the
168     * certificate.
169     * The ASN.1 definition for this is:
170     * <pre>
171     * version  [0] EXPLICIT Version DEFAULT v1
172     *
173     * Version ::=  INTEGER  {  v1(0), v2(1), v3(2)  }
174     * </pre>
175     * @return the version number, i.e. 1, 2 or 3.
176     */
177    public abstract int getVersion();
178
179    /**
180     * Gets the {@code serialNumber} value from the certificate.
181     * The serial number is an integer assigned by the certification
182     * authority to each certificate. It must be unique for each
183     * certificate issued by a given CA (i.e., the issuer name and
184     * serial number identify a unique certificate).
185     * The ASN.1 definition for this is:
186     * <pre>
187     * serialNumber     CertificateSerialNumber
188     *
189     * CertificateSerialNumber  ::=  INTEGER
190     * </pre>
191     *
192     * @return the serial number.
193     */
194    public abstract BigInteger getSerialNumber();
195
196    /**
197     * <strong>Denigrated</strong>, replaced by {@linkplain
198     * #getIssuerX500Principal()}. This method returns the {@code issuer}
199     * as an implementation specific Principal object, which should not be
200     * relied upon by portable code.
201     *
202     * <p>
203     * Gets the {@code issuer} (issuer distinguished name) value from
204     * the certificate. The issuer name identifies the entity that signed (and
205     * issued) the certificate.
206     *
207     * <p>The issuer name field contains an
208     * X.500 distinguished name (DN).
209     * The ASN.1 definition for this is:
210     * <pre>
211     * issuer    Name
212     *
213     * Name ::= CHOICE { RDNSequence }
214     * RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
215     * RelativeDistinguishedName ::=
216     *     SET OF AttributeValueAssertion
217     *
218     * AttributeValueAssertion ::= SEQUENCE {
219     *                               AttributeType,
220     *                               AttributeValue }
221     * AttributeType ::= OBJECT IDENTIFIER
222     * AttributeValue ::= ANY
223     * </pre>
224     * The {@code Name} describes a hierarchical name composed of
225     * attributes,
226     * such as country name, and corresponding values, such as US.
227     * The type of the {@code AttributeValue} component is determined by
228     * the {@code AttributeType}; in general it will be a
229     * {@code directoryString}. A {@code directoryString} is usually
230     * one of {@code PrintableString},
231     * {@code TeletexString} or {@code UniversalString}.
232     *
233     * @return a Principal whose name is the issuer distinguished name.
234     */
235    public abstract Principal getIssuerDN();
236
237    /**
238     * Returns the issuer (issuer distinguished name) value from the
239     * certificate as an {@code X500Principal}.
240     * <p>
241     * It is recommended that subclasses override this method.
242     *
243     * @return an {@code X500Principal} representing the issuer
244     *          distinguished name
245     * @since 1.4
246     */
247    public X500Principal getIssuerX500Principal() {
248        if (issuerX500Principal == null) {
249            issuerX500Principal = X509CertImpl.getIssuerX500Principal(this);
250        }
251        return issuerX500Principal;
252    }
253
254    /**
255     * <strong>Denigrated</strong>, replaced by {@linkplain
256     * #getSubjectX500Principal()}. This method returns the {@code subject}
257     * as an implementation specific Principal object, which should not be
258     * relied upon by portable code.
259     *
260     * <p>
261     * Gets the {@code subject} (subject distinguished name) value
262     * from the certificate.  If the {@code subject} value is empty,
263     * then the {@code getName()} method of the returned
264     * {@code Principal} object returns an empty string ("").
265     *
266     * <p> The ASN.1 definition for this is:
267     * <pre>
268     * subject    Name
269     * </pre>
270     *
271     * <p>See {@link #getIssuerDN() getIssuerDN} for {@code Name}
272     * and other relevant definitions.
273     *
274     * @return a Principal whose name is the subject name.
275     */
276    public abstract Principal getSubjectDN();
277
278    /**
279     * Returns the subject (subject distinguished name) value from the
280     * certificate as an {@code X500Principal}.  If the subject value
281     * is empty, then the {@code getName()} method of the returned
282     * {@code X500Principal} object returns an empty string ("").
