safepoint.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_safepoint.cpp.incl"
27
28// --------------------------------------------------------------------------------------------------
29// Implementation of Safepoint begin/end
30
31SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
32volatile int  SafepointSynchronize::_waiting_to_block = 0;
33volatile int SafepointSynchronize::_safepoint_counter = 0;
34long  SafepointSynchronize::_end_of_last_safepoint = 0;
35static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
36static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
37static bool timeout_error_printed = false;
38
39// Roll all threads forward to a safepoint and suspend them all
40void SafepointSynchronize::begin() {
41
42  Thread* myThread = Thread::current();
43  assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
44
45  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
46    _safepoint_begin_time = os::javaTimeNanos();
47    _ts_of_current_safepoint = tty->time_stamp().seconds();
48  }
49
50#ifndef SERIALGC
51  if (UseConcMarkSweepGC) {
52    // In the future we should investigate whether CMS can use the
53    // more-general mechanism below.  DLD (01/05).
54    ConcurrentMarkSweepThread::synchronize(false);
55  } else if (UseG1GC) {
56    ConcurrentGCThread::safepoint_synchronize();
57  }
58#endif // SERIALGC
59
60  // By getting the Threads_lock, we assure that no threads are about to start or
61  // exit. It is released again in SafepointSynchronize::end().
62  Threads_lock->lock();
63
64  assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
65
66  int nof_threads = Threads::number_of_threads();
67
68  if (TraceSafepoint) {
69    tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
70  }
71
72  RuntimeService::record_safepoint_begin();
73
74  {
75  MutexLocker mu(Safepoint_lock);
76
77  // Set number of threads to wait for, before we initiate the callbacks
78  _waiting_to_block = nof_threads;
79  TryingToBlock     = 0 ;
80  int still_running = nof_threads;
81
82  // Save the starting time, so that it can be compared to see if this has taken
83  // too long to complete.
84  jlong safepoint_limit_time;
85  timeout_error_printed = false;
86
87  // PrintSafepointStatisticsTimeout can be specified separately. When
88  // specified, PrintSafepointStatistics will be set to true in
89  // deferred_initialize_stat method. The initialization has to be done
90  // early enough to avoid any races. See bug 6880029 for details.
91  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
92    deferred_initialize_stat();
93  }
94
95  // Begin the process of bringing the system to a safepoint.
96  // Java threads can be in several different states and are
97  // stopped by different mechanisms:
98  //
99  //  1. Running interpreted
100  //     The interpeter dispatch table is changed to force it to
101  //     check for a safepoint condition between bytecodes.
102  //  2. Running in native code
103  //     When returning from the native code, a Java thread must check
104  //     the safepoint _state to see if we must block.  If the
105  //     VM thread sees a Java thread in native, it does
106  //     not wait for this thread to block.  The order of the memory
107  //     writes and reads of both the safepoint state and the Java
108  //     threads state is critical.  In order to guarantee that the
109  //     memory writes are serialized with respect to each other,
110  //     the VM thread issues a memory barrier instruction
111  //     (on MP systems).  In order to avoid the overhead of issuing
112  //     a memory barrier for each Java thread making native calls, each Java
113  //     thread performs a write to a single memory page after changing
114  //     the thread state.  The VM thread performs a sequence of
115  //     mprotect OS calls which forces all previous writes from all
116  //     Java threads to be serialized.  This is done in the
117  //     os::serialize_thread_states() call.  This has proven to be
118  //     much more efficient than executing a membar instruction
119  //     on every call to native code.
120  //  3. Running compiled Code
121  //     Compiled code reads a global (Safepoint Polling) page that
122  //     is set to fault if we are trying to get to a safepoint.
123  //  4. Blocked
124  //     A thread which is blocked will not be allowed to return from the
125  //     block condition until the safepoint operation is complete.
126  //  5. In VM or Transitioning between states
127  //     If a Java thread is currently running in the VM or transitioning
128  //     between states, the safepointing code will wait for the thread to
129  //     block itself when it attempts transitions to a new state.
130  //
131  _state            = _synchronizing;
132  OrderAccess::fence();
133
134  // Flush all thread states to memory
135  if (!UseMembar) {
136    os::serialize_thread_states();
137  }
138
139  // Make interpreter safepoint aware
140  Interpreter::notice_safepoints();
141
142  if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
143    // Make polling safepoint aware
144    guarantee (PageArmed == 0, "invariant") ;
145    PageArmed = 1 ;
146    os::make_polling_page_unreadable();
147  }
148
149  // Consider using active_processor_count() ... but that call is expensive.
