1/*
2 * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.lang;
27
28import java.io.ObjectStreamField;
29import java.io.UnsupportedEncodingException;
30import java.nio.charset.Charset;
31import java.util.ArrayList;
32import java.util.Arrays;
33import java.util.Comparator;
34import java.util.Formatter;
35import java.util.Locale;
36import java.util.Objects;
37import java.util.Spliterator;
38import java.util.StringJoiner;
39import java.util.regex.Matcher;
40import java.util.regex.Pattern;
41import java.util.regex.PatternSyntaxException;
42import java.util.stream.IntStream;
43import java.util.stream.StreamSupport;
44import jdk.internal.HotSpotIntrinsicCandidate;
45import jdk.internal.vm.annotation.Stable;
46
47/**
48 * The {@code String} class represents character strings. All
49 * string literals in Java programs, such as {@code "abc"}, are
50 * implemented as instances of this class.
51 * <p>
52 * Strings are constant; their values cannot be changed after they
53 * are created. String buffers support mutable strings.
54 * Because String objects are immutable they can be shared. For example:
55 * <blockquote><pre>
56 *     String str = "abc";
57 * </pre></blockquote><p>
58 * is equivalent to:
59 * <blockquote><pre>
60 *     char data[] = {'a', 'b', 'c'};
61 *     String str = new String(data);
62 * </pre></blockquote><p>
63 * Here are some more examples of how strings can be used:
64 * <blockquote><pre>
65 *     System.out.println("abc");
66 *     String cde = "cde";
67 *     System.out.println("abc" + cde);
68 *     String c = "abc".substring(2,3);
69 *     String d = cde.substring(1, 2);
70 * </pre></blockquote>
71 * <p>
72 * The class {@code String} includes methods for examining
73 * individual characters of the sequence, for comparing strings, for
74 * searching strings, for extracting substrings, and for creating a
75 * copy of a string with all characters translated to uppercase or to
76 * lowercase. Case mapping is based on the Unicode Standard version
77 * specified by the {@link java.lang.Character Character} class.
78 * <p>
79 * The Java language provides special support for the string
80 * concatenation operator (&nbsp;+&nbsp;), and for conversion of
81 * other objects to strings. For additional information on string
82 * concatenation and conversion, see <i>The Java&trade; Language Specification</i>.
83 *
84 * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
85 * or method in this class will cause a {@link NullPointerException} to be
86 * thrown.
87 *
88 * <p>A {@code String} represents a string in the UTF-16 format
89 * in which <em>supplementary characters</em> are represented by <em>surrogate
90 * pairs</em> (see the section <a href="Character.html#unicode">Unicode
91 * Character Representations</a> in the {@code Character} class for
92 * more information).
93 * Index values refer to {@code char} code units, so a supplementary
94 * character uses two positions in a {@code String}.
95 * <p>The {@code String} class provides methods for dealing with
96 * Unicode code points (i.e., characters), in addition to those for
97 * dealing with Unicode code units (i.e., {@code char} values).
98 *
99 * <p>Unless otherwise noted, methods for comparing Strings do not take locale
100 * into account.  The {@link java.text.Collator} class provides methods for
101 * finer-grain, locale-sensitive String comparison.
102 *
103 * @implNote The implementation of the string concatenation operator is left to
104 * the discretion of a Java compiler, as long as the compiler ultimately conforms
105 * to <i>The Java&trade; Language Specification</i>. For example, the {@code javac} compiler
106 * may implement the operator with {@code StringBuffer}, {@code StringBuilder},
107 * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
108 * implementation of string conversion is typically through the method {@code toString},
109 * defined by {@code Object} and inherited by all classes in Java.
110 *
111 * @author  Lee Boynton
112 * @author  Arthur van Hoff
113 * @author  Martin Buchholz
114 * @author  Ulf Zibis
115 * @see     java.lang.Object#toString()
116 * @see     java.lang.StringBuffer
117 * @see     java.lang.StringBuilder
118 * @see     java.nio.charset.Charset
119 * @since   1.0
120 * @jls     15.18.1 String Concatenation Operator +
121 */
122
123public final class String
124    implements java.io.Serializable, Comparable<String>, CharSequence {
125
126    /**
127     * The value is used for character storage.
128     *
129     * @implNote This field is trusted by the VM, and is a subject to
130     * constant folding if String instance is constant. Overwriting this
131     * field after construction will cause problems.
132     *
133     * Additionally, it is marked with {@link Stable} to trust the contents
134     * of the array. No other facility in JDK provides this functionality (yet).
135     * {@link Stable} is safe here, because value is never null.
136     */
137    @Stable
138    private final byte[] value;
139
140    /**
141     * The identifier of the encoding used to encode the bytes in
142     * {@code value}. The supported values in this implementation are
143     *
144     * LATIN1
145     * UTF16
146     *
147     * @implNote This field is trusted by the VM, and is a subject to
148     * constant folding if String instance is constant. Overwriting this
149     * field after construction will cause problems.
150     */
151    private final byte coder;
152
153    /** Cache the hash code for the string */
154    private int hash; // Default to 0
155
156    /** use serialVersionUID from JDK 1.0.2 for interoperability */
157    private static final long serialVersionUID = -6849794470754667710L;
158
159    /**
160     * If String compaction is disabled, the bytes in {@code value} are
161     * always encoded in UTF16.
162     *
163     * For methods with several possible implementation paths, when String
164     * compaction is disabled, only one code path is taken.
165     *
166     * The instance field value is generally opaque to optimizing JIT
167     * compilers. Therefore, in performance-sensitive place, an explicit
168     * check of the static boolean {@code COMPACT_STRINGS} is done first
169     * before checking the {@code coder} field since the static boolean
170     * {@code COMPACT_STRINGS} would be constant folded away by an
171     * optimizing JIT compiler. The idioms for these cases are as follows.
172     *
173     * For code such as:
174     *
175     *    if (coder == LATIN1) { ... }
176     *
177     * can be written more optimally as
178     *
179     *    if (coder() == LATIN1) { ... }
180     *
181     * or:
182     *
183     *    if (COMPACT_STRINGS && coder == LATIN1) { ... }
184     *
185     * An optimizing JIT compiler can fold the above conditional as:
186     *
187     *    COMPACT_STRINGS == true  => if (coder == LATIN1) { ... }
188     *    COMPACT_STRINGS == false => if (false)           { ... }
189     *
190     * @implNote
191     * The actual value for this field is injected by JVM. The static
192     * initialization block is used to set the value here to communicate
193     * that this static final field is not statically foldable, and to
194     * avoid any possible circular dependency during vm initialization.
195     */
196    static final boolean COMPACT_STRINGS;
197
198    static {
199        COMPACT_STRINGS = true;
200    }
201
202    /**
203     * Class String is special cased within the Serialization Stream Protocol.
204     *
205     * A String instance is written into an ObjectOutputStream according to
206     * <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements">
207     * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
208     */
209    private static final ObjectStreamField[] serialPersistentFields =
210        new ObjectStreamField[0];
211
212    /**
213     * Initializes a newly created {@code String} object so that it represents
214     * an empty character sequence.  Note that use of this constructor is
215     * unnecessary since Strings are immutable.
216     */
217    public String() {
218        this.value = "".value;
219        this.coder = "".coder;
220    }
221
222    /**
223     * Initializes a newly created {@code String} object so that it represents
224     * the same sequence of characters as the argument; in other words, the
225     * newly created string is a copy of the argument string. Unless an
226     * explicit copy of {@code original} is needed, use of this constructor is
227     * unnecessary since Strings are immutable.
228     *
229     * @param  original
230     *         A {@code String}
231     */
232    @HotSpotIntrinsicCandidate
233    public String(String original) {
234        this.value = original.value;
235        this.coder = original.coder;
236        this.hash = original.hash;
237    }
238
239    /**
240     * Allocates a new {@code String} so that it represents the sequence of
241     * characters currently contained in the character array argument. The
242     * contents of the character array are copied; subsequent modification of
243     * the character array does not affect the newly created string.
244     *
245     * @param  value
246     *         The initial value of the string
247     */
248    public String(char value[]) {
249        this(value, 0, value.length, null);
250    }
251
252    /**
253     * Allocates a new {@code String} that contains characters from a subarray
254     * of the character array argument. The {@code offset} argument is the
255     * index of the first character of the subarray and the {@code count}
256     * argument specifies the length of the subarray. The contents of the
257     * subarray are copied; subsequent modification of the character array does
258     * not affect the newly created string.
259     *
260     * @param  value
261     *         Array that is the source of characters
262     *
263     * @param  offset
264     *         The initial offset
265     *
266     * @param  count
267     *         The length
268     *
269     * @throws  IndexOutOfBoundsException
270     *          If {@code offset} is negative, {@code count} is negative, or
271     *          {@code offset} is greater than {@code value.length - count}
272     */
273    public String(char value[], int offset, int count) {
274        this(value, offset, count, rangeCheck(value, offset, count));
275    }
276
277    private static Void rangeCheck(char[] value, int offset, int count) {
278        checkBoundsOffCount(offset, count, value.length);
279        return null;
280    }
281
282    /**
283     * Allocates a new {@code String} that contains characters from a subarray
284     * of the <a href="Character.html#unicode">Unicode code point</a> array
285     * argument.  The {@code offset} argument is the index of the first code
286     * point of the subarray and the {@code count} argument specifies the
287     * length of the subarray.  The contents of the subarray are converted to
288     * {@code char}s; subsequent modification of the {@code int} array does not
289     * affect the newly created string.
290     *
291     * @param  codePoints
292     *         Array that is the source of Unicode code points
293     *
294     * @param  offset
295     *         The initial offset
296     *
297     * @param  count
298     *         The length
299     *
300     * @throws  IllegalArgumentException
301     *          If any invalid Unicode code point is found in {@code
302     *          codePoints}
303     *
304     * @throws  IndexOutOfBoundsException
305     *          If {@code offset} is negative, {@code count} is negative, or
306     *          {@code offset} is greater than {@code codePoints.length - count}
307     *
308     * @since  1.5
309     */
310    public String(int[] codePoints, int offset, int count) {
311        checkBoundsOffCount(offset, count, codePoints.length);
312        if (count == 0) {
313            this.value = "".value;
314            this.coder = "".coder;
315            return;
316        }
317        if (COMPACT_STRINGS) {
318            byte[] val = StringLatin1.toBytes(codePoints, offset, count);
319            if (val != null) {
320                this.coder = LATIN1;
321                this.value = val;
322                return;
323            }
324        }
325        this.coder = UTF16;
326        this.value = StringUTF16.toBytes(codePoints, offset, count);
327    }
328
329    /**
330     * Allocates a new {@code String} constructed from a subarray of an array
331     * of 8-bit integer values.
332     *
333     * <p> The {@code offset} argument is the index of the first byte of the
334     * subarray, and the {@code count} argument specifies the length of the
335     * subarray.
336     *
337     * <p> Each {@code byte} in the subarray is converted to a {@code char} as
338     * specified in the {@link #String(byte[],int) String(byte[],int)} constructor.
339     *
340     * @deprecated This method does not properly convert bytes into characters.
341     * As of JDK&nbsp;1.1, the preferred way to do this is via the
342     * {@code String} constructors that take a {@link
343     * java.nio.charset.Charset}, charset name, or that use the platform's
344     * default charset.
345     *
346     * @param  ascii
347     *         The bytes to be converted to characters
348     *
349     * @param  hibyte
350     *         The top 8 bits of each 16-bit Unicode code unit
351     *
352     * @param  offset
353     *         The initial offset
354     * @param  count
355     *         The length
356     *
357     * @throws  IndexOutOfBoundsException
358     *          If {@code offset} is negative, {@code count} is negative, or
359     *          {@code offset} is greater than {@code ascii.length - count}
360     *
361     * @see  #String(byte[], int)
362     * @see  #String(byte[], int, int, java.lang.String)
363     * @see  #String(byte[], int, int, java.nio.charset.Charset)
364     * @see  #String(byte[], int, int)
365     * @see  #String(byte[], java.lang.String)
366     * @see  #String(byte[], java.nio.charset.Charset)
367     * @see  #String(byte[])
368     */
369    @Deprecated(since="1.1")
370    public String(byte ascii[], int hibyte, int offset, int count) {
371        checkBoundsOffCount(offset, count, ascii.length);
372        if (count == 0) {
373            this.value = "".value;
374            this.coder = "".coder;
375            return;
376        }
377        if (COMPACT_STRINGS && (byte)hibyte == 0) {
378            this.value = Arrays.copyOfRange(ascii, offset, offset + count);
379            this.coder = LATIN1;
380        } else {
381            hibyte <<= 8;
382            byte[] val = StringUTF16.newBytesFor(count);
383            for (int i = 0; i < count; i++) {
384                StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
385            }
386            this.value = val;
387            this.coder = UTF16;
388        }
389    }
390
391    /**
392     * Allocates a new {@code String} containing characters constructed from
393     * an array of 8-bit integer values. Each character <i>c</i> in the
394     * resulting string is constructed from the corresponding component
395     * <i>b</i> in the byte array such that:
396     *
397     * <blockquote><pre>
398     *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
399     *                         | (<b><i>b</i></b> &amp; 0xff))
400     * </pre></blockquote>
401     *
402     * @deprecated  This method does not properly convert bytes into
403     * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
404     * {@code String} constructors that take a {@link
405     * java.nio.charset.Charset}, charset name, or that use the platform's
406     * default charset.