283     * <p>
284     * It is recommended that subclasses override this method.
285     *
286     * @return an {@code X500Principal} representing the subject
287     *          distinguished name
288     * @since 1.4
289     */
290    public X500Principal getSubjectX500Principal() {
291        if (subjectX500Principal == null) {
292            subjectX500Principal = X509CertImpl.getSubjectX500Principal(this);
293        }
294        return subjectX500Principal;
295    }
296
297    /**
298     * Gets the {@code notBefore} date from the validity period of
299     * the certificate.
300     * The relevant ASN.1 definitions are:
301     * <pre>
302     * validity             Validity
303     *
304     * Validity ::= SEQUENCE {
305     *     notBefore      CertificateValidityDate,
306     *     notAfter       CertificateValidityDate }
307     *
308     * CertificateValidityDate ::= CHOICE {
309     *     utcTime        UTCTime,
310     *     generalTime    GeneralizedTime }
311     * </pre>
312     *
313     * @return the start date of the validity period.
314     * @see #checkValidity
315     */
316    public abstract Date getNotBefore();
317
318    /**
319     * Gets the {@code notAfter} date from the validity period of
320     * the certificate. See {@link #getNotBefore() getNotBefore}
321     * for relevant ASN.1 definitions.
322     *
323     * @return the end date of the validity period.
324     * @see #checkValidity
325     */
326    public abstract Date getNotAfter();
327
328    /**
329     * Gets the DER-encoded certificate information, the
330     * {@code tbsCertificate} from this certificate.
331     * This can be used to verify the signature independently.
332     *
333     * @return the DER-encoded certificate information.
334     * @exception CertificateEncodingException if an encoding error occurs.
335     */
336    public abstract byte[] getTBSCertificate()
337        throws CertificateEncodingException;
338
339    /**
340     * Gets the {@code signature} value (the raw signature bits) from
341     * the certificate.
342     * The ASN.1 definition for this is:
343     * <pre>
344     * signature     BIT STRING
345     * </pre>
346     *
347     * @return the signature.
348     */
349    public abstract byte[] getSignature();
350
351    /**
352     * Gets the signature algorithm name for the certificate
353     * signature algorithm. An example is the string "SHA256withRSA".
354     * The ASN.1 definition for this is:
355     * <pre>
356     * signatureAlgorithm   AlgorithmIdentifier
357     *
358     * AlgorithmIdentifier  ::=  SEQUENCE  {
359     *     algorithm               OBJECT IDENTIFIER,
360     *     parameters              ANY DEFINED BY algorithm OPTIONAL  }
361     *                             -- contains a value of the type
362     *                             -- registered for use with the
363     *                             -- algorithm object identifier value
364     * </pre>
365     *
366     * <p>The algorithm name is determined from the {@code algorithm}
367     * OID string.
368     *
369     * @return the signature algorithm name.
370     */
371    public abstract String getSigAlgName();
372
373    /**
374     * Gets the signature algorithm OID string from the certificate.
375     * An OID is represented by a set of nonnegative whole numbers separated
376     * by periods.
377     * For example, the string "1.2.840.10040.4.3" identifies the SHA-1
378     * with DSA signature algorithm defined in
379     * <a href="http://www.ietf.org/rfc/rfc3279.txt">RFC 3279: Algorithms and
380     * Identifiers for the Internet X.509 Public Key Infrastructure Certificate
381     * and CRL Profile</a>.
382     *
383     * <p>See {@link #getSigAlgName() getSigAlgName} for
384     * relevant ASN.1 definitions.
385     *
386     * @return the signature algorithm OID string.
387     */
388    public abstract String getSigAlgOID();
389
390    /**
391     * Gets the DER-encoded signature algorithm parameters from this
392     * certificate's signature algorithm. In most cases, the signature
393     * algorithm parameters are null; the parameters are usually
394     * supplied with the certificate's public key.
395     * If access to individual parameter values is needed then use
396     * {@link java.security.AlgorithmParameters AlgorithmParameters}
397     * and instantiate with the name returned by
398     * {@link #getSigAlgName() getSigAlgName}.