150  int ncpus = os::processor_count() ;
151
152#ifdef ASSERT
153  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
154    assert(cur->safepoint_state()->is_running(), "Illegal initial state");
155  }
156#endif // ASSERT
157
158  if (SafepointTimeout)
159    safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
160
161  // Iterate through all threads until it have been determined how to stop them all at a safepoint
162  unsigned int iterations = 0;
163  int steps = 0 ;
164  while(still_running > 0) {
165    for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
166      assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
167      ThreadSafepointState *cur_state = cur->safepoint_state();
168      if (cur_state->is_running()) {
169        cur_state->examine_state_of_thread();
170        if (!cur_state->is_running()) {
171           still_running--;
172           // consider adjusting steps downward:
173           //   steps = 0
174           //   steps -= NNN
175           //   steps >>= 1
176           //   steps = MIN(steps, 2000-100)
177           //   if (iterations != 0) steps -= NNN
178        }
179        if (TraceSafepoint && Verbose) cur_state->print();
180      }
181    }
182
183    if (PrintSafepointStatistics && iterations == 0) {
184      begin_statistics(nof_threads, still_running);
185    }
186
187    if (still_running > 0) {
188      // Check for if it takes to long
189      if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
190        print_safepoint_timeout(_spinning_timeout);
191      }
192
193      // Spin to avoid context switching.
194      // There's a tension between allowing the mutators to run (and rendezvous)
195      // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
196      // a mutator might otherwise use profitably to reach a safepoint.  Excessive
197      // spinning by the VM thread on a saturated system can increase rendezvous latency.
198      // Blocking or yielding incur their own penalties in the form of context switching
199      // and the resultant loss of $ residency.
200      //
201      // Further complicating matters is that yield() does not work as naively expected
202      // on many platforms -- yield() does not guarantee that any other ready threads
203      // will run.   As such we revert yield_all() after some number of iterations.
204      // Yield_all() is implemented as a short unconditional sleep on some platforms.
205      // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
206      // can actually increase the time it takes the VM thread to detect that a system-wide
207      // stop-the-world safepoint has been reached.  In a pathological scenario such as that
208      // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
209      // In that case the mutators will be stalled waiting for the safepoint to complete and the
210      // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
211      // will eventually wake up and detect that all mutators are safe, at which point
212      // we'll again make progress.
213      //
214      // Beware too that that the VMThread typically runs at elevated priority.
215      // Its default priority is higher than the default mutator priority.
216      // Obviously, this complicates spinning.
217      //
218      // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
219      // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
220      //
221      // See the comments in synchronizer.cpp for additional remarks on spinning.
222      //
223      // In the future we might:
224      // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
225      //    This is tricky as the path used by a thread exiting the JVM (say on
226      //    on JNI call-out) simply stores into its state field.  The burden
227      //    is placed on the VM thread, which must poll (spin).
228      // 2. Find something useful to do while spinning.  If the safepoint is GC-related
229      //    we might aggressively scan the stacks of threads that are already safe.
230      // 3. Use Solaris schedctl to examine the state of the still-running mutators.
231      //    If all the mutators are ONPROC there's no reason to sleep or yield.
232      // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
233      // 5. Check system saturation.  If the system is not fully saturated then
234      //    simply spin and avoid sleep/yield.
235      // 6. As still-running mutators rendezvous they could unpark the sleeping
236      //    VMthread.  This works well for still-running mutators that become
237      //    safe.  The VMthread must still poll for mutators that call-out.
238      // 7. Drive the policy on time-since-begin instead of iterations.
239      // 8. Consider making the spin duration a function of the # of CPUs:
240      //    Spin = (((ncpus-1) * M) + K) + F(still_running)
241      //    Alternately, instead of counting iterations of the outer loop
242      //    we could count the # of threads visited in the inner loop, above.
243      // 9. On windows consider using the return value from SwitchThreadTo()
244      //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
245
246      if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
247         guarantee (PageArmed == 0, "invariant") ;
248         PageArmed = 1 ;
249         os::make_polling_page_unreadable();
250      }
251
252      // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
253      // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
254      ++steps ;
255      if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
256        SpinPause() ;     // MP-Polite spin
257      } else
258      if (steps < DeferThrSuspendLoopCount) {
259        os::NakedYield() ;
260      } else {
261        os::yield_all(steps) ;
262        // Alternately, the VM thread could transiently depress its scheduling priority or
263        // transiently increase the priority of the tardy mutator(s).
264      }
265
266      iterations ++ ;
267    }
268    assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
269  }
270  assert(still_running == 0, "sanity check");
271
272  if (PrintSafepointStatistics) {
273    update_statistics_on_spin_end();
274  }
275
276  // wait until all threads are stopped
277  while (_waiting_to_block > 0) {
278    if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
279    if (!SafepointTimeout || timeout_error_printed) {
280      Safepoint_lock->wait(true);  // true, means with no safepoint checks
281    } else {
282      // Compute remaining time
283      jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
284
285      // If there is no remaining time, then there is an error
286      if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
287        print_safepoint_timeout(_blocking_timeout);
288      }
289    }
290  }
291  assert(_waiting_to_block == 0, "sanity check");
292
293#ifndef PRODUCT
294  if (SafepointTimeout) {
295    jlong current_time = os::javaTimeNanos();
296    if (safepoint_limit_time < current_time) {
297      tty->print_cr("# SafepointSynchronize: Finished after "
298                    INT64_FORMAT_W(6) " ms",
299                    ((current_time - safepoint_limit_time) / MICROUNITS +
300                     SafepointTimeoutDelay));
301    }
302  }
303#endif
304
305  assert((_safepoint_counter & 0x1) == 0, "must be even");
306  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
307  _safepoint_counter ++;
308
309  // Record state
310  _state = _synchronized;
311
312  OrderAccess::fence();
313
314  if (TraceSafepoint) {
315    VM_Operation *op = VMThread::vm_operation();
316    tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
317  }
318
319  RuntimeService::record_safepoint_synchronized();
320  if (PrintSafepointStatistics) {
321    update_statistics_on_sync_end(os::javaTimeNanos());
322  }
323
324  // Call stuff that needs to be run when a safepoint is just about to be completed
325  do_cleanup_tasks();
326
327  if (PrintSafepointStatistics) {
328    // Record how much time spend on the above cleanup tasks
329    update_statistics_on_cleanup_end(os::javaTimeNanos());
330  }
331  }
332}
333
334// Wake up all threads, so they are ready to resume execution after the safepoint
335// operation has been carried out
336void SafepointSynchronize::end() {
337
338  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
339  assert((_safepoint_counter & 0x1) == 1, "must be odd");
340  _safepoint_counter ++;
341  // memory fence isn't required here since an odd _safepoint_counter
342  // value can do no harm and a fence is issued below anyway.