407     *
408     * @param  ascii
409     *         The bytes to be converted to characters
410     *
411     * @param  hibyte
412     *         The top 8 bits of each 16-bit Unicode code unit
413     *
414     * @see  #String(byte[], int, int, java.lang.String)
415     * @see  #String(byte[], int, int, java.nio.charset.Charset)
416     * @see  #String(byte[], int, int)
417     * @see  #String(byte[], java.lang.String)
418     * @see  #String(byte[], java.nio.charset.Charset)
419     * @see  #String(byte[])
420     */
421    @Deprecated(since="1.1")
422    public String(byte ascii[], int hibyte) {
423        this(ascii, hibyte, 0, ascii.length);
424    }
425
426    /**
427     * Constructs a new {@code String} by decoding the specified subarray of
428     * bytes using the specified charset.  The length of the new {@code String}
429     * is a function of the charset, and hence may not be equal to the length
430     * of the subarray.
431     *
432     * <p> The behavior of this constructor when the given bytes are not valid
433     * in the given charset is unspecified.  The {@link
434     * java.nio.charset.CharsetDecoder} class should be used when more control
435     * over the decoding process is required.
436     *
437     * @param  bytes
438     *         The bytes to be decoded into characters
439     *
440     * @param  offset
441     *         The index of the first byte to decode
442     *
443     * @param  length
444     *         The number of bytes to decode
445
446     * @param  charsetName
447     *         The name of a supported {@linkplain java.nio.charset.Charset
448     *         charset}
449     *
450     * @throws  UnsupportedEncodingException
451     *          If the named charset is not supported
452     *
453     * @throws  IndexOutOfBoundsException
454     *          If {@code offset} is negative, {@code length} is negative, or
455     *          {@code offset} is greater than {@code bytes.length - length}
456     *
457     * @since  1.1
458     */
459    public String(byte bytes[], int offset, int length, String charsetName)
460            throws UnsupportedEncodingException {
461        if (charsetName == null)
462            throw new NullPointerException("charsetName");
463        checkBoundsOffCount(offset, length, bytes.length);
464        StringCoding.Result ret =
465            StringCoding.decode(charsetName, bytes, offset, length);
466        this.value = ret.value;
467        this.coder = ret.coder;
468    }
469
470    /**
471     * Constructs a new {@code String} by decoding the specified subarray of
472     * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
473     * The length of the new {@code String} is a function of the charset, and
474     * hence may not be equal to the length of the subarray.
475     *
476     * <p> This method always replaces malformed-input and unmappable-character
477     * sequences with this charset's default replacement string.  The {@link
478     * java.nio.charset.CharsetDecoder} class should be used when more control
479     * over the decoding process is required.
480     *
481     * @param  bytes
482     *         The bytes to be decoded into characters
483     *
484     * @param  offset
485     *         The index of the first byte to decode
486     *
487     * @param  length
488     *         The number of bytes to decode
489     *
490     * @param  charset
491     *         The {@linkplain java.nio.charset.Charset charset} to be used to
492     *         decode the {@code bytes}
493     *
494     * @throws  IndexOutOfBoundsException
495     *          If {@code offset} is negative, {@code length} is negative, or
496     *          {@code offset} is greater than {@code bytes.length - length}
497     *
498     * @since  1.6
499     */
500    public String(byte bytes[], int offset, int length, Charset charset) {
501        if (charset == null)
502            throw new NullPointerException("charset");
503        checkBoundsOffCount(offset, length, bytes.length);
504        StringCoding.Result ret =
505            StringCoding.decode(charset, bytes, offset, length);
506        this.value = ret.value;
507        this.coder = ret.coder;
508    }
509
510    /**
511     * Constructs a new {@code String} by decoding the specified array of bytes
512     * using the specified {@linkplain java.nio.charset.Charset charset}.  The
513     * length of the new {@code String} is a function of the charset, and hence
514     * may not be equal to the length of the byte array.
515     *
516     * <p> The behavior of this constructor when the given bytes are not valid
517     * in the given charset is unspecified.  The {@link
518     * java.nio.charset.CharsetDecoder} class should be used when more control
519     * over the decoding process is required.
520     *
521     * @param  bytes
522     *         The bytes to be decoded into characters
523     *
524     * @param  charsetName
525     *         The name of a supported {@linkplain java.nio.charset.Charset
526     *         charset}
527     *
528     * @throws  UnsupportedEncodingException
529     *          If the named charset is not supported
530     *
531     * @since  1.1
532     */
533    public String(byte bytes[], String charsetName)
534            throws UnsupportedEncodingException {
535        this(bytes, 0, bytes.length, charsetName);
536    }
537
538    /**
539     * Constructs a new {@code String} by decoding the specified array of
540     * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
541     * The length of the new {@code String} is a function of the charset, and
542     * hence may not be equal to the length of the byte array.
543     *
544     * <p> This method always replaces malformed-input and unmappable-character
545     * sequences with this charset's default replacement string.  The {@link
546     * java.nio.charset.CharsetDecoder} class should be used when more control
547     * over the decoding process is required.
548     *
549     * @param  bytes
550     *         The bytes to be decoded into characters
551     *
552     * @param  charset
553     *         The {@linkplain java.nio.charset.Charset charset} to be used to
554     *         decode the {@code bytes}
555     *
556     * @since  1.6
557     */
558    public String(byte bytes[], Charset charset) {
559        this(bytes, 0, bytes.length, charset);
560    }
561
562    /**
563     * Constructs a new {@code String} by decoding the specified subarray of
564     * bytes using the platform's default charset.  The length of the new
565     * {@code String} is a function of the charset, and hence may not be equal
566     * to the length of the subarray.
567     *
568     * <p> The behavior of this constructor when the given bytes are not valid
569     * in the default charset is unspecified.  The {@link
570     * java.nio.charset.CharsetDecoder} class should be used when more control
571     * over the decoding process is required.
572     *
573     * @param  bytes
574     *         The bytes to be decoded into characters
575     *
576     * @param  offset
577     *         The index of the first byte to decode
578     *
579     * @param  length
580     *         The number of bytes to decode
581     *
582     * @throws  IndexOutOfBoundsException
583     *          If {@code offset} is negative, {@code length} is negative, or
584     *          {@code offset} is greater than {@code bytes.length - length}
585     *
586     * @since  1.1
587     */
588    public String(byte bytes[], int offset, int length) {
589        checkBoundsOffCount(offset, length, bytes.length);
590        StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
591        this.value = ret.value;
592        this.coder = ret.coder;
593    }
594
595    /**
596     * Constructs a new {@code String} by decoding the specified array of bytes
597     * using the platform's default charset.  The length of the new {@code
598     * String} is a function of the charset, and hence may not be equal to the
599     * length of the byte array.
600     *
601     * <p> The behavior of this constructor when the given bytes are not valid
602     * in the default charset is unspecified.  The {@link
603     * java.nio.charset.CharsetDecoder} class should be used when more control
604     * over the decoding process is required.
605     *
606     * @param  bytes
607     *         The bytes to be decoded into characters
608     *
609     * @since  1.1
610     */
611    public String(byte[] bytes) {
612        this(bytes, 0, bytes.length);
613    }
614
615    /**
616     * Allocates a new string that contains the sequence of characters
617     * currently contained in the string buffer argument. The contents of the
618     * string buffer are copied; subsequent modification of the string buffer
619     * does not affect the newly created string.
620     *
621     * @param  buffer
622     *         A {@code StringBuffer}
623     */
624    public String(StringBuffer buffer) {
625        this(buffer.toString());
626    }
627
628    /**
629     * Allocates a new string that contains the sequence of characters
630     * currently contained in the string builder argument. The contents of the
631     * string builder are copied; subsequent modification of the string builder
632     * does not affect the newly created string.
633     *
634     * <p> This constructor is provided to ease migration to {@code
635     * StringBuilder}. Obtaining a string from a string builder via the {@code
636     * toString} method is likely to run faster and is generally preferred.
637     *
638     * @param   builder
639     *          A {@code StringBuilder}
640     *
641     * @since  1.5
642     */
643    public String(StringBuilder builder) {
644        this(builder, null);
645    }
646
647   /*
648    * Package private constructor which shares value array for speed.
649    * this constructor is always expected to be called with share==true.
650    * a separate constructor is needed because we already have a public
651    * String(char[]) constructor that makes a copy of the given char[].
652    */
653    // TBD: this is kept for package internal use (Thread/System),
654    // should be removed if they all have a byte[] version
655    String(char[] val, boolean share) {
656        // assert share : "unshared not supported";
657        this(val, 0, val.length, null);
658    }
659
660    /**
661     * Returns the length of this string.
662     * The length is equal to the number of <a href="Character.html#unicode">Unicode
663     * code units</a> in the string.
664     *
665     * @return  the length of the sequence of characters represented by this
666     *          object.
667     */
668    public int length() {
669        return value.length >> coder();
670    }
671
672    /**
673     * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
674     *
675     * @return {@code true} if {@link #length()} is {@code 0}, otherwise
676     * {@code false}
677     *
678     * @since 1.6
679     */
680    public boolean isEmpty() {
681        return value.length == 0;
682    }
683
684    /**
685     * Returns the {@code char} value at the
686     * specified index. An index ranges from {@code 0} to
687     * {@code length() - 1}. The first {@code char} value of the sequence
688     * is at index {@code 0}, the next at index {@code 1},
689     * and so on, as for array indexing.
690     *
691     * <p>If the {@code char} value specified by the index is a
692     * <a href="Character.html#unicode">surrogate</a>, the surrogate
693     * value is returned.
694     *
695     * @param      index   the index of the {@code char} value.
696     * @return     the {@code char} value at the specified index of this string.
697     *             The first {@code char} value is at index {@code 0}.
698     * @exception  IndexOutOfBoundsException  if the {@code index}
699     *             argument is negative or not less than the length of this
700     *             string.
701     */
702    public char charAt(int index) {
703        if (isLatin1()) {
704            return StringLatin1.charAt(value, index);
705        } else {
706            return StringUTF16.charAt(value, index);
707        }
708    }
709
710    /**
711     * Returns the character (Unicode code point) at the specified
712     * index. The index refers to {@code char} values
713     * (Unicode code units) and ranges from {@code 0} to
714     * {@link #length()}{@code  - 1}.
715     *
716     * <p> If the {@code char} value specified at the given index
717     * is in the high-surrogate range, the following index is less
718     * than the length of this {@code String}, and the
719     * {@code char} value at the following index is in the
720     * low-surrogate range, then the supplementary code point
721     * corresponding to this surrogate pair is returned. Otherwise,
722     * the {@code char} value at the given index is returned.
723     *
724     * @param      index the index to the {@code char} values
725     * @return     the code point value of the character at the
726     *             {@code index}
727     * @exception  IndexOutOfBoundsException  if the {@code index}
728     *             argument is negative or not less than the length of this
729     *             string.
730     * @since      1.5
731     */
732    public int codePointAt(int index) {
733        if (isLatin1()) {
734            checkIndex(index, value.length);
735            return value[index] & 0xff;
736        }
737        int length = value.length >> 1;
738        checkIndex(index, length);
739        return StringUTF16.codePointAt(value, index, length);
740    }
741
742    /**
743     * Returns the character (Unicode code point) before the specified
744     * index. The index refers to {@code char} values
745     * (Unicode code units) and ranges from {@code 1} to {@link
746     * CharSequence#length() length}.
747     *
748     * <p> If the {@code char} value at {@code (index - 1)}
749     * is in the low-surrogate range, {@code (index - 2)} is not
750     * negative, and the {@code char} value at {@code (index -
751     * 2)} is in the high-surrogate range, then the
752     * supplementary code point value of the surrogate pair is
753     * returned. If the {@code char} value at {@code index -
754     * 1} is an unpaired low-surrogate or a high-surrogate, the
755     * surrogate value is returned.
756     *
757     * @param     index the index following the code point that should be returned
758     * @return    the Unicode code point value before the given index.
759     * @exception IndexOutOfBoundsException if the {@code index}
760     *            argument is less than 1 or greater than the length
761     *            of this string.
762     * @since     1.5
763     */
764    public int codePointBefore(int index) {
765        int i = index - 1;
766        if (i < 0 || i >= length()) {
767            throw new StringIndexOutOfBoundsException(index);
768        }
769        if (isLatin1()) {
770            return (value[i] & 0xff);
771        }
772        return StringUTF16.codePointBefore(value, index);
773    }
774
775    /**
776     * Returns the number of Unicode code points in the specified text
777     * range of this {@code String}. The text range begins at the
778     * specified {@code beginIndex} and extends to the
779     * {@code char} at index {@code endIndex - 1}. Thus the
780     * length (in {@code char}s) of the text range is
781     * {@code endIndex-beginIndex}. Unpaired surrogates within
782     * the text range count as one code point each.
783     *
784     * @param beginIndex the index to the first {@code char} of
785     * the text range.
786     * @param endIndex the index after the last {@code char} of
787     * the text range.
788     * @return the number of Unicode code points in the specified text
789     * range
790     * @exception IndexOutOfBoundsException if the
791     * {@code beginIndex} is negative, or {@code endIndex}
792     * is larger than the length of this {@code String}, or
793     * {@code beginIndex} is larger than {@code endIndex}.
794     * @since  1.5
795     */
796    public int codePointCount(int beginIndex, int endIndex) {
797        if (beginIndex < 0 || beginIndex > endIndex ||
798            endIndex > length()) {
799            throw new IndexOutOfBoundsException();
800        }
801        if (isLatin1()) {
802            return endIndex - beginIndex;
803        }
804        return StringUTF16.codePointCount(value, beginIndex, endIndex);
805    }
806
807    /**
808     * Returns the index within this {@code String} that is
809     * offset from the given {@code index} by
810     * {@code codePointOffset} code points. Unpaired surrogates
811     * within the text range given by {@code index} and
812     * {@code codePointOffset} count as one code point each.
813     *
814     * @param index the index to be offset
815     * @param codePointOffset the offset in code points
816     * @return the index within this {@code String}
817     * @exception IndexOutOfBoundsException if {@code index}
818     *   is negative or larger then the length of this
819     *   {@code String}, or if {@code codePointOffset} is positive
820     *   and the substring starting with {@code index} has fewer
821     *   than {@code codePointOffset} code points,
822     *   or if {@code codePointOffset} is negative and the substring
823     *   before {@code index} has fewer than the absolute value
824     *   of {@code codePointOffset} code points.