399     *
400     * <p>See {@link #getSigAlgName() getSigAlgName} for
401     * relevant ASN.1 definitions.
402     *
403     * @return the DER-encoded signature algorithm parameters, or
404     *         null if no parameters are present.
405     */
406    public abstract byte[] getSigAlgParams();
407
408    /**
409     * Gets the {@code issuerUniqueID} value from the certificate.
410     * The issuer unique identifier is present in the certificate
411     * to handle the possibility of reuse of issuer names over time.
412     * RFC 5280 recommends that names not be reused and that
413     * conforming certificates not make use of unique identifiers.
414     * Applications conforming to that profile should be capable of
415     * parsing unique identifiers and making comparisons.
416     *
417     * <p>The ASN.1 definition for this is:
418     * <pre>
419     * issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL
420     *
421     * UniqueIdentifier  ::=  BIT STRING
422     * </pre>
423     *
424     * @return the issuer unique identifier or null if it is not
425     * present in the certificate.
426     */
427    public abstract boolean[] getIssuerUniqueID();
428
429    /**
430     * Gets the {@code subjectUniqueID} value from the certificate.
431     *
432     * <p>The ASN.1 definition for this is:
433     * <pre>
434     * subjectUniqueID  [2]  IMPLICIT UniqueIdentifier OPTIONAL
435     *
436     * UniqueIdentifier  ::=  BIT STRING
437     * </pre>
438     *
439     * @return the subject unique identifier or null if it is not
440     * present in the certificate.
441     */
442    public abstract boolean[] getSubjectUniqueID();
443
444    /**
445     * Gets a boolean array representing bits of
446     * the {@code KeyUsage} extension, (OID = 2.5.29.15).
447     * The key usage extension defines the purpose (e.g., encipherment,
448     * signature, certificate signing) of the key contained in the
449     * certificate.
450     * The ASN.1 definition for this is:
451     * <pre>
452     * KeyUsage ::= BIT STRING {
453     *     digitalSignature        (0),
454     *     nonRepudiation          (1),
455     *     keyEncipherment         (2),
456     *     dataEncipherment        (3),
457     *     keyAgreement            (4),
458     *     keyCertSign             (5),
459     *     cRLSign                 (6),
460     *     encipherOnly            (7),
461     *     decipherOnly            (8) }
462     * </pre>
463     * RFC 5280 recommends that when used, this be marked
464     * as a critical extension.
465     *
466     * @return the KeyUsage extension of this certificate, represented as
467     * an array of booleans. The order of KeyUsage values in the array is
468     * the same as in the above ASN.1 definition. The array will contain a
469     * value for each KeyUsage defined above. If the KeyUsage list encoded
470     * in the certificate is longer than the above list, it will not be
471     * truncated. Returns null if this certificate does not
472     * contain a KeyUsage extension.
473     */
474    public abstract boolean[] getKeyUsage();
475
476    /**
477     * Gets an unmodifiable list of Strings representing the OBJECT
478     * IDENTIFIERs of the {@code ExtKeyUsageSyntax} field of the
479     * extended key usage extension, (OID = 2.5.29.37).  It indicates
480     * one or more purposes for which the certified public key may be
481     * used, in addition to or in place of the basic purposes
482     * indicated in the key usage extension field.  The ASN.1
483     * definition for this is:
484     * <pre>
485     * ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
486     *
487     * KeyPurposeId ::= OBJECT IDENTIFIER
488     * </pre>
489     *
490     * Key purposes may be defined by any organization with a
491     * need. Object identifiers used to identify key purposes shall be
492     * assigned in accordance with IANA or ITU-T Rec. X.660 |
493     * ISO/IEC/ITU 9834-1.
494     * <p>
495     * This method was added to version 1.4 of the Java 2 Platform Standard
496     * Edition. In order to maintain backwards compatibility with existing
497     * service providers, this method is not {@code abstract}
498     * and it provides a default implementation. Subclasses
499     * should override this method with a correct implementation.