343
344  DEBUG_ONLY(Thread* myThread = Thread::current();)
345  assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
346
347  if (PrintSafepointStatistics) {
348    end_statistics(os::javaTimeNanos());
349  }
350
351#ifdef ASSERT
352  // A pending_exception cannot be installed during a safepoint.  The threads
353  // may install an async exception after they come back from a safepoint into
354  // pending_exception after they unblock.  But that should happen later.
355  for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
356    assert (!(cur->has_pending_exception() &&
357              cur->safepoint_state()->is_at_poll_safepoint()),
358            "safepoint installed a pending exception");
359  }
360#endif // ASSERT
361
362  if (PageArmed) {
363    // Make polling safepoint aware
364    os::make_polling_page_readable();
365    PageArmed = 0 ;
366  }
367
368  // Remove safepoint check from interpreter
369  Interpreter::ignore_safepoints();
370
371  {
372    MutexLocker mu(Safepoint_lock);
373
374    assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
375
376    // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
377    // when they get restarted.
378    _state = _not_synchronized;
379    OrderAccess::fence();
380
381    if (TraceSafepoint) {
382       tty->print_cr("Leaving safepoint region");
383    }
384
385    // Start suspended threads
386    for(JavaThread *current = Threads::first(); current; current = current->next()) {
387      // A problem occurring on Solaris is when attempting to restart threads
388      // the first #cpus - 1 go well, but then the VMThread is preempted when we get
389      // to the next one (since it has been running the longest).  We then have
390      // to wait for a cpu to become available before we can continue restarting
391      // threads.
392      // FIXME: This causes the performance of the VM to degrade when active and with
393      // large numbers of threads.  Apparently this is due to the synchronous nature
394      // of suspending threads.
395      //
396      // TODO-FIXME: the comments above are vestigial and no longer apply.
397      // Furthermore, using solaris' schedctl in this particular context confers no benefit
398      if (VMThreadHintNoPreempt) {
399        os::hint_no_preempt();
400      }
401      ThreadSafepointState* cur_state = current->safepoint_state();
402      assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
403      cur_state->restart();
404      assert(cur_state->is_running(), "safepoint state has not been reset");
405    }
406
407    RuntimeService::record_safepoint_end();
408
409    // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
410    // blocked in signal_thread_blocked
411    Threads_lock->unlock();
412
413  }
414#ifndef SERIALGC
415  // If there are any concurrent GC threads resume them.
416  if (UseConcMarkSweepGC) {
417    ConcurrentMarkSweepThread::desynchronize(false);
418  } else if (UseG1GC) {
419    ConcurrentGCThread::safepoint_desynchronize();
420  }
421#endif // SERIALGC
422  // record this time so VMThread can keep track how much time has elasped
423  // since last safepoint.
424  _end_of_last_safepoint = os::javaTimeMillis();
425}
426
427bool SafepointSynchronize::is_cleanup_needed() {
428  // Need a safepoint if some inline cache buffers is non-empty
429  if (!InlineCacheBuffer::is_empty()) return true;
430  return false;
431}
432
433jlong CounterDecay::_last_timestamp = 0;
434
435static void do_method(methodOop m) {
436  m->invocation_counter()->decay();
437}
438
439void CounterDecay::decay() {
440  _last_timestamp = os::javaTimeMillis();
441
442  // This operation is going to be performed only at the end of a safepoint
443  // and hence GC's will not be going on, all Java mutators are suspended
444  // at this point and hence SystemDictionary_lock is also not needed.