825     * @since 1.5
826     */
827    public int offsetByCodePoints(int index, int codePointOffset) {
828        if (index < 0 || index > length()) {
829            throw new IndexOutOfBoundsException();
830        }
831        return Character.offsetByCodePoints(this, index, codePointOffset);
832    }
833
834    /**
835     * Copies characters from this string into the destination character
836     * array.
837     * <p>
838     * The first character to be copied is at index {@code srcBegin};
839     * the last character to be copied is at index {@code srcEnd-1}
840     * (thus the total number of characters to be copied is
841     * {@code srcEnd-srcBegin}). The characters are copied into the
842     * subarray of {@code dst} starting at index {@code dstBegin}
843     * and ending at index:
844     * <blockquote><pre>
845     *     dstBegin + (srcEnd-srcBegin) - 1
846     * </pre></blockquote>
847     *
848     * @param      srcBegin   index of the first character in the string
849     *                        to copy.
850     * @param      srcEnd     index after the last character in the string
851     *                        to copy.
852     * @param      dst        the destination array.
853     * @param      dstBegin   the start offset in the destination array.
854     * @exception IndexOutOfBoundsException If any of the following
855     *            is true:
856     *            <ul><li>{@code srcBegin} is negative.
857     *            <li>{@code srcBegin} is greater than {@code srcEnd}
858     *            <li>{@code srcEnd} is greater than the length of this
859     *                string
860     *            <li>{@code dstBegin} is negative
861     *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
862     *                {@code dst.length}</ul>
863     */
864    public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
865        checkBoundsBeginEnd(srcBegin, srcEnd, length());
866        checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
867        if (isLatin1()) {
868            StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
869        } else {
870            StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
871        }
872    }
873
874    /**
875     * Copies characters from this string into the destination byte array. Each
876     * byte receives the 8 low-order bits of the corresponding character. The
877     * eight high-order bits of each character are not copied and do not
878     * participate in the transfer in any way.
879     *
880     * <p> The first character to be copied is at index {@code srcBegin}; the
881     * last character to be copied is at index {@code srcEnd-1}.  The total
882     * number of characters to be copied is {@code srcEnd-srcBegin}. The
883     * characters, converted to bytes, are copied into the subarray of {@code
884     * dst} starting at index {@code dstBegin} and ending at index:
885     *
886     * <blockquote><pre>
887     *     dstBegin + (srcEnd-srcBegin) - 1
888     * </pre></blockquote>
889     *
890     * @deprecated  This method does not properly convert characters into
891     * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
892     * {@link #getBytes()} method, which uses the platform's default charset.
893     *
894     * @param  srcBegin
895     *         Index of the first character in the string to copy
896     *
897     * @param  srcEnd
898     *         Index after the last character in the string to copy
899     *
900     * @param  dst
901     *         The destination array
902     *
903     * @param  dstBegin
904     *         The start offset in the destination array
905     *
906     * @throws  IndexOutOfBoundsException
907     *          If any of the following is true:
908     *          <ul>
909     *            <li> {@code srcBegin} is negative
910     *            <li> {@code srcBegin} is greater than {@code srcEnd}
911     *            <li> {@code srcEnd} is greater than the length of this String
912     *            <li> {@code dstBegin} is negative
913     *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
914     *                 dst.length}
915     *          </ul>
916     */
917    @Deprecated(since="1.1")
918    public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
919        checkBoundsBeginEnd(srcBegin, srcEnd, length());
920        Objects.requireNonNull(dst);
921        checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
922        if (isLatin1()) {
923            StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
924        } else {
925            StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
926        }
927    }
928
929    /**
930     * Encodes this {@code String} into a sequence of bytes using the named
931     * charset, storing the result into a new byte array.
932     *
933     * <p> The behavior of this method when this string cannot be encoded in
934     * the given charset is unspecified.  The {@link
935     * java.nio.charset.CharsetEncoder} class should be used when more control
936     * over the encoding process is required.
937     *
938     * @param  charsetName
939     *         The name of a supported {@linkplain java.nio.charset.Charset
940     *         charset}
941     *
942     * @return  The resultant byte array
943     *
944     * @throws  UnsupportedEncodingException
945     *          If the named charset is not supported
946     *
947     * @since  1.1
948     */
949    public byte[] getBytes(String charsetName)
950            throws UnsupportedEncodingException {
951        if (charsetName == null) throw new NullPointerException();
952        return StringCoding.encode(charsetName, coder(), value);
953    }
954
955    /**
956     * Encodes this {@code String} into a sequence of bytes using the given
957     * {@linkplain java.nio.charset.Charset charset}, storing the result into a
958     * new byte array.
959     *
960     * <p> This method always replaces malformed-input and unmappable-character
961     * sequences with this charset's default replacement byte array.  The
962     * {@link java.nio.charset.CharsetEncoder} class should be used when more
963     * control over the encoding process is required.
964     *
965     * @param  charset
966     *         The {@linkplain java.nio.charset.Charset} to be used to encode
967     *         the {@code String}
968     *
969     * @return  The resultant byte array
970     *
971     * @since  1.6
972     */
973    public byte[] getBytes(Charset charset) {
974        if (charset == null) throw new NullPointerException();
975        return StringCoding.encode(charset, coder(), value);
976     }
977
978    /**
979     * Encodes this {@code String} into a sequence of bytes using the
980     * platform's default charset, storing the result into a new byte array.
981     *
982     * <p> The behavior of this method when this string cannot be encoded in
983     * the default charset is unspecified.  The {@link
984     * java.nio.charset.CharsetEncoder} class should be used when more control
985     * over the encoding process is required.
986     *
987     * @return  The resultant byte array
988     *
989     * @since      1.1
990     */
991    public byte[] getBytes() {
992        return StringCoding.encode(coder(), value);
993    }
994
995    /**
996     * Compares this string to the specified object.  The result is {@code
997     * true} if and only if the argument is not {@code null} and is a {@code
998     * String} object that represents the same sequence of characters as this
999     * object.
1000     *
1001     * <p>For finer-grained String comparison, refer to
1002     * {@link java.text.Collator}.
1003     *
1004     * @param  anObject
1005     *         The object to compare this {@code String} against
1006     *
1007     * @return  {@code true} if the given object represents a {@code String}
1008     *          equivalent to this string, {@code false} otherwise
1009     *
1010     * @see  #compareTo(String)
1011     * @see  #equalsIgnoreCase(String)
1012     */
1013    public boolean equals(Object anObject) {
1014        if (this == anObject) {
1015            return true;
1016        }
1017        if (anObject instanceof String) {
1018            String aString = (String)anObject;
1019            if (coder() == aString.coder()) {
1020                return isLatin1() ? StringLatin1.equals(value, aString.value)
1021                                  : StringUTF16.equals(value, aString.value);
1022            }
1023        }
1024        return false;
1025    }
1026
1027    /**
1028     * Compares this string to the specified {@code StringBuffer}.  The result
1029     * is {@code true} if and only if this {@code String} represents the same
1030     * sequence of characters as the specified {@code StringBuffer}. This method
1031     * synchronizes on the {@code StringBuffer}.
1032     *
1033     * <p>For finer-grained String comparison, refer to
1034     * {@link java.text.Collator}.
1035     *
1036     * @param  sb
1037     *         The {@code StringBuffer} to compare this {@code String} against
1038     *
1039     * @return  {@code true} if this {@code String} represents the same
1040     *          sequence of characters as the specified {@code StringBuffer},
1041     *          {@code false} otherwise
1042     *
1043     * @since  1.4
1044     */
1045    public boolean contentEquals(StringBuffer sb) {
1046        return contentEquals((CharSequence)sb);
1047    }
1048
1049    private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1050        int len = length();
1051        if (len != sb.length()) {
1052            return false;
1053        }
1054        byte v1[] = value;
1055        byte v2[] = sb.getValue();
1056        if (coder() == sb.getCoder()) {
1057            int n = v1.length;
1058            for (int i = 0; i < n; i++) {
1059                if (v1[i] != v2[i]) {
1060                    return false;
1061                }
1062            }
1063        } else {
1064            if (!isLatin1()) {  // utf16 str and latin1 abs can never be "equal"
1065                return false;
1066            }
1067            return StringUTF16.contentEquals(v1, v2, len);
1068        }
1069        return true;
1070    }
1071
1072    /**
1073     * Compares this string to the specified {@code CharSequence}.  The
1074     * result is {@code true} if and only if this {@code String} represents the
1075     * same sequence of char values as the specified sequence. Note that if the
1076     * {@code CharSequence} is a {@code StringBuffer} then the method
1077     * synchronizes on it.
1078     *
1079     * <p>For finer-grained String comparison, refer to
1080     * {@link java.text.Collator}.
1081     *
1082     * @param  cs
1083     *         The sequence to compare this {@code String} against
1084     *
1085     * @return  {@code true} if this {@code String} represents the same
1086     *          sequence of char values as the specified sequence, {@code
1087     *          false} otherwise
1088     *
1089     * @since  1.5
1090     */
1091    public boolean contentEquals(CharSequence cs) {
1092        // Argument is a StringBuffer, StringBuilder
1093        if (cs instanceof AbstractStringBuilder) {
1094            if (cs instanceof StringBuffer) {
1095                synchronized(cs) {
1096                   return nonSyncContentEquals((AbstractStringBuilder)cs);
1097                }
1098            } else {
1099                return nonSyncContentEquals((AbstractStringBuilder)cs);
1100            }
1101        }
1102        // Argument is a String
1103        if (cs instanceof String) {
1104            return equals(cs);
1105        }
1106        // Argument is a generic CharSequence
1107        int n = cs.length();
1108        if (n != length()) {
1109            return false;
1110        }
1111        byte[] val = this.value;
1112        if (isLatin1()) {
1113            for (int i = 0; i < n; i++) {
1114                if ((val[i] & 0xff) != cs.charAt(i)) {
1115                    return false;
1116                }
1117            }
1118        } else {
1119            if (!StringUTF16.contentEquals(val, cs, n)) {
1120                return false;
1121            }
1122        }
1123        return true;
1124    }
1125
1126    /**
1127     * Compares this {@code String} to another {@code String}, ignoring case
1128     * considerations.  Two strings are considered equal ignoring case if they
1129     * are of the same length and corresponding characters in the two strings
1130     * are equal ignoring case.
1131     *
1132     * <p> Two characters {@code c1} and {@code c2} are considered the same
1133     * ignoring case if at least one of the following is true:
1134     * <ul>
1135     *   <li> The two characters are the same (as compared by the
1136     *        {@code ==} operator)
1137     *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1138     *        on each character produces the same result
1139     * </ul>
1140     *
1141     * <p>Note that this method does <em>not</em> take locale into account, and
1142     * will result in unsatisfactory results for certain locales.  The
1143     * {@link java.text.Collator} class provides locale-sensitive comparison.
1144     *
1145     * @param  anotherString
1146     *         The {@code String} to compare this {@code String} against
1147     *
1148     * @return  {@code true} if the argument is not {@code null} and it
1149     *          represents an equivalent {@code String} ignoring case; {@code
1150     *          false} otherwise
1151     *
1152     * @see  #equals(Object)
1153     */
1154    public boolean equalsIgnoreCase(String anotherString) {
1155        return (this == anotherString) ? true
1156                : (anotherString != null)
1157                && (anotherString.length() == length())
1158                && regionMatches(true, 0, anotherString, 0, length());
1159    }
1160
1161    /**
1162     * Compares two strings lexicographically.
1163     * The comparison is based on the Unicode value of each character in
1164     * the strings. The character sequence represented by this
1165     * {@code String} object is compared lexicographically to the
1166     * character sequence represented by the argument string. The result is
1167     * a negative integer if this {@code String} object
1168     * lexicographically precedes the argument string. The result is a
1169     * positive integer if this {@code String} object lexicographically
1170     * follows the argument string. The result is zero if the strings
1171     * are equal; {@code compareTo} returns {@code 0} exactly when
1172     * the {@link #equals(Object)} method would return {@code true}.
1173     * <p>
1174     * This is the definition of lexicographic ordering. If two strings are
1175     * different, then either they have different characters at some index
1176     * that is a valid index for both strings, or their lengths are different,
1177     * or both. If they have different characters at one or more index
1178     * positions, let <i>k</i> be the smallest such index; then the string
1179     * whose character at position <i>k</i> has the smaller value, as
1180     * determined by using the {@code <} operator, lexicographically precedes the
1181     * other string. In this case, {@code compareTo} returns the
1182     * difference of the two character values at position {@code k} in
1183     * the two string -- that is, the value:
1184     * <blockquote><pre>
1185     * this.charAt(k)-anotherString.charAt(k)
1186     * </pre></blockquote>
1187     * If there is no index position at which they differ, then the shorter
1188     * string lexicographically precedes the longer string. In this case,
1189     * {@code compareTo} returns the difference of the lengths of the
1190     * strings -- that is, the value:
1191     * <blockquote><pre>
1192     * this.length()-anotherString.length()
1193     * </pre></blockquote>
1194     *
1195     * <p>For finer-grained String comparison, refer to
1196     * {@link java.text.Collator}.
1197     *
1198     * @param   anotherString   the {@code String} to be compared.
1199     * @return  the value {@code 0} if the argument string is equal to
1200     *          this string; a value less than {@code 0} if this string
1201     *          is lexicographically less than the string argument; and a
1202     *          value greater than {@code 0} if this string is
1203     *          lexicographically greater than the string argument.
