1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/stringTable.hpp"
27#include "classfile/symbolTable.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "code/codeCache.hpp"
30#include "code/icBuffer.hpp"
31#include "code/nmethod.hpp"
32#include "code/pcDesc.hpp"
33#include "code/scopeDesc.hpp"
34#include "gc/shared/collectedHeap.hpp"
35#include "gc/shared/gcLocker.inline.hpp"
36#include "interpreter/interpreter.hpp"
37#include "logging/log.hpp"
38#include "memory/resourceArea.hpp"
39#include "memory/universe.inline.hpp"
40#include "oops/oop.inline.hpp"
41#include "oops/symbol.hpp"
42#include "runtime/atomic.hpp"
43#include "runtime/compilationPolicy.hpp"
44#include "runtime/deoptimization.hpp"
45#include "runtime/frame.inline.hpp"
46#include "runtime/interfaceSupport.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/orderAccess.inline.hpp"
49#include "runtime/osThread.hpp"
50#include "runtime/safepoint.hpp"
51#include "runtime/signature.hpp"
52#include "runtime/stubCodeGenerator.hpp"
53#include "runtime/stubRoutines.hpp"
54#include "runtime/sweeper.hpp"
55#include "runtime/synchronizer.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/timerTrace.hpp"
58#include "services/runtimeService.hpp"
59#include "trace/tracing.hpp"
60#include "trace/traceMacros.hpp"
61#include "utilities/events.hpp"
62#include "utilities/macros.hpp"
63#if INCLUDE_ALL_GCS
64#include "gc/cms/concurrentMarkSweepThread.hpp"
65#include "gc/g1/suspendibleThreadSet.hpp"
66#endif // INCLUDE_ALL_GCS
67#ifdef COMPILER1
68#include "c1/c1_globals.hpp"
69#endif
70
71// --------------------------------------------------------------------------------------------------
72// Implementation of Safepoint begin/end
73
74SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
75volatile int  SafepointSynchronize::_waiting_to_block = 0;
76volatile int SafepointSynchronize::_safepoint_counter = 0;
77int SafepointSynchronize::_current_jni_active_count = 0;
78long  SafepointSynchronize::_end_of_last_safepoint = 0;
79static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
80static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
81static bool timeout_error_printed = false;
82
83// Roll all threads forward to a safepoint and suspend them all
84void SafepointSynchronize::begin() {
85  EventSafepointBegin begin_event;
86  Thread* myThread = Thread::current();
87  assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
88
89  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
90    _safepoint_begin_time = os::javaTimeNanos();
91    _ts_of_current_safepoint = tty->time_stamp().seconds();
92  }
93
94#if INCLUDE_ALL_GCS
95  if (UseConcMarkSweepGC) {
96    // In the future we should investigate whether CMS can use the
97    // more-general mechanism below.  DLD (01/05).
98    ConcurrentMarkSweepThread::synchronize(false);
99  } else if (UseG1GC) {
100    SuspendibleThreadSet::synchronize();
101  }
102#endif // INCLUDE_ALL_GCS
103
104  // By getting the Threads_lock, we assure that no threads are about to start or
105  // exit. It is released again in SafepointSynchronize::end().
106  Threads_lock->lock();
107
108  assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
109
110  int nof_threads = Threads::number_of_threads();
111
112  log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
113
114  RuntimeService::record_safepoint_begin();
115
116  MutexLocker mu(Safepoint_lock);
117
118  // Reset the count of active JNI critical threads
119  _current_jni_active_count = 0;
120
121  // Set number of threads to wait for, before we initiate the callbacks
122  _waiting_to_block = nof_threads;
123  TryingToBlock     = 0 ;
124  int still_running = nof_threads;
125
126  // Save the starting time, so that it can be compared to see if this has taken
127  // too long to complete.
128  jlong safepoint_limit_time = 0;
129  timeout_error_printed = false;
130
131  // PrintSafepointStatisticsTimeout can be specified separately. When
132  // specified, PrintSafepointStatistics will be set to true in
133  // deferred_initialize_stat method. The initialization has to be done
134  // early enough to avoid any races. See bug 6880029 for details.
135  if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
136    deferred_initialize_stat();
137  }
138
139  // Begin the process of bringing the system to a safepoint.
140  // Java threads can be in several different states and are
141  // stopped by different mechanisms:
142  //
143  //  1. Running interpreted
144  //     The interpreter dispatch table is changed to force it to
145  //     check for a safepoint condition between bytecodes.