445  assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint");
446  int nclasses = SystemDictionary::number_of_classes();
447  double classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 /
448                                        CounterHalfLifeTime);
449  for (int i = 0; i < classes_per_tick; i++) {
450    klassOop k = SystemDictionary::try_get_next_class();
451    if (k != NULL && k->klass_part()->oop_is_instance()) {
452      instanceKlass::cast(k)->methods_do(do_method);
453    }
454  }
455}
456
457// Various cleaning tasks that should be done periodically at safepoints
458void SafepointSynchronize::do_cleanup_tasks() {
459  {
460    TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
461    ObjectSynchronizer::deflate_idle_monitors();
462  }
463
464  {
465    TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
466    InlineCacheBuffer::update_inline_caches();
467  }
468
469  if(UseCounterDecay && CounterDecay::is_decay_needed()) {
470    TraceTime t3("decaying counter", TraceSafepointCleanupTime);
471    CounterDecay::decay();
472  }
473
474  TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
475  NMethodSweeper::scan_stacks();
476}
477
478
479bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
480  switch(state) {
481  case _thread_in_native:
482    // native threads are safe if they have no java stack or have walkable stack
483    return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
484
485   // blocked threads should have already have walkable stack
486  case _thread_blocked:
487    assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
488    return true;
489
490  default:
491    return false;
492  }
493}
494
495
496// -------------------------------------------------------------------------------------------------------
497// Implementation of Safepoint callback point
498
499void SafepointSynchronize::block(JavaThread *thread) {
500  assert(thread != NULL, "thread must be set");
501  assert(thread->is_Java_thread(), "not a Java thread");
502
503  // Threads shouldn't block if they are in the middle of printing, but...
504  ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
505
506  // Only bail from the block() call if the thread is gone from the
507  // thread list; starting to exit should still block.
508  if (thread->is_terminated()) {
509     // block current thread if we come here from native code when VM is gone
510     thread->block_if_vm_exited();
511
512     // otherwise do nothing
513     return;
514  }
515
516  JavaThreadState state = thread->thread_state();
517  thread->frame_anchor()->make_walkable(thread);
518
519  // Check that we have a valid thread_state at this point
520  switch(state) {
521    case _thread_in_vm_trans:
522    case _thread_in_Java:        // From compiled code
523
524      // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
525      // we pretend we are still in the VM.
526      thread->set_thread_state(_thread_in_vm);
527
528      if (is_synchronizing()) {
529         Atomic::inc (&TryingToBlock) ;
530      }
531
532      // We will always be holding the Safepoint_lock when we are examine the state
533      // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
534      // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
535      Safepoint_lock->lock_without_safepoint_check();
536      if (is_synchronizing()) {
537        // Decrement the number of threads to wait for and signal vm thread
538        assert(_waiting_to_block > 0, "sanity check");
539        _waiting_to_block--;
540        thread->safepoint_state()->set_has_called_back(true);
541
542        // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
543        if (_waiting_to_block == 0) {
544          Safepoint_lock->notify_all();
545        }
546      }
547
548      // We transition the thread to state _thread_blocked here, but
549      // we can't do our usual check for external suspension and then
550      // self-suspend after the lock_without_safepoint_check() call
551      // below because we are often called during transitions while
552      // we hold different locks. That would leave us suspended while
553      // holding a resource which results in deadlocks.
554      thread->set_thread_state(_thread_blocked);
555      Safepoint_lock->unlock();
556
557      // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
558      // the entire safepoint, the threads will all line up here during the safepoint.
559      Threads_lock->lock_without_safepoint_check();
560      // restore original state. This is important if the thread comes from compiled code, so it
561      // will continue to execute with the _thread_in_Java state.
562      thread->set_thread_state(state);
563      Threads_lock->unlock();
564      break;
565
566    case _thread_in_native_trans:
567    case _thread_blocked_trans:
568    case _thread_new_trans:
569      if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
570        thread->print_thread_state();
571        fatal("Deadlock in safepoint code.  "
572              "Should have called back to the VM before blocking.");
573      }
574
575      // We transition the thread to state _thread_blocked here, but
576      // we can't do our usual check for external suspension and then
577      // self-suspend after the lock_without_safepoint_check() call
578      // below because we are often called during transitions while
579      // we hold different locks. That would leave us suspended while
580      // holding a resource which results in deadlocks.
581      thread->set_thread_state(_thread_blocked);
582
583      // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
584      // the safepoint code might still be waiting for it to block. We need to change the state here,
585      // so it can see that it is at a safepoint.
586
587      // Block until the safepoint operation is completed.
588      Threads_lock->lock_without_safepoint_check();
589
590      // Restore state
591      thread->set_thread_state(state);
592
593      Threads_lock->unlock();
594      break;
595
596    default:
597     fatal(err_msg("Illegal threadstate encountered: %d", state));
598  }
599
600  // Check for pending. async. exceptions or suspends - except if the
601  // thread was blocked inside the VM. has_special_runtime_exit_condition()
602  // is called last since it grabs a lock and we only want to do that when
603  // we must.
604  //
605  // Note: we never deliver an async exception at a polling point as the
606  // compiler may not have an exception handler for it. The polling
607  // code will notice the async and deoptimize and the exception will
608  // be delivered. (Polling at a return point is ok though). Sure is
609  // a lot of bother for a deprecated feature...
610  //
611  // We don't deliver an async exception if the thread state is
612  // _thread_in_native_trans so JNI functions won't be called with
613  // a surprising pending exception. If the thread state is going back to java,
614  // async exception is checked in check_special_condition_for_native_trans().