1204     */
1205    public int compareTo(String anotherString) {
1206        byte v1[] = value;
1207        byte v2[] = anotherString.value;
1208        if (coder() == anotherString.coder()) {
1209            return isLatin1() ? StringLatin1.compareTo(v1, v2)
1210                              : StringUTF16.compareTo(v1, v2);
1211        }
1212        return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
1213                          : StringUTF16.compareToLatin1(v1, v2);
1214     }
1215
1216    /**
1217     * A Comparator that orders {@code String} objects as by
1218     * {@code compareToIgnoreCase}. This comparator is serializable.
1219     * <p>
1220     * Note that this Comparator does <em>not</em> take locale into account,
1221     * and will result in an unsatisfactory ordering for certain locales.
1222     * The {@link java.text.Collator} class provides locale-sensitive comparison.
1223     *
1224     * @see     java.text.Collator
1225     * @since   1.2
1226     */
1227    public static final Comparator<String> CASE_INSENSITIVE_ORDER
1228                                         = new CaseInsensitiveComparator();
1229    private static class CaseInsensitiveComparator
1230            implements Comparator<String>, java.io.Serializable {
1231        // use serialVersionUID from JDK 1.2.2 for interoperability
1232        private static final long serialVersionUID = 8575799808933029326L;
1233
1234        public int compare(String s1, String s2) {
1235            byte v1[] = s1.value;
1236            byte v2[] = s2.value;
1237            if (s1.coder() == s2.coder()) {
1238                return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2)
1239                                     : StringUTF16.compareToCI(v1, v2);
1240            }
1241            return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2)
1242                                 : StringUTF16.compareToCI_Latin1(v1, v2);
1243        }
1244
1245        /** Replaces the de-serialized object. */
1246        private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1247    }
1248
1249    /**
1250     * Compares two strings lexicographically, ignoring case
1251     * differences. This method returns an integer whose sign is that of
1252     * calling {@code compareTo} with normalized versions of the strings
1253     * where case differences have been eliminated by calling
1254     * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1255     * each character.
1256     * <p>
1257     * Note that this method does <em>not</em> take locale into account,
1258     * and will result in an unsatisfactory ordering for certain locales.
1259     * The {@link java.text.Collator} class provides locale-sensitive comparison.
1260     *
1261     * @param   str   the {@code String} to be compared.
1262     * @return  a negative integer, zero, or a positive integer as the
1263     *          specified String is greater than, equal to, or less
1264     *          than this String, ignoring case considerations.
1265     * @see     java.text.Collator
1266     * @since   1.2
1267     */
1268    public int compareToIgnoreCase(String str) {
1269        return CASE_INSENSITIVE_ORDER.compare(this, str);
1270    }
1271
1272    /**
1273     * Tests if two string regions are equal.
1274     * <p>
1275     * A substring of this {@code String} object is compared to a substring
1276     * of the argument other. The result is true if these substrings
1277     * represent identical character sequences. The substring of this
1278     * {@code String} object to be compared begins at index {@code toffset}
1279     * and has length {@code len}. The substring of other to be compared
1280     * begins at index {@code ooffset} and has length {@code len}. The
1281     * result is {@code false} if and only if at least one of the following
1282     * is true:
1283     * <ul><li>{@code toffset} is negative.
1284     * <li>{@code ooffset} is negative.
1285     * <li>{@code toffset+len} is greater than the length of this
1286     * {@code String} object.
1287     * <li>{@code ooffset+len} is greater than the length of the other
1288     * argument.
1289     * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1290     * such that:
1291     * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1292     * <i>k</i>{@code )}
1293     * </ul>
1294     *
1295     * <p>Note that this method does <em>not</em> take locale into account.  The
1296     * {@link java.text.Collator} class provides locale-sensitive comparison.
1297     *
1298     * @param   toffset   the starting offset of the subregion in this string.
1299     * @param   other     the string argument.
1300     * @param   ooffset   the starting offset of the subregion in the string
1301     *                    argument.
1302     * @param   len       the number of characters to compare.
1303     * @return  {@code true} if the specified subregion of this string
1304     *          exactly matches the specified subregion of the string argument;
1305     *          {@code false} otherwise.
1306     */
1307    public boolean regionMatches(int toffset, String other, int ooffset, int len) {
1308        byte tv[] = value;
1309        byte ov[] = other.value;
1310        // Note: toffset, ooffset, or len might be near -1>>>1.
1311        if ((ooffset < 0) || (toffset < 0) ||
1312             (toffset > (long)length() - len) ||
1313             (ooffset > (long)other.length() - len)) {
1314            return false;
1315        }
1316        if (coder() == other.coder()) {
1317            if (!isLatin1() && (len > 0)) {
1318                toffset = toffset << 1;
1319                ooffset = ooffset << 1;
1320                len = len << 1;
1321            }
1322            while (len-- > 0) {
1323                if (tv[toffset++] != ov[ooffset++]) {
1324                    return false;
1325                }
1326            }
1327        } else {
1328            if (coder() == LATIN1) {
1329                while (len-- > 0) {
1330                    if (StringLatin1.getChar(tv, toffset++) !=
1331                        StringUTF16.getChar(ov, ooffset++)) {
1332                        return false;
1333                    }
1334                }
1335            } else {
1336                while (len-- > 0) {
1337                    if (StringUTF16.getChar(tv, toffset++) !=
1338                        StringLatin1.getChar(ov, ooffset++)) {
1339                        return false;
1340                    }
1341                }
1342            }
1343        }
1344        return true;
1345    }
1346
1347    /**
1348     * Tests if two string regions are equal.
1349     * <p>
1350     * A substring of this {@code String} object is compared to a substring
1351     * of the argument {@code other}. The result is {@code true} if these
1352     * substrings represent character sequences that are the same, ignoring
1353     * case if and only if {@code ignoreCase} is true. The substring of
1354     * this {@code String} object to be compared begins at index
1355     * {@code toffset} and has length {@code len}. The substring of
1356     * {@code other} to be compared begins at index {@code ooffset} and
1357     * has length {@code len}. The result is {@code false} if and only if
1358     * at least one of the following is true:
1359     * <ul><li>{@code toffset} is negative.
1360     * <li>{@code ooffset} is negative.
1361     * <li>{@code toffset+len} is greater than the length of this
1362     * {@code String} object.
1363     * <li>{@code ooffset+len} is greater than the length of the other
1364     * argument.
1365     * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1366     * integer <i>k</i> less than {@code len} such that:
1367     * <blockquote><pre>
1368     * this.charAt(toffset+k) != other.charAt(ooffset+k)
1369     * </pre></blockquote>
1370     * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1371     * integer <i>k</i> less than {@code len} such that:
1372     * <blockquote><pre>
1373     * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1374     Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1375     * </pre></blockquote>
1376     * </ul>
1377     *
1378     * <p>Note that this method does <em>not</em> take locale into account,
1379     * and will result in unsatisfactory results for certain locales when
1380     * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1381     * provides locale-sensitive comparison.
1382     *
1383     * @param   ignoreCase   if {@code true}, ignore case when comparing
1384     *                       characters.
1385     * @param   toffset      the starting offset of the subregion in this
1386     *                       string.
1387     * @param   other        the string argument.
1388     * @param   ooffset      the starting offset of the subregion in the string
1389     *                       argument.
1390     * @param   len          the number of characters to compare.
1391     * @return  {@code true} if the specified subregion of this string
1392     *          matches the specified subregion of the string argument;
1393     *          {@code false} otherwise. Whether the matching is exact
1394     *          or case insensitive depends on the {@code ignoreCase}
1395     *          argument.
1396     */
1397    public boolean regionMatches(boolean ignoreCase, int toffset,
1398            String other, int ooffset, int len) {
1399        if (!ignoreCase) {
1400            return regionMatches(toffset, other, ooffset, len);
1401        }
1402        // Note: toffset, ooffset, or len might be near -1>>>1.
1403        if ((ooffset < 0) || (toffset < 0)
1404                || (toffset > (long)length() - len)
1405                || (ooffset > (long)other.length() - len)) {
1406            return false;
1407        }
1408        byte tv[] = value;
1409        byte ov[] = other.value;
1410        if (coder() == other.coder()) {
1411            return isLatin1()
1412              ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
1413              : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
1414        }
1415        return isLatin1()
1416              ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
1417              : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
1418    }
1419
1420    /**
1421     * Tests if the substring of this string beginning at the
1422     * specified index starts with the specified prefix.
1423     *
1424     * @param   prefix    the prefix.
1425     * @param   toffset   where to begin looking in this string.
1426     * @return  {@code true} if the character sequence represented by the
1427     *          argument is a prefix of the substring of this object starting
1428     *          at index {@code toffset}; {@code false} otherwise.
1429     *          The result is {@code false} if {@code toffset} is
1430     *          negative or greater than the length of this
1431     *          {@code String} object; otherwise the result is the same
1432     *          as the result of the expression
1433     *          <pre>
1434     *          this.substring(toffset).startsWith(prefix)
1435     *          </pre>
1436     */
1437    public boolean startsWith(String prefix, int toffset) {
1438        // Note: toffset might be near -1>>>1.
1439        if (toffset < 0 || toffset > length() - prefix.length()) {
1440            return false;
1441        }
1442        byte ta[] = value;
1443        byte pa[] = prefix.value;
1444        int po = 0;
1445        int pc = pa.length;
1446        if (coder() == prefix.coder()) {
1447            int to = isLatin1() ? toffset : toffset << 1;
1448            while (po < pc) {
1449                if (ta[to++] != pa[po++]) {
1450                    return false;
1451                }
1452            }
1453        } else {
1454            if (isLatin1()) {  // && pcoder == UTF16
1455                return false;
1456            }
1457            // coder == UTF16 && pcoder == LATIN1)
1458            while (po < pc) {
1459                if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
1460                    return false;
1461               }
1462            }
1463        }
1464        return true;
1465    }
1466
1467    /**
1468     * Tests if this string starts with the specified prefix.
1469     *
1470     * @param   prefix   the prefix.
1471     * @return  {@code true} if the character sequence represented by the
1472     *          argument is a prefix of the character sequence represented by
1473     *          this string; {@code false} otherwise.
1474     *          Note also that {@code true} will be returned if the
1475     *          argument is an empty string or is equal to this
1476     *          {@code String} object as determined by the
1477     *          {@link #equals(Object)} method.
1478     * @since   1.0
1479     */
1480    public boolean startsWith(String prefix) {
1481        return startsWith(prefix, 0);
1482    }
1483
1484    /**
1485     * Tests if this string ends with the specified suffix.
1486     *
1487     * @param   suffix   the suffix.
1488     * @return  {@code true} if the character sequence represented by the
1489     *          argument is a suffix of the character sequence represented by
1490     *          this object; {@code false} otherwise. Note that the
1491     *          result will be {@code true} if the argument is the
1492     *          empty string or is equal to this {@code String} object
1493     *          as determined by the {@link #equals(Object)} method.
1494     */
1495    public boolean endsWith(String suffix) {
1496        return startsWith(suffix, length() - suffix.length());
1497    }
1498
1499    /**
1500     * Returns a hash code for this string. The hash code for a
1501     * {@code String} object is computed as
1502     * <blockquote><pre>
1503     * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1504     * </pre></blockquote>
1505     * using {@code int} arithmetic, where {@code s[i]} is the
1506     * <i>i</i>th character of the string, {@code n} is the length of
1507     * the string, and {@code ^} indicates exponentiation.
1508     * (The hash value of the empty string is zero.)
1509     *
1510     * @return  a hash code value for this object.
1511     */
1512    public int hashCode() {
1513        int h = hash;
1514        if (h == 0 && value.length > 0) {
1515            hash = h = isLatin1() ? StringLatin1.hashCode(value)
1516                                  : StringUTF16.hashCode(value);
1517        }
1518        return h;
1519    }
1520
1521    /**
1522     * Returns the index within this string of the first occurrence of
1523     * the specified character. If a character with value
1524     * {@code ch} occurs in the character sequence represented by
1525     * this {@code String} object, then the index (in Unicode
1526     * code units) of the first such occurrence is returned. For
1527     * values of {@code ch} in the range from 0 to 0xFFFF
1528     * (inclusive), this is the smallest value <i>k</i> such that:
1529     * <blockquote><pre>
1530     * this.charAt(<i>k</i>) == ch
1531     * </pre></blockquote>
1532     * is true. For other values of {@code ch}, it is the
1533     * smallest value <i>k</i> such that:
1534     * <blockquote><pre>
1535     * this.codePointAt(<i>k</i>) == ch
1536     * </pre></blockquote>
1537     * is true. In either case, if no such character occurs in this
1538     * string, then {@code -1} is returned.
1539     *
1540     * @param   ch   a character (Unicode code point).
1541     * @return  the index of the first occurrence of the character in the
1542     *          character sequence represented by this object, or
1543     *          {@code -1} if the character does not occur.
1544     */
1545    public int indexOf(int ch) {
1546        return indexOf(ch, 0);
1547    }
1548
1549    /**
1550     * Returns the index within this string of the first occurrence of the
1551     * specified character, starting the search at the specified index.
1552     * <p>
1553     * If a character with value {@code ch} occurs in the
1554     * character sequence represented by this {@code String}
1555     * object at an index no smaller than {@code fromIndex}, then
1556     * the index of the first such occurrence is returned. For values
1557     * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1558     * this is the smallest value <i>k</i> such that:
1559     * <blockquote><pre>
1560     * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1561     * </pre></blockquote>
1562     * is true. For other values of {@code ch}, it is the
1563     * smallest value <i>k</i> such that:
1564     * <blockquote><pre>
1565     * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1566     * </pre></blockquote>
1567     * is true. In either case, if no such character occurs in this
1568     * string at or after position {@code fromIndex}, then
1569     * {@code -1} is returned.