500     *
501     * @return the ExtendedKeyUsage extension of this certificate,
502     *         as an unmodifiable list of object identifiers represented
503     *         as Strings. Returns null if this certificate does not
504     *         contain an ExtendedKeyUsage extension.
505     * @throws CertificateParsingException if the extension cannot be decoded
506     * @since 1.4
507     */
508    public List<String> getExtendedKeyUsage() throws CertificateParsingException {
509        return X509CertImpl.getExtendedKeyUsage(this);
510    }
511
512    /**
513     * Gets the certificate constraints path length from the
514     * critical {@code BasicConstraints} extension, (OID = 2.5.29.19).
515     * <p>
516     * The basic constraints extension identifies whether the subject
517     * of the certificate is a Certificate Authority (CA) and
518     * how deep a certification path may exist through that CA. The
519     * {@code pathLenConstraint} field (see below) is meaningful
520     * only if {@code cA} is set to TRUE. In this case, it gives the
521     * maximum number of CA certificates that may follow this certificate in a
522     * certification path. A value of zero indicates that only an end-entity
523     * certificate may follow in the path.
524     * <p>
525     * The ASN.1 definition for this is:
526     * <pre>
527     * BasicConstraints ::= SEQUENCE {
528     *     cA                  BOOLEAN DEFAULT FALSE,
529     *     pathLenConstraint   INTEGER (0..MAX) OPTIONAL }
530     * </pre>
531     *
532     * @return the value of {@code pathLenConstraint} if the
533     * BasicConstraints extension is present in the certificate and the
534     * subject of the certificate is a CA, otherwise -1.
535     * If the subject of the certificate is a CA and
536     * {@code pathLenConstraint} does not appear,
537     * {@code Integer.MAX_VALUE} is returned to indicate that there is no
538     * limit to the allowed length of the certification path.
539     */
540    public abstract int getBasicConstraints();
541
542    /**
543     * Gets an immutable collection of subject alternative names from the
544     * {@code SubjectAltName} extension, (OID = 2.5.29.17).
545     * <p>
546     * The ASN.1 definition of the {@code SubjectAltName} extension is:
547     * <pre>
548     * SubjectAltName ::= GeneralNames
549     *
550     * GeneralNames :: = SEQUENCE SIZE (1..MAX) OF GeneralName
551     *
552     * GeneralName ::= CHOICE {
553     *      otherName                       [0]     OtherName,
554     *      rfc822Name                      [1]     IA5String,
555     *      dNSName                         [2]     IA5String,
556     *      x400Address                     [3]     ORAddress,
557     *      directoryName                   [4]     Name,
558     *      ediPartyName                    [5]     EDIPartyName,
559     *      uniformResourceIdentifier       [6]     IA5String,
560     *      iPAddress                       [7]     OCTET STRING,
561     *      registeredID                    [8]     OBJECT IDENTIFIER}
562     * </pre>
563     * <p>
564     * If this certificate does not contain a {@code SubjectAltName}
565     * extension, {@code null} is returned. Otherwise, a
566     * {@code Collection} is returned with an entry representing each
567     * {@code GeneralName} included in the extension. Each entry is a
568     * {@code List} whose first entry is an {@code Integer}
569     * (the name type, 0-8) and whose second entry is a {@code String}
570     * or a byte array (the name, in string or ASN.1 DER encoded form,
571     * respectively).
572     * <p>
573     * <a href="http://www.ietf.org/rfc/rfc822.txt">RFC 822</a>, DNS, and URI
574     * names are returned as {@code String}s,
575     * using the well-established string formats for those types (subject to
576     * the restrictions included in RFC 5280). IPv4 address names are
577     * returned using dotted quad notation. IPv6 address names are returned
578     * in the form "a1:a2:...:a8", where a1-a8 are hexadecimal values
579     * representing the eight 16-bit pieces of the address. OID names are
580     * returned as {@code String}s represented as a series of nonnegative
581     * integers separated by periods. And directory names (distinguished names)
582     * are returned in <a href="http://www.ietf.org/rfc/rfc2253.txt">
583     * RFC 2253</a> string format. No standard string format is
584     * defined for otherNames, X.400 names, EDI party names, or any
585     * other type of names. They are returned as byte arrays
586     * containing the ASN.1 DER encoded form of the name.