615
616  if (state != _thread_blocked_trans &&
617      state != _thread_in_vm_trans &&
618      thread->has_special_runtime_exit_condition()) {
619    thread->handle_special_runtime_exit_condition(
620      !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
621  }
622}
623
624// ------------------------------------------------------------------------------------------------------
625// Exception handlers
626
627#ifndef PRODUCT
628#ifdef _LP64
629#define PTR_PAD ""
630#else
631#define PTR_PAD "        "
632#endif
633
634static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
635  bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
636  tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
637                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
638                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
639}
640
641static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
642  bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
643  tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
644                oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
645                newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
646}
647
648#ifdef SPARC
649static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
650#ifdef _LP64
651  tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
652  const int incr = 1;           // Increment to skip a long, in units of intptr_t
653#else
654  tty->print_cr("--------+--address-+------before-----------+-------after----------+");
655  const int incr = 2;           // Increment to skip a long, in units of intptr_t
656#endif
657  tty->print_cr("---SP---|");
658  for( int i=0; i<16; i++ ) {
659    tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
660  tty->print_cr("--------|");
661  for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
662    tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
663  tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
664  tty->print_cr("--------|");
665  tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
666  tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
667  tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
668  tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
669  tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
670  old_sp += incr; new_sp += incr; was_oops += incr;
671  // Skip the floats
672  tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
673  tty->print_cr("---FP---|");
674  old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
675  for( int i2=0; i2<16; i2++ ) {
676    tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
677  tty->print_cr("");
678}
679#endif  // SPARC
680#endif  // PRODUCT
681
682
683void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
684  assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
685  assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
686  assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
687
688  // Uncomment this to get some serious before/after printing of the
689  // Sparc safepoint-blob frame structure.
690  /*
691  intptr_t* sp = thread->last_Java_sp();
692  intptr_t stack_copy[150];
693  for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
694  bool was_oops[150];
695  for( int i=0; i<150; i++ )
696    was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
697  */
698
699  if (ShowSafepointMsgs) {
700    tty->print("handle_polling_page_exception: ");
701  }
702
703  if (PrintSafepointStatistics) {
704    inc_page_trap_count();
705  }
706
707  ThreadSafepointState* state = thread->safepoint_state();
708
709  state->handle_polling_page_exception();
710  // print_me(sp,stack_copy,was_oops);
711}
712
713
714void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
715  if (!timeout_error_printed) {
716    timeout_error_printed = true;
717    // Print out the thread infor which didn't reach the safepoint for debugging
718    // purposes (useful when there are lots of threads in the debugger).
719    tty->print_cr("");
720    tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
721    if (reason ==  _spinning_timeout) {
722      tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
723    } else if (reason == _blocking_timeout) {
724      tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
725    }
726
727    tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
728    ThreadSafepointState *cur_state;
729    ResourceMark rm;
730    for(JavaThread *cur_thread = Threads::first(); cur_thread;
731        cur_thread = cur_thread->next()) {
732      cur_state = cur_thread->safepoint_state();
733
734      if (cur_thread->thread_state() != _thread_blocked &&
735          ((reason == _spinning_timeout && cur_state->is_running()) ||
736           (reason == _blocking_timeout && !cur_state->has_called_back()))) {
737        tty->print("# ");
738        cur_thread->print();
739        tty->print_cr("");
740      }
741    }
742    tty->print_cr("# SafepointSynchronize::begin: (End of list)");
743  }
744
745  // To debug the long safepoint, specify both DieOnSafepointTimeout &
746  // ShowMessageBoxOnError.
747  if (DieOnSafepointTimeout) {
748    char msg[1024];
749    VM_Operation *op = VMThread::vm_operation();
750    sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
751            SafepointTimeoutDelay,
752            op != NULL ? op->name() : "no vm operation");
753    fatal(msg);
754  }
755}
756
757
758// -------------------------------------------------------------------------------------------------------
759// Implementation of ThreadSafepointState
760
761ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
762  _thread = thread;
763  _type   = _running;
764  _has_called_back = false;
765  _at_poll_safepoint = false;
766}
767
768void ThreadSafepointState::create(JavaThread *thread) {
769  ThreadSafepointState *state = new ThreadSafepointState(thread);
770  thread->set_safepoint_state(state);
771}
772
773void ThreadSafepointState::destroy(JavaThread *thread) {
774  if (thread->safepoint_state()) {
775    delete(thread->safepoint_state());
776    thread->set_safepoint_state(NULL);
777  }
778}
779
780void ThreadSafepointState::examine_state_of_thread() {
781  assert(is_running(), "better be running or just have hit safepoint poll");
782
783  JavaThreadState state = _thread->thread_state();
784
785  // Check for a thread that is suspended. Note that thread resume tries
786  // to grab the Threads_lock which we own here, so a thread cannot be
787  // resumed during safepoint synchronization.
788
789  // We check to see if this thread is suspended without locking to
790  // avoid deadlocking with a third thread that is waiting for this
791  // thread to be suspended. The third thread can notice the safepoint
792  // that we're trying to start at the beginning of its SR_lock->wait()
793  // call. If that happens, then the third thread will block on the
794  // safepoint while still holding the underlying SR_lock. We won't be
795  // able to get the SR_lock and we'll deadlock.