1570     *
1571     * <p>
1572     * There is no restriction on the value of {@code fromIndex}. If it
1573     * is negative, it has the same effect as if it were zero: this entire
1574     * string may be searched. If it is greater than the length of this
1575     * string, it has the same effect as if it were equal to the length of
1576     * this string: {@code -1} is returned.
1577     *
1578     * <p>All indices are specified in {@code char} values
1579     * (Unicode code units).
1580     *
1581     * @param   ch          a character (Unicode code point).
1582     * @param   fromIndex   the index to start the search from.
1583     * @return  the index of the first occurrence of the character in the
1584     *          character sequence represented by this object that is greater
1585     *          than or equal to {@code fromIndex}, or {@code -1}
1586     *          if the character does not occur.
1587     */
1588    public int indexOf(int ch, int fromIndex) {
1589        return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
1590                          : StringUTF16.indexOf(value, ch, fromIndex);
1591    }
1592
1593    /**
1594     * Returns the index within this string of the last occurrence of
1595     * the specified character. For values of {@code ch} in the
1596     * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1597     * units) returned is the largest value <i>k</i> such that:
1598     * <blockquote><pre>
1599     * this.charAt(<i>k</i>) == ch
1600     * </pre></blockquote>
1601     * is true. For other values of {@code ch}, it is the
1602     * largest value <i>k</i> such that:
1603     * <blockquote><pre>
1604     * this.codePointAt(<i>k</i>) == ch
1605     * </pre></blockquote>
1606     * is true.  In either case, if no such character occurs in this
1607     * string, then {@code -1} is returned.  The
1608     * {@code String} is searched backwards starting at the last
1609     * character.
1610     *
1611     * @param   ch   a character (Unicode code point).
1612     * @return  the index of the last occurrence of the character in the
1613     *          character sequence represented by this object, or
1614     *          {@code -1} if the character does not occur.
1615     */
1616    public int lastIndexOf(int ch) {
1617        return lastIndexOf(ch, length() - 1);
1618    }
1619
1620    /**
1621     * Returns the index within this string of the last occurrence of
1622     * the specified character, searching backward starting at the
1623     * specified index. For values of {@code ch} in the range
1624     * from 0 to 0xFFFF (inclusive), the index returned is the largest
1625     * value <i>k</i> such that:
1626     * <blockquote><pre>
1627     * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1628     * </pre></blockquote>
1629     * is true. For other values of {@code ch}, it is the
1630     * largest value <i>k</i> such that:
1631     * <blockquote><pre>
1632     * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1633     * </pre></blockquote>
1634     * is true. In either case, if no such character occurs in this
1635     * string at or before position {@code fromIndex}, then
1636     * {@code -1} is returned.
1637     *
1638     * <p>All indices are specified in {@code char} values
1639     * (Unicode code units).
1640     *
1641     * @param   ch          a character (Unicode code point).
1642     * @param   fromIndex   the index to start the search from. There is no
1643     *          restriction on the value of {@code fromIndex}. If it is
1644     *          greater than or equal to the length of this string, it has
1645     *          the same effect as if it were equal to one less than the
1646     *          length of this string: this entire string may be searched.
1647     *          If it is negative, it has the same effect as if it were -1:
1648     *          -1 is returned.
1649     * @return  the index of the last occurrence of the character in the
1650     *          character sequence represented by this object that is less
1651     *          than or equal to {@code fromIndex}, or {@code -1}
1652     *          if the character does not occur before that point.
1653     */
1654    public int lastIndexOf(int ch, int fromIndex) {
1655        return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
1656                          : StringUTF16.lastIndexOf(value, ch, fromIndex);
1657    }
1658
1659    /**
1660     * Returns the index within this string of the first occurrence of the
1661     * specified substring.
1662     *
1663     * <p>The returned index is the smallest value {@code k} for which:
1664     * <pre>{@code
1665     * this.startsWith(str, k)
1666     * }</pre>
1667     * If no such value of {@code k} exists, then {@code -1} is returned.
1668     *
1669     * @param   str   the substring to search for.
1670     * @return  the index of the first occurrence of the specified substring,
1671     *          or {@code -1} if there is no such occurrence.
1672     */
1673    public int indexOf(String str) {
1674        if (coder() == str.coder()) {
1675            return isLatin1() ? StringLatin1.indexOf(value, str.value)
1676                              : StringUTF16.indexOf(value, str.value);
1677        }
1678        if (coder() == LATIN1) {  // str.coder == UTF16
1679            return -1;
1680        }
1681        return StringUTF16.indexOfLatin1(value, str.value);
1682    }
1683
1684    /**
1685     * Returns the index within this string of the first occurrence of the
1686     * specified substring, starting at the specified index.
1687     *
1688     * <p>The returned index is the smallest value {@code k} for which:
1689     * <pre>{@code
1690     *     k >= Math.min(fromIndex, this.length()) &&
1691     *                   this.startsWith(str, k)
1692     * }</pre>
1693     * If no such value of {@code k} exists, then {@code -1} is returned.
1694     *
1695     * @param   str         the substring to search for.
1696     * @param   fromIndex   the index from which to start the search.
1697     * @return  the index of the first occurrence of the specified substring,
1698     *          starting at the specified index,
1699     *          or {@code -1} if there is no such occurrence.
1700     */
1701    public int indexOf(String str, int fromIndex) {
1702        return indexOf(value, coder(), length(), str, fromIndex);
1703    }
1704
1705    /**
1706     * Code shared by String and AbstractStringBuilder to do searches. The
1707     * source is the character array being searched, and the target
1708     * is the string being searched for.
1709     *
1710     * @param   src       the characters being searched.
1711     * @param   srcCoder  the coder of the source string.
1712     * @param   srcCount  length of the source string.
1713     * @param   tgtStr    the characters being searched for.
1714     * @param   fromIndex the index to begin searching from.
1715     */
1716    static int indexOf(byte[] src, byte srcCoder, int srcCount,
1717                       String tgtStr, int fromIndex) {
1718        byte[] tgt    = tgtStr.value;
1719        byte tgtCoder = tgtStr.coder();
1720        int tgtCount  = tgtStr.length();
1721
1722        if (fromIndex >= srcCount) {
1723            return (tgtCount == 0 ? srcCount : -1);
1724        }
1725        if (fromIndex < 0) {
1726            fromIndex = 0;
1727        }
1728        if (tgtCount == 0) {
1729            return fromIndex;
1730        }
1731        if (tgtCount > srcCount) {
1732            return -1;
1733        }
1734        if (srcCoder == tgtCoder) {
1735            return srcCoder == LATIN1
1736                ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
1737                : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
1738        }
1739        if (srcCoder == LATIN1) {    //  && tgtCoder == UTF16
1740            return -1;
1741        }
1742        // srcCoder == UTF16 && tgtCoder == LATIN1) {
1743        return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1744    }
1745
1746    /**
1747     * Returns the index within this string of the last occurrence of the
1748     * specified substring.  The last occurrence of the empty string ""
1749     * is considered to occur at the index value {@code this.length()}.
1750     *
1751     * <p>The returned index is the largest value {@code k} for which:
1752     * <pre>{@code
1753     * this.startsWith(str, k)
1754     * }</pre>
1755     * If no such value of {@code k} exists, then {@code -1} is returned.
1756     *
1757     * @param   str   the substring to search for.
1758     * @return  the index of the last occurrence of the specified substring,
1759     *          or {@code -1} if there is no such occurrence.
1760     */
1761    public int lastIndexOf(String str) {
1762        return lastIndexOf(str, length());
1763    }
1764
1765    /**
1766     * Returns the index within this string of the last occurrence of the
1767     * specified substring, searching backward starting at the specified index.
1768     *
1769     * <p>The returned index is the largest value {@code k} for which:
1770     * <pre>{@code
1771     *     k <= Math.min(fromIndex, this.length()) &&
1772     *                   this.startsWith(str, k)
1773     * }</pre>
1774     * If no such value of {@code k} exists, then {@code -1} is returned.
1775     *
1776     * @param   str         the substring to search for.
1777     * @param   fromIndex   the index to start the search from.
1778     * @return  the index of the last occurrence of the specified substring,
1779     *          searching backward from the specified index,
1780     *          or {@code -1} if there is no such occurrence.
1781     */
1782    public int lastIndexOf(String str, int fromIndex) {
1783        return lastIndexOf(value, coder(), length(), str, fromIndex);
1784    }
1785
1786    /**
1787     * Code shared by String and AbstractStringBuilder to do searches. The
1788     * source is the character array being searched, and the target
1789     * is the string being searched for.
1790     *
1791     * @param   src         the characters being searched.
1792     * @param   srcCoder    coder handles the mapping between bytes/chars
1793     * @param   srcCount    count of the source string.
1794     * @param   tgt         the characters being searched for.
1795     * @param   fromIndex   the index to begin searching from.
1796     */
1797    static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
1798                           String tgtStr, int fromIndex) {
1799        byte[] tgt = tgtStr.value;
1800        byte tgtCoder = tgtStr.coder();
1801        int tgtCount = tgtStr.length();
1802        /*
1803         * Check arguments; return immediately where possible. For
1804         * consistency, don't check for null str.
1805         */
1806        int rightIndex = srcCount - tgtCount;
1807        if (fromIndex > rightIndex) {
1808            fromIndex = rightIndex;
1809        }
1810        if (fromIndex < 0) {
1811            return -1;
1812        }
1813        /* Empty string always matches. */
1814        if (tgtCount == 0) {
1815            return fromIndex;
1816        }
1817        if (srcCoder == tgtCoder) {
1818            return srcCoder == LATIN1
1819                ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
1820                : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
1821        }
1822        if (srcCoder == LATIN1) {    // && tgtCoder == UTF16
1823            return -1;
1824        }
1825        // srcCoder == UTF16 && tgtCoder == LATIN1
1826        return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1827    }
1828
1829    /**
1830     * Returns a string that is a substring of this string. The
1831     * substring begins with the character at the specified index and
1832     * extends to the end of this string. <p>
1833     * Examples:
1834     * <blockquote><pre>
1835     * "unhappy".substring(2) returns "happy"
1836     * "Harbison".substring(3) returns "bison"
1837     * "emptiness".substring(9) returns "" (an empty string)
1838     * </pre></blockquote>
1839     *
1840     * @param      beginIndex   the beginning index, inclusive.
1841     * @return     the specified substring.
1842     * @exception  IndexOutOfBoundsException  if
1843     *             {@code beginIndex} is negative or larger than the
1844     *             length of this {@code String} object.
1845     */
1846    public String substring(int beginIndex) {
1847        if (beginIndex < 0) {
1848            throw new StringIndexOutOfBoundsException(beginIndex);
1849        }
1850        int subLen = length() - beginIndex;
1851        if (subLen < 0) {
1852            throw new StringIndexOutOfBoundsException(subLen);
1853        }
1854        if (beginIndex == 0) {
1855            return this;
1856        }
1857        return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1858                          : StringUTF16.newString(value, beginIndex, subLen);
1859    }
1860
1861    /**
1862     * Returns a string that is a substring of this string. The
1863     * substring begins at the specified {@code beginIndex} and
1864     * extends to the character at index {@code endIndex - 1}.
1865     * Thus the length of the substring is {@code endIndex-beginIndex}.
1866     * <p>
1867     * Examples:
1868     * <blockquote><pre>
1869     * "hamburger".substring(4, 8) returns "urge"
1870     * "smiles".substring(1, 5) returns "mile"
1871     * </pre></blockquote>
1872     *
1873     * @param      beginIndex   the beginning index, inclusive.
1874     * @param      endIndex     the ending index, exclusive.
1875     * @return     the specified substring.
1876     * @exception  IndexOutOfBoundsException  if the
1877     *             {@code beginIndex} is negative, or
1878     *             {@code endIndex} is larger than the length of
1879     *             this {@code String} object, or
1880     *             {@code beginIndex} is larger than
1881     *             {@code endIndex}.
1882     */
1883    public String substring(int beginIndex, int endIndex) {
1884        int length = length();
1885        checkBoundsBeginEnd(beginIndex, endIndex, length);
1886        int subLen = endIndex - beginIndex;
1887        if (beginIndex == 0 && endIndex == length) {
1888            return this;
1889        }
1890        return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1891                          : StringUTF16.newString(value, beginIndex, subLen);
1892    }
1893
1894    /**
1895     * Returns a character sequence that is a subsequence of this sequence.
1896     *
1897     * <p> An invocation of this method of the form
1898     *
1899     * <blockquote><pre>
1900     * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1901     *
1902     * behaves in exactly the same way as the invocation
1903     *
1904     * <blockquote><pre>
1905     * str.substring(begin,&nbsp;end)</pre></blockquote>
1906     *
1907     * @apiNote
1908     * This method is defined so that the {@code String} class can implement
1909     * the {@link CharSequence} interface.
1910     *
1911     * @param   beginIndex   the begin index, inclusive.
1912     * @param   endIndex     the end index, exclusive.
1913     * @return  the specified subsequence.
1914     *
1915     * @throws  IndexOutOfBoundsException
1916     *          if {@code beginIndex} or {@code endIndex} is negative,
1917     *          if {@code endIndex} is greater than {@code length()},
1918     *          or if {@code beginIndex} is greater than {@code endIndex}
1919     *
1920     * @since 1.4
1921     * @spec JSR-51
1922     */
1923    public CharSequence subSequence(int beginIndex, int endIndex) {
1924        return this.substring(beginIndex, endIndex);
1925    }
1926
1927    /**
1928     * Concatenates the specified string to the end of this string.
1929     * <p>
1930     * If the length of the argument string is {@code 0}, then this
1931     * {@code String} object is returned. Otherwise, a
1932     * {@code String} object is returned that represents a character
1933     * sequence that is the concatenation of the character sequence
1934     * represented by this {@code String} object and the character
1935     * sequence represented by the argument string.<p>
1936     * Examples:
1937     * <blockquote><pre>
1938     * "cares".concat("s") returns "caress"
1939     * "to".concat("get").concat("her") returns "together"
1940     * </pre></blockquote>
1941     *
1942     * @param   str   the {@code String} that is concatenated to the end
1943     *                of this {@code String}.