146  //  2. Running in native code
147  //     When returning from the native code, a Java thread must check
148  //     the safepoint _state to see if we must block.  If the
149  //     VM thread sees a Java thread in native, it does
150  //     not wait for this thread to block.  The order of the memory
151  //     writes and reads of both the safepoint state and the Java
152  //     threads state is critical.  In order to guarantee that the
153  //     memory writes are serialized with respect to each other,
154  //     the VM thread issues a memory barrier instruction
155  //     (on MP systems).  In order to avoid the overhead of issuing
156  //     a memory barrier for each Java thread making native calls, each Java
157  //     thread performs a write to a single memory page after changing
158  //     the thread state.  The VM thread performs a sequence of
159  //     mprotect OS calls which forces all previous writes from all
160  //     Java threads to be serialized.  This is done in the
161  //     os::serialize_thread_states() call.  This has proven to be
162  //     much more efficient than executing a membar instruction
163  //     on every call to native code.
164  //  3. Running compiled Code
165  //     Compiled code reads a global (Safepoint Polling) page that
166  //     is set to fault if we are trying to get to a safepoint.
167  //  4. Blocked
168  //     A thread which is blocked will not be allowed to return from the
169  //     block condition until the safepoint operation is complete.
170  //  5. In VM or Transitioning between states
171  //     If a Java thread is currently running in the VM or transitioning
172  //     between states, the safepointing code will wait for the thread to
173  //     block itself when it attempts transitions to a new state.
174  //
175  {
176    EventSafepointStateSynchronization sync_event;
177    int initial_running = 0;
178
179    _state            = _synchronizing;
180    OrderAccess::fence();
181
182    // Flush all thread states to memory
183    if (!UseMembar) {
184      os::serialize_thread_states();
185    }
186
187    // Make interpreter safepoint aware
188    Interpreter::notice_safepoints();
189
190    if (DeferPollingPageLoopCount < 0) {
191      // Make polling safepoint aware
192      guarantee (PageArmed == 0, "invariant") ;
193      PageArmed = 1 ;
194      os::make_polling_page_unreadable();
195    }
196
197    // Consider using active_processor_count() ... but that call is expensive.
198    int ncpus = os::processor_count() ;
199
200#ifdef ASSERT
201    for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
202      assert(cur->safepoint_state()->is_running(), "Illegal initial state");
203      // Clear the visited flag to ensure that the critical counts are collected properly.
204      cur->set_visited_for_critical_count(false);
205    }
206#endif // ASSERT
207
208    if (SafepointTimeout)
209      safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
210
211    // Iterate through all threads until it have been determined how to stop them all at a safepoint
212    unsigned int iterations = 0;
213    int steps = 0 ;
214    while(still_running > 0) {
215      for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
216        assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
217        ThreadSafepointState *cur_state = cur->safepoint_state();
218        if (cur_state->is_running()) {
219          cur_state->examine_state_of_thread();
220          if (!cur_state->is_running()) {
221            still_running--;
222            // consider adjusting steps downward:
223            //   steps = 0
224            //   steps -= NNN
225            //   steps >>= 1
226            //   steps = MIN(steps, 2000-100)
227            //   if (iterations != 0) steps -= NNN
228          }
229          if (log_is_enabled(Trace, safepoint)) {
230            ResourceMark rm;
231            cur_state->print_on(Log(safepoint)::trace_stream());
232          }
233        }
234      }
235
236      if (iterations == 0) {
237        initial_running = still_running;
238        if (PrintSafepointStatistics) {
239          begin_statistics(nof_threads, still_running);
240        }
241      }
242
243      if (still_running > 0) {
244        // Check for if it takes to long
245        if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
246          print_safepoint_timeout(_spinning_timeout);
247        }
248
249        // Spin to avoid context switching.
250        // There's a tension between allowing the mutators to run (and rendezvous)
251        // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
252        // a mutator might otherwise use profitably to reach a safepoint.  Excessive
253        // spinning by the VM thread on a saturated system can increase rendezvous latency.
254        // Blocking or yielding incur their own penalties in the form of context switching
255        // and the resultant loss of $ residency.
256        //
257        // Further complicating matters is that yield() does not work as naively expected
258        // on many platforms -- yield() does not guarantee that any other ready threads
259        // will run.   As such we revert to naked_short_sleep() after some number of iterations.
260        // nakes_short_sleep() is implemented as a short unconditional sleep.
261        // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
262        // can actually increase the time it takes the VM thread to detect that a system-wide
263        // stop-the-world safepoint has been reached.  In a pathological scenario such as that
264        // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
265        // In that case the mutators will be stalled waiting for the safepoint to complete and the
266        // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
267        // will eventually wake up and detect that all mutators are safe, at which point
268        // we'll again make progress.
269        //
270        // Beware too that that the VMThread typically runs at elevated priority.
271        // Its default priority is higher than the default mutator priority.
272        // Obviously, this complicates spinning.
273        //
274        // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
275        // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
276        //
277        // See the comments in synchronizer.cpp for additional remarks on spinning.