587     * <p>
588     * Note that the {@code Collection} returned may contain more
589     * than one name of the same type. Also, note that the returned
590     * {@code Collection} is immutable and any entries containing byte
591     * arrays are cloned to protect against subsequent modifications.
592     * <p>
593     * This method was added to version 1.4 of the Java 2 Platform Standard
594     * Edition. In order to maintain backwards compatibility with existing
595     * service providers, this method is not {@code abstract}
596     * and it provides a default implementation. Subclasses
597     * should override this method with a correct implementation.
598     *
599     * @return an immutable {@code Collection} of subject alternative
600     * names (or {@code null})
601     * @throws CertificateParsingException if the extension cannot be decoded
602     * @since 1.4
603     */
604    public Collection<List<?>> getSubjectAlternativeNames()
605        throws CertificateParsingException {
606        return X509CertImpl.getSubjectAlternativeNames(this);
607    }
608
609    /**
610     * Gets an immutable collection of issuer alternative names from the
611     * {@code IssuerAltName} extension, (OID = 2.5.29.18).
612     * <p>
613     * The ASN.1 definition of the {@code IssuerAltName} extension is:
614     * <pre>
615     * IssuerAltName ::= GeneralNames
616     * </pre>
617     * The ASN.1 definition of {@code GeneralNames} is defined
618     * in {@link #getSubjectAlternativeNames getSubjectAlternativeNames}.
619     * <p>
620     * If this certificate does not contain an {@code IssuerAltName}
621     * extension, {@code null} is returned. Otherwise, a
622     * {@code Collection} is returned with an entry representing each
623     * {@code GeneralName} included in the extension. Each entry is a
624     * {@code List} whose first entry is an {@code Integer}
625     * (the name type, 0-8) and whose second entry is a {@code String}
626     * or a byte array (the name, in string or ASN.1 DER encoded form,
627     * respectively). For more details about the formats used for each
628     * name type, see the {@code getSubjectAlternativeNames} method.
629     * <p>
630     * Note that the {@code Collection} returned may contain more
631     * than one name of the same type. Also, note that the returned
632     * {@code Collection} is immutable and any entries containing byte
633     * arrays are cloned to protect against subsequent modifications.
634     * <p>
635     * This method was added to version 1.4 of the Java 2 Platform Standard
636     * Edition. In order to maintain backwards compatibility with existing
637     * service providers, this method is not {@code abstract}
638     * and it provides a default implementation. Subclasses
639     * should override this method with a correct implementation.
640     *
641     * @return an immutable {@code Collection} of issuer alternative
642     * names (or {@code null})
643     * @throws CertificateParsingException if the extension cannot be decoded
644     * @since 1.4
645     */
646    public Collection<List<?>> getIssuerAlternativeNames()
647        throws CertificateParsingException {
648        return X509CertImpl.getIssuerAlternativeNames(this);
649    }
650
651     /**
652     * Verifies that this certificate was signed using the
653     * private key that corresponds to the specified public key.
654     * This method uses the signature verification engine
655     * supplied by the specified provider. Note that the specified
656     * Provider object does not have to be registered in the provider list.
657     *
658     * This method was added to version 1.8 of the Java Platform Standard
659     * Edition. In order to maintain backwards compatibility with existing
660     * service providers, this method is not {@code abstract}
661     * and it provides a default implementation.
662     *
663     * @param key the PublicKey used to carry out the verification.
664     * @param sigProvider the signature provider.
665     *
666     * @exception NoSuchAlgorithmException on unsupported signature
667     * algorithms.
668     * @exception InvalidKeyException on incorrect key.
669     * @exception SignatureException on signature errors.
670     * @exception CertificateException on encoding errors.
671     * @exception UnsupportedOperationException if the method is not supported
672     * @since 1.8
673     */
674    public void verify(PublicKey key, Provider sigProvider)
675        throws CertificateException, NoSuchAlgorithmException,
676        InvalidKeyException, SignatureException {
677        X509CertImpl.verify(this, key, sigProvider);
678    }
679}
680