1944     * @return  a string that represents the concatenation of this object's
1945     *          characters followed by the string argument's characters.
1946     */
1947    public String concat(String str) {
1948        int olen = str.length();
1949        if (olen == 0) {
1950            return this;
1951        }
1952        if (coder() == str.coder()) {
1953            byte[] val = this.value;
1954            byte[] oval = str.value;
1955            int len = val.length + oval.length;
1956            byte[] buf = Arrays.copyOf(val, len);
1957            System.arraycopy(oval, 0, buf, val.length, oval.length);
1958            return new String(buf, coder);
1959        }
1960        int len = length();
1961        byte[] buf = StringUTF16.newBytesFor(len + olen);
1962        getBytes(buf, 0, UTF16);
1963        str.getBytes(buf, len, UTF16);
1964        return new String(buf, UTF16);
1965    }
1966
1967    /**
1968     * Returns a string resulting from replacing all occurrences of
1969     * {@code oldChar} in this string with {@code newChar}.
1970     * <p>
1971     * If the character {@code oldChar} does not occur in the
1972     * character sequence represented by this {@code String} object,
1973     * then a reference to this {@code String} object is returned.
1974     * Otherwise, a {@code String} object is returned that
1975     * represents a character sequence identical to the character sequence
1976     * represented by this {@code String} object, except that every
1977     * occurrence of {@code oldChar} is replaced by an occurrence
1978     * of {@code newChar}.
1979     * <p>
1980     * Examples:
1981     * <blockquote><pre>
1982     * "mesquite in your cellar".replace('e', 'o')
1983     *         returns "mosquito in your collar"
1984     * "the war of baronets".replace('r', 'y')
1985     *         returns "the way of bayonets"
1986     * "sparring with a purple porpoise".replace('p', 't')
1987     *         returns "starring with a turtle tortoise"
1988     * "JonL".replace('q', 'x') returns "JonL" (no change)
1989     * </pre></blockquote>
1990     *
1991     * @param   oldChar   the old character.
1992     * @param   newChar   the new character.
1993     * @return  a string derived from this string by replacing every
1994     *          occurrence of {@code oldChar} with {@code newChar}.
1995     */
1996    public String replace(char oldChar, char newChar) {
1997        if (oldChar != newChar) {
1998            String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
1999                                    : StringUTF16.replace(value, oldChar, newChar);
2000            if (ret != null) {
2001                return ret;
2002            }
2003        }
2004        return this;
2005    }
2006
2007    /**
2008     * Tells whether or not this string matches the given <a
2009     * href="../util/regex/Pattern.html#sum">regular expression</a>.
2010     *
2011     * <p> An invocation of this method of the form
2012     * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2013     * same result as the expression
2014     *
2015     * <blockquote>
2016     * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2017     * matches(<i>regex</i>, <i>str</i>)}
2018     * </blockquote>
2019     *
2020     * @param   regex
2021     *          the regular expression to which this string is to be matched
2022     *
2023     * @return  {@code true} if, and only if, this string matches the
2024     *          given regular expression
2025     *
2026     * @throws  PatternSyntaxException
2027     *          if the regular expression's syntax is invalid
2028     *
2029     * @see java.util.regex.Pattern
2030     *
2031     * @since 1.4
2032     * @spec JSR-51
2033     */
2034    public boolean matches(String regex) {
2035        return Pattern.matches(regex, this);
2036    }
2037
2038    /**
2039     * Returns true if and only if this string contains the specified
2040     * sequence of char values.
2041     *
2042     * @param s the sequence to search for
2043     * @return true if this string contains {@code s}, false otherwise
2044     * @since 1.5
2045     */
2046    public boolean contains(CharSequence s) {
2047        return indexOf(s.toString()) >= 0;
2048    }
2049
2050    /**
2051     * Replaces the first substring of this string that matches the given <a
2052     * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2053     * given replacement.
2054     *
2055     * <p> An invocation of this method of the form
2056     * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2057     * yields exactly the same result as the expression
2058     *
2059     * <blockquote>
2060     * <code>
2061     * {@link java.util.regex.Pattern}.{@link
2062     * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2063     * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2064     * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2065     * </code>
2066     * </blockquote>
2067     *
2068     *<p>
2069     * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2070     * replacement string may cause the results to be different than if it were
2071     * being treated as a literal replacement string; see
2072     * {@link java.util.regex.Matcher#replaceFirst}.
2073     * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2074     * meaning of these characters, if desired.
2075     *
2076     * @param   regex
2077     *          the regular expression to which this string is to be matched
2078     * @param   replacement
2079     *          the string to be substituted for the first match
2080     *
2081     * @return  The resulting {@code String}
2082     *
2083     * @throws  PatternSyntaxException
2084     *          if the regular expression's syntax is invalid
2085     *
2086     * @see java.util.regex.Pattern
2087     *
2088     * @since 1.4
2089     * @spec JSR-51
2090     */
2091    public String replaceFirst(String regex, String replacement) {
2092        return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2093    }
2094
2095    /**
2096     * Replaces each substring of this string that matches the given <a
2097     * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2098     * given replacement.
2099     *
2100     * <p> An invocation of this method of the form
2101     * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2102     * yields exactly the same result as the expression
2103     *
2104     * <blockquote>
2105     * <code>
2106     * {@link java.util.regex.Pattern}.{@link
2107     * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2108     * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2109     * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2110     * </code>
2111     * </blockquote>
2112     *
2113     *<p>
2114     * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2115     * replacement string may cause the results to be different than if it were
2116     * being treated as a literal replacement string; see
2117     * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2118     * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2119     * meaning of these characters, if desired.
2120     *
2121     * @param   regex
2122     *          the regular expression to which this string is to be matched
2123     * @param   replacement
2124     *          the string to be substituted for each match
2125     *
2126     * @return  The resulting {@code String}
2127     *
2128     * @throws  PatternSyntaxException
2129     *          if the regular expression's syntax is invalid
2130     *
2131     * @see java.util.regex.Pattern
2132     *
2133     * @since 1.4
2134     * @spec JSR-51
2135     */
2136    public String replaceAll(String regex, String replacement) {
2137        return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2138    }
2139
2140    /**
2141     * Replaces each substring of this string that matches the literal target
2142     * sequence with the specified literal replacement sequence. The
2143     * replacement proceeds from the beginning of the string to the end, for
2144     * example, replacing "aa" with "b" in the string "aaa" will result in
2145     * "ba" rather than "ab".
2146     *
2147     * @param  target The sequence of char values to be replaced
2148     * @param  replacement The replacement sequence of char values
2149     * @return  The resulting string
2150     * @since 1.5
2151     */
2152    public String replace(CharSequence target, CharSequence replacement) {
2153        String tgtStr = target.toString();
2154        String replStr = replacement.toString();
2155        int j = indexOf(tgtStr);
2156        if (j < 0) {
2157            return this;
2158        }
2159        int tgtLen = tgtStr.length();
2160        int tgtLen1 = Math.max(tgtLen, 1);
2161        int thisLen = length();
2162
2163        int newLenHint = thisLen - tgtLen + replStr.length();
2164        if (newLenHint < 0) {
2165            throw new OutOfMemoryError();
2166        }
2167        StringBuilder sb = new StringBuilder(newLenHint);
2168        int i = 0;
2169        do {
2170            sb.append(this, i, j).append(replStr);
2171            i = j + tgtLen;
2172        } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
2173        return sb.append(this, i, thisLen).toString();
2174    }
2175
2176    /**
2177     * Splits this string around matches of the given
2178     * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2179     *
2180     * <p> The array returned by this method contains each substring of this
2181     * string that is terminated by another substring that matches the given
2182     * expression or is terminated by the end of the string.  The substrings in
2183     * the array are in the order in which they occur in this string.  If the
2184     * expression does not match any part of the input then the resulting array
2185     * has just one element, namely this string.
2186     *
2187     * <p> When there is a positive-width match at the beginning of this
2188     * string then an empty leading substring is included at the beginning
2189     * of the resulting array. A zero-width match at the beginning however
2190     * never produces such empty leading substring.
2191     *
2192     * <p> The {@code limit} parameter controls the number of times the
2193     * pattern is applied and therefore affects the length of the resulting
2194     * array.  If the limit <i>n</i> is greater than zero then the pattern
2195     * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2196     * length will be no greater than <i>n</i>, and the array's last entry
2197     * will contain all input beyond the last matched delimiter.  If <i>n</i>
2198     * is non-positive then the pattern will be applied as many times as
2199     * possible and the array can have any length.  If <i>n</i> is zero then
2200     * the pattern will be applied as many times as possible, the array can
2201     * have any length, and trailing empty strings will be discarded.
2202     *
2203     * <p> The string {@code "boo:and:foo"}, for example, yields the
2204     * following results with these parameters:
2205     *
2206     * <blockquote><table class="plain">
2207     * <caption style="display:none">Split example showing regex, limit, and result</caption>
2208     * <thead>
2209     * <tr>
2210     *     <th>Regex</th>
2211     *     <th>Limit</th>
2212     *     <th>Result</th>
2213     * </tr>
2214     * </thead>
2215     * <tbody>
2216     * <tr><td style="text-align:center">:</td>
2217     *     <td style="text-align:center">2</td>
2218     *     <td>{@code { "boo", "and:foo" }}</td></tr>
2219     * <tr><td style="text-align:center">:</td>
2220     *     <td style="text-align:center">5</td>
2221     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2222     * <tr><td style="text-align:center">:</td>
2223     *     <td style="text-align:center">-2</td>
2224     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2225     * <tr><td style="text-align:center">o</td>
2226     *     <td style="text-align:center">5</td>
2227     *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2228     * <tr><td style="text-align:center">o</td>
2229     *     <td style="text-align:center">-2</td>
2230     *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2231     * <tr><td style="text-align:center">o</td>
2232     *     <td style="text-align:center">0</td>
2233     *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2234     * </tbody>
2235     * </table></blockquote>
2236     *
2237     * <p> An invocation of this method of the form
2238     * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2239     * yields the same result as the expression
2240     *
2241     * <blockquote>
2242     * <code>
2243     * {@link java.util.regex.Pattern}.{@link
2244     * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2245     * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2246     * </code>
2247     * </blockquote>
2248     *
2249     *
2250     * @param  regex
2251     *         the delimiting regular expression
2252     *
2253     * @param  limit
2254     *         the result threshold, as described above
2255     *
2256     * @return  the array of strings computed by splitting this string
2257     *          around matches of the given regular expression
2258     *
2259     * @throws  PatternSyntaxException
2260     *          if the regular expression's syntax is invalid
2261     *
2262     * @see java.util.regex.Pattern
2263     *
2264     * @since 1.4
2265     * @spec JSR-51
2266     */
2267    public String[] split(String regex, int limit) {
2268        /* fastpath if the regex is a
2269         (1)one-char String and this character is not one of the
2270            RegEx's meta characters ".$|()[{^?*+\\", or
2271         (2)two-char String and the first char is the backslash and
2272            the second is not the ascii digit or ascii letter.
2273         */
2274        char ch = 0;
2275        if (((regex.length() == 1 &&
2276             ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2277             (regex.length() == 2 &&
2278              regex.charAt(0) == '\\' &&
2279              (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2280              ((ch-'a')|('z'-ch)) < 0 &&
2281              ((ch-'A')|('Z'-ch)) < 0)) &&
2282            (ch < Character.MIN_HIGH_SURROGATE ||
2283             ch > Character.MAX_LOW_SURROGATE))
2284        {
2285            int off = 0;
2286            int next = 0;
2287            boolean limited = limit > 0;
2288            ArrayList<String> list = new ArrayList<>();
2289            while ((next = indexOf(ch, off)) != -1) {
2290                if (!limited || list.size() < limit - 1) {
2291                    list.add(substring(off, next));
2292                    off = next + 1;
2293                } else {    // last one
2294                    //assert (list.size() == limit - 1);
2295                    int last = length();
2296                    list.add(substring(off, last));
2297                    off = last;
2298                    break;
2299                }
2300            }
2301            // If no match was found, return this
2302            if (off == 0)
2303                return new String[]{this};
2304
2305            // Add remaining segment
2306            if (!limited || list.size() < limit)
2307                list.add(substring(off, length()));
2308
2309            // Construct result
2310            int resultSize = list.size();
2311            if (limit == 0) {
2312                while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2313                    resultSize--;
2314                }
2315            }
2316            String[] result = new String[resultSize];
2317            return list.subList(0, resultSize).toArray(result);
2318        }
2319        return Pattern.compile(regex).split(this, limit);
2320    }
2321
2322    /**
2323     * Splits this string around matches of the given <a
2324     * href="../util/regex/Pattern.html#sum">regular expression</a>.
2325     *
2326     * <p> This method works as if by invoking the two-argument {@link
2327     * #split(String, int) split} method with the given expression and a limit
2328     * argument of zero.  Trailing empty strings are therefore not included in
2329     * the resulting array.
2330     *
2331     * <p> The string {@code "boo:and:foo"}, for example, yields the following
2332     * results with these expressions:
2333     *
2334     * <blockquote><table class="plain">
2335     * <caption style="display:none">Split examples showing regex and result</caption>
2336     * <thead>
2337     * <tr>
2338     *  <th>Regex</th>
2339     *  <th>Result</th>
2340     * </tr>
2341     * </thead>
2342     * <tbody>
2343     * <tr><td style="text-align:center">:</td>
2344     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2345     * <tr><td style="text-align:center">o</td>
2346     *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2347     * </tbody>
2348     * </table></blockquote>
2349     *
2350     *
2351     * @param  regex
2352     *         the delimiting regular expression
2353     *
2354     * @return  the array of strings computed by splitting this string
2355     *          around matches of the given regular expression
2356     *
2357     * @throws  PatternSyntaxException
2358     *          if the regular expression's syntax is invalid
2359     *
2360     * @see java.util.regex.Pattern
2361     *
2362     * @since 1.4
2363     * @spec JSR-51
2364     */
2365    public String[] split(String regex) {
2366        return split(regex, 0);
2367    }
2368
2369    /**
2370     * Returns a new String composed of copies of the
2371     * {@code CharSequence elements} joined together with a copy of
2372     * the specified {@code delimiter}.