278        //
279        // In the future we might:
280        // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
281        //    This is tricky as the path used by a thread exiting the JVM (say on
282        //    on JNI call-out) simply stores into its state field.  The burden
283        //    is placed on the VM thread, which must poll (spin).
284        // 2. Find something useful to do while spinning.  If the safepoint is GC-related
285        //    we might aggressively scan the stacks of threads that are already safe.
286        // 3. Use Solaris schedctl to examine the state of the still-running mutators.
287        //    If all the mutators are ONPROC there's no reason to sleep or yield.
288        // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
289        // 5. Check system saturation.  If the system is not fully saturated then
290        //    simply spin and avoid sleep/yield.
291        // 6. As still-running mutators rendezvous they could unpark the sleeping
292        //    VMthread.  This works well for still-running mutators that become
293        //    safe.  The VMthread must still poll for mutators that call-out.
294        // 7. Drive the policy on time-since-begin instead of iterations.
295        // 8. Consider making the spin duration a function of the # of CPUs:
296        //    Spin = (((ncpus-1) * M) + K) + F(still_running)
297        //    Alternately, instead of counting iterations of the outer loop
298        //    we could count the # of threads visited in the inner loop, above.
299        // 9. On windows consider using the return value from SwitchThreadTo()
300        //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
301
302        if (int(iterations) == DeferPollingPageLoopCount) {
303          guarantee (PageArmed == 0, "invariant") ;
304          PageArmed = 1 ;
305          os::make_polling_page_unreadable();
306        }
307
308        // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
309        // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
310        ++steps ;
311        if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
312          SpinPause() ;     // MP-Polite spin
313        } else
314          if (steps < DeferThrSuspendLoopCount) {
315            os::naked_yield() ;
316          } else {
317            os::naked_short_sleep(1);
318          }
319
320        iterations ++ ;
321      }
322      assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
323    }
324    assert(still_running == 0, "sanity check");
325
326    if (PrintSafepointStatistics) {
327      update_statistics_on_spin_end();
328    }
329
330    if (sync_event.should_commit()) {
331      sync_event.set_safepointId(safepoint_counter());
332      sync_event.set_initialThreadCount(initial_running);
333      sync_event.set_runningThreadCount(_waiting_to_block);
334      sync_event.set_iterations(iterations);
335      sync_event.commit();
336    }
337  } //EventSafepointStateSync
338
339  // wait until all threads are stopped
340  {
341    EventSafepointWaitBlocked wait_blocked_event;
342    int initial_waiting_to_block = _waiting_to_block;
343
344    while (_waiting_to_block > 0) {
345      log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
346      if (!SafepointTimeout || timeout_error_printed) {
347        Safepoint_lock->wait(true);  // true, means with no safepoint checks
348      } else {
349        // Compute remaining time
350        jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
351
352        // If there is no remaining time, then there is an error
353        if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
354          print_safepoint_timeout(_blocking_timeout);
355        }
356      }
357    }
358    assert(_waiting_to_block == 0, "sanity check");
359
360#ifndef PRODUCT
361    if (SafepointTimeout) {
362      jlong current_time = os::javaTimeNanos();
363      if (safepoint_limit_time < current_time) {
364        tty->print_cr("# SafepointSynchronize: Finished after "
365                      INT64_FORMAT_W(6) " ms",
366                      ((current_time - safepoint_limit_time) / MICROUNITS +
367                       (jlong)SafepointTimeoutDelay));
368      }
369    }
370#endif
371
372    assert((_safepoint_counter & 0x1) == 0, "must be even");
373    assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
374    _safepoint_counter ++;
375
376    // Record state
377    _state = _synchronized;
378
379    OrderAccess::fence();
380
381    if (wait_blocked_event.should_commit()) {
382      wait_blocked_event.set_safepointId(safepoint_counter());
383      wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
384      wait_blocked_event.commit();
385    }
386  } // EventSafepointWaitBlocked
387
388#ifdef ASSERT
389  for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
390    // make sure all the threads were visited
391    assert(cur->was_visited_for_critical_count(), "missed a thread");
392  }
393#endif // ASSERT
394
395  // Update the count of active JNI critical regions
396  GCLocker::set_jni_lock_count(_current_jni_active_count);
397
398  if (log_is_enabled(Debug, safepoint)) {
399    VM_Operation *op = VMThread::vm_operation();
400    log_debug(safepoint)("Entering safepoint region: %s",
401                         (op != NULL) ? op->name() : "no vm operation");
402  }
403
404  RuntimeService::record_safepoint_synchronized();
405  if (PrintSafepointStatistics) {
406    update_statistics_on_sync_end(os::javaTimeNanos());
407  }
408
409  // Call stuff that needs to be run when a safepoint is just about to be completed
410  {
411    EventSafepointCleanup cleanup_event;
412    do_cleanup_tasks();
413    if (cleanup_event.should_commit()) {
414      cleanup_event.set_safepointId(safepoint_counter());
415      cleanup_event.commit();
416    }
417  }
418
419  if (PrintSafepointStatistics) {
420    // Record how much time spend on the above cleanup tasks
421    update_statistics_on_cleanup_end(os::javaTimeNanos());
422  }
423  if (begin_event.should_commit()) {
424    begin_event.set_safepointId(safepoint_counter());
425    begin_event.set_totalThreadCount(nof_threads);
426    begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
427    begin_event.commit();
428  }
429}
430
431// Wake up all threads, so they are ready to resume execution after the safepoint
432// operation has been carried out
433void SafepointSynchronize::end() {
434  EventSafepointEnd event;
435  int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
436
437  assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
438  assert((_safepoint_counter & 0x1) == 1, "must be odd");
439  _safepoint_counter ++;
440  // memory fence isn't required here since an odd _safepoint_counter
441  // value can do no harm and a fence is issued below anyway.