796  //
797  // We don't need to grab the SR_lock here for two reasons:
798  // 1) The suspend flags are both volatile and are set with an
799  //    Atomic::cmpxchg() call so we should see the suspended
800  //    state right away.
801  // 2) We're being called from the safepoint polling loop; if
802  //    we don't see the suspended state on this iteration, then
803  //    we'll come around again.
804  //
805  bool is_suspended = _thread->is_ext_suspended();
806  if (is_suspended) {
807    roll_forward(_at_safepoint);
808    return;
809  }
810
811  // Some JavaThread states have an initial safepoint state of
812  // running, but are actually at a safepoint. We will happily
813  // agree and update the safepoint state here.
814  if (SafepointSynchronize::safepoint_safe(_thread, state)) {
815      roll_forward(_at_safepoint);
816      return;
817  }
818
819  if (state == _thread_in_vm) {
820    roll_forward(_call_back);
821    return;
822  }
823
824  // All other thread states will continue to run until they
825  // transition and self-block in state _blocked
826  // Safepoint polling in compiled code causes the Java threads to do the same.
827  // Note: new threads may require a malloc so they must be allowed to finish
828
829  assert(is_running(), "examine_state_of_thread on non-running thread");
830  return;
831}
832
833// Returns true is thread could not be rolled forward at present position.
834void ThreadSafepointState::roll_forward(suspend_type type) {
835  _type = type;
836
837  switch(_type) {
838    case _at_safepoint:
839      SafepointSynchronize::signal_thread_at_safepoint();
840      break;
841
842    case _call_back:
843      set_has_called_back(false);
844      break;
845
846    case _running:
847    default:
848      ShouldNotReachHere();
849  }
850}
851
852void ThreadSafepointState::restart() {
853  switch(type()) {
854    case _at_safepoint:
855    case _call_back:
856      break;
857
858    case _running:
859    default:
860       tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
861                      _thread, _type);
862       _thread->print();
863      ShouldNotReachHere();
864  }
865  _type = _running;
866  set_has_called_back(false);
867}
868
869
870void ThreadSafepointState::print_on(outputStream *st) const {
871  const char *s;
872
873  switch(_type) {
874    case _running                : s = "_running";              break;
875    case _at_safepoint           : s = "_at_safepoint";         break;
876    case _call_back              : s = "_call_back";            break;
877    default:
878      ShouldNotReachHere();
879  }
880
881  st->print_cr("Thread: " INTPTR_FORMAT
882              "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
883               _thread, _thread->osthread()->thread_id(), s, _has_called_back,
884               _at_poll_safepoint);
885
886  _thread->print_thread_state_on(st);
887}
888
889
890// ---------------------------------------------------------------------------------------------------------------------
891
892// Block the thread at the safepoint poll or poll return.
893void ThreadSafepointState::handle_polling_page_exception() {
894
895  // Check state.  block() will set thread state to thread_in_vm which will
896  // cause the safepoint state _type to become _call_back.
897  assert(type() == ThreadSafepointState::_running,
898         "polling page exception on thread not running state");
899
900  // Step 1: Find the nmethod from the return address
901  if (ShowSafepointMsgs && Verbose) {
902    tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
903  }
904  address real_return_addr = thread()->saved_exception_pc();
905
906  CodeBlob *cb = CodeCache::find_blob(real_return_addr);
907  assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
908  nmethod* nm = (nmethod*)cb;
909
910  // Find frame of caller
911  frame stub_fr = thread()->last_frame();
912  CodeBlob* stub_cb = stub_fr.cb();
913  assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
914  RegisterMap map(thread(), true);
915  frame caller_fr = stub_fr.sender(&map);
916
917  // Should only be poll_return or poll
918  assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
919
920  // This is a poll immediately before a return. The exception handling code
921  // has already had the effect of causing the return to occur, so the execution
922  // will continue immediately after the call. In addition, the oopmap at the
923  // return point does not mark the return value as an oop (if it is), so
924  // it needs a handle here to be updated.
925  if( nm->is_at_poll_return(real_return_addr) ) {
926    // See if return type is an oop.
927    bool return_oop = nm->method()->is_returning_oop();
928    Handle return_value;
929    if (return_oop) {
930      // The oop result has been saved on the stack together with all
931      // the other registers. In order to preserve it over GCs we need
932      // to keep it in a handle.
933      oop result = caller_fr.saved_oop_result(&map);
934      assert(result == NULL || result->is_oop(), "must be oop");
935      return_value = Handle(thread(), result);
936      assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
937    }
938
939    // Block the thread
940    SafepointSynchronize::block(thread());
941
942    // restore oop result, if any
943    if (return_oop) {
944      caller_fr.set_saved_oop_result(&map, return_value());
945    }
946  }
947
948  // This is a safepoint poll. Verify the return address and block.