2373     *
2374     * <blockquote>For example,
2375     * <pre>{@code
2376     *     String message = String.join("-", "Java", "is", "cool");
2377     *     // message returned is: "Java-is-cool"
2378     * }</pre></blockquote>
2379     *
2380     * Note that if an element is null, then {@code "null"} is added.
2381     *
2382     * @param  delimiter the delimiter that separates each element
2383     * @param  elements the elements to join together.
2384     *
2385     * @return a new {@code String} that is composed of the {@code elements}
2386     *         separated by the {@code delimiter}
2387     *
2388     * @throws NullPointerException If {@code delimiter} or {@code elements}
2389     *         is {@code null}
2390     *
2391     * @see java.util.StringJoiner
2392     * @since 1.8
2393     */
2394    public static String join(CharSequence delimiter, CharSequence... elements) {
2395        Objects.requireNonNull(delimiter);
2396        Objects.requireNonNull(elements);
2397        // Number of elements not likely worth Arrays.stream overhead.
2398        StringJoiner joiner = new StringJoiner(delimiter);
2399        for (CharSequence cs: elements) {
2400            joiner.add(cs);
2401        }
2402        return joiner.toString();
2403    }
2404
2405    /**
2406     * Returns a new {@code String} composed of copies of the
2407     * {@code CharSequence elements} joined together with a copy of the
2408     * specified {@code delimiter}.
2409     *
2410     * <blockquote>For example,
2411     * <pre>{@code
2412     *     List<String> strings = List.of("Java", "is", "cool");
2413     *     String message = String.join(" ", strings);
2414     *     //message returned is: "Java is cool"
2415     *
2416     *     Set<String> strings =
2417     *         new LinkedHashSet<>(List.of("Java", "is", "very", "cool"));
2418     *     String message = String.join("-", strings);
2419     *     //message returned is: "Java-is-very-cool"
2420     * }</pre></blockquote>
2421     *
2422     * Note that if an individual element is {@code null}, then {@code "null"} is added.
2423     *
2424     * @param  delimiter a sequence of characters that is used to separate each
2425     *         of the {@code elements} in the resulting {@code String}
2426     * @param  elements an {@code Iterable} that will have its {@code elements}
2427     *         joined together.
2428     *
2429     * @return a new {@code String} that is composed from the {@code elements}
2430     *         argument
2431     *
2432     * @throws NullPointerException If {@code delimiter} or {@code elements}
2433     *         is {@code null}
2434     *
2435     * @see    #join(CharSequence,CharSequence...)
2436     * @see    java.util.StringJoiner
2437     * @since 1.8
2438     */
2439    public static String join(CharSequence delimiter,
2440            Iterable<? extends CharSequence> elements) {
2441        Objects.requireNonNull(delimiter);
2442        Objects.requireNonNull(elements);
2443        StringJoiner joiner = new StringJoiner(delimiter);
2444        for (CharSequence cs: elements) {
2445            joiner.add(cs);
2446        }
2447        return joiner.toString();
2448    }
2449
2450    /**
2451     * Converts all of the characters in this {@code String} to lower
2452     * case using the rules of the given {@code Locale}.  Case mapping is based
2453     * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2454     * class. Since case mappings are not always 1:1 char mappings, the resulting
2455     * {@code String} may be a different length than the original {@code String}.
2456     * <p>
2457     * Examples of lowercase  mappings are in the following table:
2458     * <table class="plain">
2459     * <caption style="display:none">Lowercase mapping examples showing language code of locale, upper case, lower case, and description</caption>
2460     * <thead>
2461     * <tr>
2462     *   <th>Language Code of Locale</th>
2463     *   <th>Upper Case</th>
2464     *   <th>Lower Case</th>
2465     *   <th>Description</th>
2466     * </tr>
2467     * </thead>
2468     * <tbody>
2469     * <tr>
2470     *   <td>tr (Turkish)</td>
2471     *   <td>&#92;u0130</td>
2472     *   <td>&#92;u0069</td>
2473     *   <td>capital letter I with dot above -&gt; small letter i</td>
2474     * </tr>
2475     * <tr>
2476     *   <td>tr (Turkish)</td>
2477     *   <td>&#92;u0049</td>
2478     *   <td>&#92;u0131</td>
2479     *   <td>capital letter I -&gt; small letter dotless i </td>
2480     * </tr>
2481     * <tr>
2482     *   <td>(all)</td>
2483     *   <td>French Fries</td>
2484     *   <td>french fries</td>
2485     *   <td>lowercased all chars in String</td>
2486     * </tr>
2487     * <tr>
2488     *   <td>(all)</td>
2489     *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2490     *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2491     *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2492     *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2493     *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2494     *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2495     *   <td>lowercased all chars in String</td>
2496     * </tr>
2497     * </tbody>
2498     * </table>
2499     *
2500     * @param locale use the case transformation rules for this locale
2501     * @return the {@code String}, converted to lowercase.
2502     * @see     java.lang.String#toLowerCase()
2503     * @see     java.lang.String#toUpperCase()
2504     * @see     java.lang.String#toUpperCase(Locale)
2505     * @since   1.1
2506     */
2507    public String toLowerCase(Locale locale) {
2508        return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
2509                          : StringUTF16.toLowerCase(this, value, locale);
2510    }
2511
2512    /**
2513     * Converts all of the characters in this {@code String} to lower
2514     * case using the rules of the default locale. This is equivalent to calling
2515     * {@code toLowerCase(Locale.getDefault())}.
2516     * <p>
2517     * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2518     * results if used for strings that are intended to be interpreted locale
2519     * independently.
2520     * Examples are programming language identifiers, protocol keys, and HTML
2521     * tags.
2522     * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2523     * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2524     * LATIN SMALL LETTER DOTLESS I character.
2525     * To obtain correct results for locale insensitive strings, use
2526     * {@code toLowerCase(Locale.ROOT)}.
2527     *
2528     * @return  the {@code String}, converted to lowercase.
2529     * @see     java.lang.String#toLowerCase(Locale)
2530     */
2531    public String toLowerCase() {
2532        return toLowerCase(Locale.getDefault());
2533    }
2534
2535    /**
2536     * Converts all of the characters in this {@code String} to upper
2537     * case using the rules of the given {@code Locale}. Case mapping is based
2538     * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2539     * class. Since case mappings are not always 1:1 char mappings, the resulting
2540     * {@code String} may be a different length than the original {@code String}.
2541     * <p>
2542     * Examples of locale-sensitive and 1:M case mappings are in the following table.
2543     *
2544     * <table class="plain">
2545     * <caption style="display:none">Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.</caption>
2546     * <thead>
2547     * <tr>
2548     *   <th>Language Code of Locale</th>
2549     *   <th>Lower Case</th>
2550     *   <th>Upper Case</th>
2551     *   <th>Description</th>
2552     * </tr>
2553     * </thead>
2554     * <tbody>
2555     * <tr>
2556     *   <td>tr (Turkish)</td>
2557     *   <td>&#92;u0069</td>
2558     *   <td>&#92;u0130</td>
2559     *   <td>small letter i -&gt; capital letter I with dot above</td>
2560     * </tr>
2561     * <tr>
2562     *   <td>tr (Turkish)</td>
2563     *   <td>&#92;u0131</td>
2564     *   <td>&#92;u0049</td>
2565     *   <td>small letter dotless i -&gt; capital letter I</td>
2566     * </tr>
2567     * <tr>
2568     *   <td>(all)</td>
2569     *   <td>&#92;u00df</td>
2570     *   <td>&#92;u0053 &#92;u0053</td>
2571     *   <td>small letter sharp s -&gt; two letters: SS</td>
2572     * </tr>
2573     * <tr>
2574     *   <td>(all)</td>
2575     *   <td>Fahrvergn&uuml;gen</td>
2576     *   <td>FAHRVERGN&Uuml;GEN</td>
2577     *   <td></td>
2578     * </tr>
2579     * </tbody>
2580     * </table>
2581     * @param locale use the case transformation rules for this locale
2582     * @return the {@code String}, converted to uppercase.
2583     * @see     java.lang.String#toUpperCase()
2584     * @see     java.lang.String#toLowerCase()
2585     * @see     java.lang.String#toLowerCase(Locale)
2586     * @since   1.1
2587     */
2588    public String toUpperCase(Locale locale) {
2589        return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
2590                          : StringUTF16.toUpperCase(this, value, locale);
2591    }
2592
2593    /**
2594     * Converts all of the characters in this {@code String} to upper
2595     * case using the rules of the default locale. This method is equivalent to
2596     * {@code toUpperCase(Locale.getDefault())}.
2597     * <p>
2598     * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2599     * results if used for strings that are intended to be interpreted locale
2600     * independently.
2601     * Examples are programming language identifiers, protocol keys, and HTML
2602     * tags.
2603     * For instance, {@code "title".toUpperCase()} in a Turkish locale
2604     * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2605     * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2606     * To obtain correct results for locale insensitive strings, use
2607     * {@code toUpperCase(Locale.ROOT)}.
2608     *
2609     * @return  the {@code String}, converted to uppercase.
2610     * @see     java.lang.String#toUpperCase(Locale)
2611     */
2612    public String toUpperCase() {
2613        return toUpperCase(Locale.getDefault());
2614    }
2615
2616    /**
2617     * Returns a string whose value is this string, with any leading and trailing
2618     * whitespace removed.
2619     * <p>
2620     * If this {@code String} object represents an empty character
2621     * sequence, or the first and last characters of character sequence
2622     * represented by this {@code String} object both have codes
2623     * greater than {@code '\u005Cu0020'} (the space character), then a
2624     * reference to this {@code String} object is returned.
2625     * <p>
2626     * Otherwise, if there is no character with a code greater than
2627     * {@code '\u005Cu0020'} in the string, then a
2628     * {@code String} object representing an empty string is
2629     * returned.
2630     * <p>
2631     * Otherwise, let <i>k</i> be the index of the first character in the
2632     * string whose code is greater than {@code '\u005Cu0020'}, and let
2633     * <i>m</i> be the index of the last character in the string whose code
2634     * is greater than {@code '\u005Cu0020'}. A {@code String}
2635     * object is returned, representing the substring of this string that
2636     * begins with the character at index <i>k</i> and ends with the
2637     * character at index <i>m</i>-that is, the result of
2638     * {@code this.substring(k, m + 1)}.
2639     * <p>
2640     * This method may be used to trim whitespace (as defined above) from
2641     * the beginning and end of a string.
2642     *
2643     * @return  A string whose value is this string, with any leading and trailing white
2644     *          space removed, or this string if it has no leading or
2645     *          trailing white space.
2646     */
2647    public String trim() {
2648        String ret = isLatin1() ? StringLatin1.trim(value)
2649                                : StringUTF16.trim(value);
2650        return ret == null ? this : ret;
2651    }
2652
2653    /**
2654     * This object (which is already a string!) is itself returned.
2655     *
2656     * @return  the string itself.
2657     */
2658    public String toString() {
2659        return this;
2660    }
2661
2662    /**
2663     * Returns a stream of {@code int} zero-extending the {@code char} values
2664     * from this sequence.  Any char which maps to a <a
2665     * href="{@docRoot}/java/lang/Character.html#unicode">surrogate code
2666     * point</a> is passed through uninterpreted.
2667     *
2668     * @return an IntStream of char values from this sequence
2669     */
2670    @Override
2671    public IntStream chars() {
2672        return StreamSupport.intStream(
2673            isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2674                       : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE),
2675            false);
2676    }
2677
2678
2679    /**
2680     * Returns a stream of code point values from this sequence.  Any surrogate
2681     * pairs encountered in the sequence are combined as if by {@linkplain
2682     * Character#toCodePoint Character.toCodePoint} and the result is passed
2683     * to the stream. Any other code units, including ordinary BMP characters,
2684     * unpaired surrogates, and undefined code units, are zero-extended to
2685     * {@code int} values which are then passed to the stream.
2686     *
2687     * @return an IntStream of Unicode code points from this sequence
2688     */
2689    @Override
2690    public IntStream codePoints() {
2691        return StreamSupport.intStream(
2692            isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2693                       : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE),
2694            false);
2695    }
2696
2697    /**
2698     * Converts this string to a new character array.
2699     *
2700     * @return  a newly allocated character array whose length is the length
2701     *          of this string and whose contents are initialized to contain
2702     *          the character sequence represented by this string.
2703     */
2704    public char[] toCharArray() {
2705        return isLatin1() ? StringLatin1.toChars(value)
2706                          : StringUTF16.toChars(value);
2707    }
2708
2709    /**
2710     * Returns a formatted string using the specified format string and
2711     * arguments.
2712     *
2713     * <p> The locale always used is the one returned by {@link
2714     * java.util.Locale#getDefault(java.util.Locale.Category)
2715     * Locale.getDefault(Locale.Category)} with
2716     * {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
2717     *
2718     * @param  format
2719     *         A <a href="../util/Formatter.html#syntax">format string</a>
2720     *
2721     * @param  args
2722     *         Arguments referenced by the format specifiers in the format
2723     *         string.  If there are more arguments than format specifiers, the
2724     *         extra arguments are ignored.  The number of arguments is
2725     *         variable and may be zero.  The maximum number of arguments is
2726     *         limited by the maximum dimension of a Java array as defined by
2727     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2728     *         The behaviour on a
2729     *         {@code null} argument depends on the <a
2730     *         href="../util/Formatter.html#syntax">conversion</a>.