949  else {
950    set_at_poll_safepoint(true);
951
952    // verify the blob built the "return address" correctly
953    assert(real_return_addr == caller_fr.pc(), "must match");
954
955    // Block the thread
956    SafepointSynchronize::block(thread());
957    set_at_poll_safepoint(false);
958
959    // If we have a pending async exception deoptimize the frame
960    // as otherwise we may never deliver it.
961    if (thread()->has_async_condition()) {
962      ThreadInVMfromJavaNoAsyncException __tiv(thread());
963      VM_DeoptimizeFrame deopt(thread(), caller_fr.id());
964      VMThread::execute(&deopt);
965    }
966
967    // If an exception has been installed we must check for a pending deoptimization
968    // Deoptimize frame if exception has been thrown.
969
970    if (thread()->has_pending_exception() ) {
971      RegisterMap map(thread(), true);
972      frame caller_fr = stub_fr.sender(&map);
973      if (caller_fr.is_deoptimized_frame()) {
974        // The exception patch will destroy registers that are still
975        // live and will be needed during deoptimization. Defer the
976        // Async exception should have defered the exception until the
977        // next safepoint which will be detected when we get into
978        // the interpreter so if we have an exception now things
979        // are messed up.
980
981        fatal("Exception installed and deoptimization is pending");
982      }
983    }
984  }
985}
986
987
988//
989//                     Statistics & Instrumentations
990//
991SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
992jlong  SafepointSynchronize::_safepoint_begin_time = 0;
993int    SafepointSynchronize::_cur_stat_index = 0;
994julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
995julong SafepointSynchronize::_coalesced_vmop_count = 0;
996jlong  SafepointSynchronize::_max_sync_time = 0;
997jlong  SafepointSynchronize::_max_vmop_time = 0;
998float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
999
1000static jlong  cleanup_end_time = 0;
1001static bool   need_to_track_page_armed_status = false;
1002static bool   init_done = false;
1003
1004// Helper method to print the header.
1005static void print_header() {
1006  tty->print("         vmop                    "
1007             "[threads: total initially_running wait_to_block]    ");
1008  tty->print("[time: spin block sync cleanup vmop] ");
1009
1010  // no page armed status printed out if it is always armed.
1011  if (need_to_track_page_armed_status) {
1012    tty->print("page_armed ");
1013  }
1014
1015  tty->print_cr("page_trap_count");
1016}
1017
1018void SafepointSynchronize::deferred_initialize_stat() {
1019  if (init_done) return;
1020
1021  if (PrintSafepointStatisticsCount <= 0) {
1022    fatal("Wrong PrintSafepointStatisticsCount");
1023  }
1024
1025  // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1026  // be printed right away, in which case, _safepoint_stats will regress to
1027  // a single element array. Otherwise, it is a circular ring buffer with default
1028  // size of PrintSafepointStatisticsCount.
1029  int stats_array_size;
1030  if (PrintSafepointStatisticsTimeout > 0) {
1031    stats_array_size = 1;
1032    PrintSafepointStatistics = true;
1033  } else {
1034    stats_array_size = PrintSafepointStatisticsCount;
1035  }
1036  _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1037                                                 * sizeof(SafepointStats));
1038  guarantee(_safepoint_stats != NULL,
1039            "not enough memory for safepoint instrumentation data");
1040
1041  if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1042    need_to_track_page_armed_status = true;
1043  }
1044  init_done = true;
1045}
1046
1047void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1048  assert(init_done, "safepoint statistics array hasn't been initialized");
1049  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1050
1051  spstat->_time_stamp = _ts_of_current_safepoint;
1052
1053  VM_Operation *op = VMThread::vm_operation();
1054  spstat->_vmop_type = (op != NULL ? op->type() : -1);
1055  if (op != NULL) {
1056    _safepoint_reasons[spstat->_vmop_type]++;
1057  }
1058
1059  spstat->_nof_total_threads = nof_threads;
1060  spstat->_nof_initial_running_threads = nof_running;
1061  spstat->_nof_threads_hit_page_trap = 0;
1062
1063  // Records the start time of spinning. The real time spent on spinning
1064  // will be adjusted when spin is done. Same trick is applied for time
1065  // spent on waiting for threads to block.
1066  if (nof_running != 0) {
1067    spstat->_time_to_spin = os::javaTimeNanos();
1068  }  else {
1069    spstat->_time_to_spin = 0;
1070  }
1071}
1072
1073void SafepointSynchronize::update_statistics_on_spin_end() {
1074  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1075
1076  jlong cur_time = os::javaTimeNanos();
1077
1078  spstat->_nof_threads_wait_to_block = _waiting_to_block;
1079  if (spstat->_nof_initial_running_threads != 0) {
1080    spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1081  }
1082
1083  if (need_to_track_page_armed_status) {
1084    spstat->_page_armed = (PageArmed == 1);
1085  }
1086
1087  // Records the start time of waiting for to block. Updated when block is done.
1088  if (_waiting_to_block != 0) {
1089    spstat->_time_to_wait_to_block = cur_time;
1090  } else {
1091    spstat->_time_to_wait_to_block = 0;
1092  }
1093}
1094
1095void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1096  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1097
1098  if (spstat->_nof_threads_wait_to_block != 0) {
1099    spstat->_time_to_wait_to_block = end_time -
1100      spstat->_time_to_wait_to_block;
1101  }
1102
1103  // Records the end time of sync which will be used to calculate the total
1104  // vm operation time. Again, the real time spending in syncing will be deducted
1105  // from the start of the sync time later when end_statistics is called.
1106  spstat->_time_to_sync = end_time - _safepoint_begin_time;
1107  if (spstat->_time_to_sync > _max_sync_time) {
1108    _max_sync_time = spstat->_time_to_sync;
1109  }
1110
1111  spstat->_time_to_do_cleanups = end_time;
1112}
1113
1114void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1115  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1116
1117  // Record how long spent in cleanup tasks.
1118  spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1119
1120  cleanup_end_time = end_time;
1121}
1122
1123void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1124  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1125
1126  // Update the vm operation time.
1127  spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1128  if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1129    _max_vmop_time = spstat->_time_to_exec_vmop;
1130  }
1131  // Only the sync time longer than the specified
1132  // PrintSafepointStatisticsTimeout will be printed out right away.
1133  // By default, it is -1 meaning all samples will be put into the list.
1134  if ( PrintSafepointStatisticsTimeout > 0) {
1135    if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1136      print_statistics();
1137    }
1138  } else {
1139    // The safepoint statistics will be printed out when the _safepoin_stats
1140    // array fills up.
1141    if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1142      print_statistics();
1143      _cur_stat_index = 0;
1144    } else {
1145      _cur_stat_index++;
1146    }
1147  }
1148}
1149
1150void SafepointSynchronize::print_statistics() {
1151  SafepointStats* sstats = _safepoint_stats;
1152
1153  for (int index = 0; index <= _cur_stat_index; index++) {
1154    if (index % 30 == 0) {
1155      print_header();
1156    }
1157    sstats = &_safepoint_stats[index];
1158    tty->print("%.3f: ", sstats->_time_stamp);
1159    tty->print("%-26s       ["
1160               INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1161               "    ]    ",
1162               sstats->_vmop_type == -1 ? "no vm operation" :
1163               VM_Operation::name(sstats->_vmop_type),
1164               sstats->_nof_total_threads,
1165               sstats->_nof_initial_running_threads,
1166               sstats->_nof_threads_wait_to_block);
1167    // "/ MICROUNITS " is to convert the unit from nanos to millis.
1168    tty->print("  ["
1169               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1170               INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1171               INT64_FORMAT_W(6)"    ]  ",
1172               sstats->_time_to_spin / MICROUNITS,
1173               sstats->_time_to_wait_to_block / MICROUNITS,
1174               sstats->_time_to_sync / MICROUNITS,
1175               sstats->_time_to_do_cleanups / MICROUNITS,
1176               sstats->_time_to_exec_vmop / MICROUNITS);
1177
1178    if (need_to_track_page_armed_status) {
1179      tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1180    }
1181    tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1182  }
1183}
1184
1185// This method will be called when VM exits. It will first call
1186// print_statistics to print out the rest of the sampling.  Then
1187// it tries to summarize the sampling.
1188void SafepointSynchronize::print_stat_on_exit() {
1189  if (_safepoint_stats == NULL) return;
1190
1191  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1192
1193  // During VM exit, end_statistics may not get called and in that
1194  // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1195  // don't print it out.
1196  // Approximate the vm op time.
1197  _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1198    os::javaTimeNanos() - cleanup_end_time;
1199
1200  if ( PrintSafepointStatisticsTimeout < 0 ||
1201       spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1202    print_statistics();
1203  }
1204  tty->print_cr("");
1205
1206  // Print out polling page sampling status.
1207  if (!need_to_track_page_armed_status) {
1208    if (UseCompilerSafepoints) {
1209      tty->print_cr("Polling page always armed");
1210    }
1211  } else {
1212    tty->print_cr("Defer polling page loop count = %d\n",
1213                 DeferPollingPageLoopCount);
1214  }
1215
1216  for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1217    if (_safepoint_reasons[index] != 0) {
1218      tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1219                    _safepoint_reasons[index]);
1220    }
1221  }
1222
1223  tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1224                _coalesced_vmop_count);
1225  tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1226                _max_sync_time / MICROUNITS);
1227  tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1228                INT64_FORMAT_W(5)" ms",
1229                _max_vmop_time / MICROUNITS);
1230}
1231
1232// ------------------------------------------------------------------------------------------------
1233// Non-product code
1234
1235#ifndef PRODUCT
1236
1237void SafepointSynchronize::print_state() {
1238  if (_state == _not_synchronized) {
1239    tty->print_cr("not synchronized");
1240  } else if (_state == _synchronizing || _state == _synchronized) {
1241    tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1242                  "synchronized");
1243
1244    for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1245       cur->safepoint_state()->print();
1246    }
1247  }
1248}
1249
1250void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1251  if (ShowSafepointMsgs) {
1252    va_list ap;
1253    va_start(ap, format);
1254    tty->vprint_cr(format, ap);
1255    va_end(ap);
1256  }
1257}
1258
1259#endif // !PRODUCT
1260