2731     *
2732     * @throws  java.util.IllegalFormatException
2733     *          If a format string contains an illegal syntax, a format
2734     *          specifier that is incompatible with the given arguments,
2735     *          insufficient arguments given the format string, or other
2736     *          illegal conditions.  For specification of all possible
2737     *          formatting errors, see the <a
2738     *          href="../util/Formatter.html#detail">Details</a> section of the
2739     *          formatter class specification.
2740     *
2741     * @return  A formatted string
2742     *
2743     * @see  java.util.Formatter
2744     * @since  1.5
2745     */
2746    public static String format(String format, Object... args) {
2747        return new Formatter().format(format, args).toString();
2748    }
2749
2750    /**
2751     * Returns a formatted string using the specified locale, format string,
2752     * and arguments.
2753     *
2754     * @param  l
2755     *         The {@linkplain java.util.Locale locale} to apply during
2756     *         formatting.  If {@code l} is {@code null} then no localization
2757     *         is applied.
2758     *
2759     * @param  format
2760     *         A <a href="../util/Formatter.html#syntax">format string</a>
2761     *
2762     * @param  args
2763     *         Arguments referenced by the format specifiers in the format
2764     *         string.  If there are more arguments than format specifiers, the
2765     *         extra arguments are ignored.  The number of arguments is
2766     *         variable and may be zero.  The maximum number of arguments is
2767     *         limited by the maximum dimension of a Java array as defined by
2768     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2769     *         The behaviour on a
2770     *         {@code null} argument depends on the
2771     *         <a href="../util/Formatter.html#syntax">conversion</a>.
2772     *
2773     * @throws  java.util.IllegalFormatException
2774     *          If a format string contains an illegal syntax, a format
2775     *          specifier that is incompatible with the given arguments,
2776     *          insufficient arguments given the format string, or other
2777     *          illegal conditions.  For specification of all possible
2778     *          formatting errors, see the <a
2779     *          href="../util/Formatter.html#detail">Details</a> section of the
2780     *          formatter class specification
2781     *
2782     * @return  A formatted string
2783     *
2784     * @see  java.util.Formatter
2785     * @since  1.5
2786     */
2787    public static String format(Locale l, String format, Object... args) {
2788        return new Formatter(l).format(format, args).toString();
2789    }
2790
2791    /**
2792     * Returns the string representation of the {@code Object} argument.
2793     *
2794     * @param   obj   an {@code Object}.
2795     * @return  if the argument is {@code null}, then a string equal to
2796     *          {@code "null"}; otherwise, the value of
2797     *          {@code obj.toString()} is returned.
2798     * @see     java.lang.Object#toString()
2799     */
2800    public static String valueOf(Object obj) {
2801        return (obj == null) ? "null" : obj.toString();
2802    }
2803
2804    /**
2805     * Returns the string representation of the {@code char} array
2806     * argument. The contents of the character array are copied; subsequent
2807     * modification of the character array does not affect the returned
2808     * string.
2809     *
2810     * @param   data     the character array.
2811     * @return  a {@code String} that contains the characters of the
2812     *          character array.
2813     */
2814    public static String valueOf(char data[]) {
2815        return new String(data);
2816    }
2817
2818    /**
2819     * Returns the string representation of a specific subarray of the
2820     * {@code char} array argument.
2821     * <p>
2822     * The {@code offset} argument is the index of the first
2823     * character of the subarray. The {@code count} argument
2824     * specifies the length of the subarray. The contents of the subarray
2825     * are copied; subsequent modification of the character array does not
2826     * affect the returned string.
2827     *
2828     * @param   data     the character array.
2829     * @param   offset   initial offset of the subarray.
2830     * @param   count    length of the subarray.
2831     * @return  a {@code String} that contains the characters of the
2832     *          specified subarray of the character array.
2833     * @exception IndexOutOfBoundsException if {@code offset} is
2834     *          negative, or {@code count} is negative, or
2835     *          {@code offset+count} is larger than
2836     *          {@code data.length}.
2837     */
2838    public static String valueOf(char data[], int offset, int count) {
2839        return new String(data, offset, count);
2840    }
2841
2842    /**
2843     * Equivalent to {@link #valueOf(char[], int, int)}.
2844     *
2845     * @param   data     the character array.
2846     * @param   offset   initial offset of the subarray.
2847     * @param   count    length of the subarray.
2848     * @return  a {@code String} that contains the characters of the
2849     *          specified subarray of the character array.
2850     * @exception IndexOutOfBoundsException if {@code offset} is
2851     *          negative, or {@code count} is negative, or
2852     *          {@code offset+count} is larger than
2853     *          {@code data.length}.
2854     */
2855    public static String copyValueOf(char data[], int offset, int count) {
2856        return new String(data, offset, count);
2857    }
2858
2859    /**
2860     * Equivalent to {@link #valueOf(char[])}.
2861     *
2862     * @param   data   the character array.
2863     * @return  a {@code String} that contains the characters of the
2864     *          character array.
2865     */
2866    public static String copyValueOf(char data[]) {
2867        return new String(data);
2868    }
2869
2870    /**
2871     * Returns the string representation of the {@code boolean} argument.
2872     *
2873     * @param   b   a {@code boolean}.
2874     * @return  if the argument is {@code true}, a string equal to
2875     *          {@code "true"} is returned; otherwise, a string equal to
2876     *          {@code "false"} is returned.
2877     */
2878    public static String valueOf(boolean b) {
2879        return b ? "true" : "false";
2880    }
2881
2882    /**
2883     * Returns the string representation of the {@code char}
2884     * argument.
2885     *
2886     * @param   c   a {@code char}.
2887     * @return  a string of length {@code 1} containing
2888     *          as its single character the argument {@code c}.
2889     */
2890    public static String valueOf(char c) {
2891        if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
2892            return new String(StringLatin1.toBytes(c), LATIN1);
2893        }
2894        return new String(StringUTF16.toBytes(c), UTF16);
2895    }
2896
2897    /**
2898     * Returns the string representation of the {@code int} argument.
2899     * <p>
2900     * The representation is exactly the one returned by the
2901     * {@code Integer.toString} method of one argument.
2902     *
2903     * @param   i   an {@code int}.
2904     * @return  a string representation of the {@code int} argument.
2905     * @see     java.lang.Integer#toString(int, int)
2906     */
2907    public static String valueOf(int i) {
2908        return Integer.toString(i);
2909    }
2910
2911    /**
2912     * Returns the string representation of the {@code long} argument.
2913     * <p>
2914     * The representation is exactly the one returned by the
2915     * {@code Long.toString} method of one argument.
2916     *
2917     * @param   l   a {@code long}.
2918     * @return  a string representation of the {@code long} argument.
2919     * @see     java.lang.Long#toString(long)
2920     */
2921    public static String valueOf(long l) {
2922        return Long.toString(l);
2923    }
2924
2925    /**
2926     * Returns the string representation of the {@code float} argument.
2927     * <p>
2928     * The representation is exactly the one returned by the
2929     * {@code Float.toString} method of one argument.
2930     *
2931     * @param   f   a {@code float}.
2932     * @return  a string representation of the {@code float} argument.
2933     * @see     java.lang.Float#toString(float)
2934     */
2935    public static String valueOf(float f) {
2936        return Float.toString(f);
2937    }
2938
2939    /**
2940     * Returns the string representation of the {@code double} argument.
2941     * <p>
2942     * The representation is exactly the one returned by the
2943     * {@code Double.toString} method of one argument.
2944     *
2945     * @param   d   a {@code double}.
2946     * @return  a  string representation of the {@code double} argument.
2947     * @see     java.lang.Double#toString(double)
2948     */
2949    public static String valueOf(double d) {
2950        return Double.toString(d);
2951    }
2952
2953    /**
2954     * Returns a canonical representation for the string object.
2955     * <p>
2956     * A pool of strings, initially empty, is maintained privately by the
2957     * class {@code String}.
2958     * <p>
2959     * When the intern method is invoked, if the pool already contains a
2960     * string equal to this {@code String} object as determined by
2961     * the {@link #equals(Object)} method, then the string from the pool is
2962     * returned. Otherwise, this {@code String} object is added to the
2963     * pool and a reference to this {@code String} object is returned.
2964     * <p>
2965     * It follows that for any two strings {@code s} and {@code t},
2966     * {@code s.intern() == t.intern()} is {@code true}
2967     * if and only if {@code s.equals(t)} is {@code true}.
2968     * <p>
2969     * All literal strings and string-valued constant expressions are
2970     * interned. String literals are defined in section 3.10.5 of the
2971     * <cite>The Java&trade; Language Specification</cite>.
2972     *
2973     * @return  a string that has the same contents as this string, but is
2974     *          guaranteed to be from a pool of unique strings.
2975     * @jls 3.10.5 String Literals
2976     */
2977    public native String intern();
2978
2979    ////////////////////////////////////////////////////////////////
2980
2981    /**
2982     * Copy character bytes from this string into dst starting at dstBegin.
2983     * This method doesn't perform any range checking.
2984     *
2985     * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
2986     * coders are different, and dst is big enough (range check)
2987     *
2988     * @param dstBegin  the char index, not offset of byte[]
2989     * @param coder     the coder of dst[]
2990     */
2991    void getBytes(byte dst[], int dstBegin, byte coder) {
2992        if (coder() == coder) {
2993            System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
2994        } else {    // this.coder == LATIN && coder == UTF16
2995            StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
2996        }
2997    }
2998
2999    /*
3000     * Package private constructor. Trailing Void argument is there for
3001     * disambiguating it against other (public) constructors.
3002     *
3003     * Stores the char[] value into a byte[] that each byte represents
3004     * the8 low-order bits of the corresponding character, if the char[]
3005     * contains only latin1 character. Or a byte[] that stores all
3006     * characters in their byte sequences defined by the {@code StringUTF16}.
3007     */
3008    String(char[] value, int off, int len, Void sig) {
3009        if (len == 0) {
3010            this.value = "".value;
3011            this.coder = "".coder;
3012            return;
3013        }
3014        if (COMPACT_STRINGS) {
3015            byte[] val = StringUTF16.compress(value, off, len);
3016            if (val != null) {
3017                this.value = val;
3018                this.coder = LATIN1;
3019                return;
3020            }
3021        }
3022        this.coder = UTF16;
3023        this.value = StringUTF16.toBytes(value, off, len);
3024    }
3025
3026    /*
3027     * Package private constructor. Trailing Void argument is there for
3028     * disambiguating it against other (public) constructors.
3029     */
3030    String(AbstractStringBuilder asb, Void sig) {
3031        byte[] val = asb.getValue();
3032        int length = asb.length();
3033        if (asb.isLatin1()) {
3034            this.coder = LATIN1;
3035            this.value = Arrays.copyOfRange(val, 0, length);
3036        } else {
3037            if (COMPACT_STRINGS) {
3038                byte[] buf = StringUTF16.compress(val, 0, length);
3039                if (buf != null) {
3040                    this.coder = LATIN1;
3041                    this.value = buf;
3042                    return;
3043                }
3044            }
3045            this.coder = UTF16;
3046            this.value = Arrays.copyOfRange(val, 0, length << 1);
3047        }
3048    }
3049
3050   /*
3051    * Package private constructor which shares value array for speed.
3052    */
3053    String(byte[] value, byte coder) {
3054        this.value = value;
3055        this.coder = coder;
3056    }
3057
3058    byte coder() {
3059        return COMPACT_STRINGS ? coder : UTF16;
3060    }
3061
3062    private boolean isLatin1() {
3063        return COMPACT_STRINGS && coder == LATIN1;
3064    }
3065
3066    static final byte LATIN1 = 0;
3067    static final byte UTF16  = 1;
3068
3069    /*
3070     * StringIndexOutOfBoundsException  if {@code index} is
3071     * negative or greater than or equal to {@code length}.
3072     */
3073    static void checkIndex(int index, int length) {
3074        if (index < 0 || index >= length) {
3075            throw new StringIndexOutOfBoundsException("index " + index +
3076                                                      ",length " + length);
3077        }
3078    }
3079
3080    /*
3081     * StringIndexOutOfBoundsException  if {@code offset}
3082     * is negative or greater than {@code length}.
3083     */
3084    static void checkOffset(int offset, int length) {
3085        if (offset < 0 || offset > length) {
3086            throw new StringIndexOutOfBoundsException("offset " + offset +
3087                                                      ",length " + length);
3088        }
3089    }
3090
3091    /*
3092     * Check {@code offset}, {@code count} against {@code 0} and {@code length}
3093     * bounds.
3094     *
3095     * @throws  StringIndexOutOfBoundsException
3096     *          If {@code offset} is negative, {@code count} is negative,
3097     *          or {@code offset} is greater than {@code length - count}
3098     */
3099    static void checkBoundsOffCount(int offset, int count, int length) {
3100        if (offset < 0 || count < 0 || offset > length - count) {
3101            throw new StringIndexOutOfBoundsException(
3102                "offset " + offset + ", count " + count + ", length " + length);
3103        }
3104    }
3105
3106    /*
3107     * Check {@code begin}, {@code end} against {@code 0} and {@code length}
3108     * bounds.
3109     *
3110     * @throws  StringIndexOutOfBoundsException
3111     *          If {@code begin} is negative, {@code begin} is greater than
3112     *          {@code end}, or {@code end} is greater than {@code length}.
3113     */
3114    static void checkBoundsBeginEnd(int begin, int end, int length) {
3115        if (begin < 0 || begin > end || end > length) {
3116            throw new StringIndexOutOfBoundsException(
3117                "begin " + begin + ", end " + end + ", length " + length);
3118        }
3119    }
3120}
3121