442
443  DEBUG_ONLY(Thread* myThread = Thread::current();)
444  assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
445
446  if (PrintSafepointStatistics) {
447    end_statistics(os::javaTimeNanos());
448  }
449
450#ifdef ASSERT
451  // A pending_exception cannot be installed during a safepoint.  The threads
452  // may install an async exception after they come back from a safepoint into
453  // pending_exception after they unblock.  But that should happen later.
454  for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
455    assert (!(cur->has_pending_exception() &&
456              cur->safepoint_state()->is_at_poll_safepoint()),
457            "safepoint installed a pending exception");
458  }
459#endif // ASSERT
460
461  if (PageArmed) {
462    // Make polling safepoint aware
463    os::make_polling_page_readable();
464    PageArmed = 0 ;
465  }
466
467  // Remove safepoint check from interpreter
468  Interpreter::ignore_safepoints();
469
470  {
471    MutexLocker mu(Safepoint_lock);
472
473    assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
474
475    // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
476    // when they get restarted.
477    _state = _not_synchronized;
478    OrderAccess::fence();
479
480    log_debug(safepoint)("Leaving safepoint region");
481
482    // Start suspended threads
483    for(JavaThread *current = Threads::first(); current; current = current->next()) {
484      // A problem occurring on Solaris is when attempting to restart threads
485      // the first #cpus - 1 go well, but then the VMThread is preempted when we get
486      // to the next one (since it has been running the longest).  We then have
487      // to wait for a cpu to become available before we can continue restarting
488      // threads.
489      // FIXME: This causes the performance of the VM to degrade when active and with
490      // large numbers of threads.  Apparently this is due to the synchronous nature
491      // of suspending threads.
492      //
493      // TODO-FIXME: the comments above are vestigial and no longer apply.
494      // Furthermore, using solaris' schedctl in this particular context confers no benefit
495      if (VMThreadHintNoPreempt) {
496        os::hint_no_preempt();
497      }
498      ThreadSafepointState* cur_state = current->safepoint_state();
499      assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
500      cur_state->restart();
501      assert(cur_state->is_running(), "safepoint state has not been reset");
502    }
503
504    RuntimeService::record_safepoint_end();
505
506    // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
507    // blocked in signal_thread_blocked
508    Threads_lock->unlock();
509
510  }
511#if INCLUDE_ALL_GCS
512  // If there are any concurrent GC threads resume them.
513  if (UseConcMarkSweepGC) {
514    ConcurrentMarkSweepThread::desynchronize(false);
515  } else if (UseG1GC) {
516    SuspendibleThreadSet::desynchronize();
517  }
518#endif // INCLUDE_ALL_GCS
519  // record this time so VMThread can keep track how much time has elapsed
520  // since last safepoint.
521  _end_of_last_safepoint = os::javaTimeMillis();
522
523  if (event.should_commit()) {
524    event.set_safepointId(safepoint_id);
525    event.commit();
526  }
527}
528
529bool SafepointSynchronize::is_cleanup_needed() {
530  // Need a safepoint if some inline cache buffers is non-empty
531  if (!InlineCacheBuffer::is_empty()) return true;
532  return false;
533}
534
535static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
536  if (event.should_commit()) {
537    event.set_safepointId(SafepointSynchronize::safepoint_counter());
538    event.set_name(name);
539    event.commit();
540  }
541}
542
543// Various cleaning tasks that should be done periodically at safepoints
544void SafepointSynchronize::do_cleanup_tasks() {
545  {
546    const char* name = "deflating idle monitors";
547    EventSafepointCleanupTask event;
548    TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
549    ObjectSynchronizer::deflate_idle_monitors();
550    event_safepoint_cleanup_task_commit(event, name);
551  }
552
553  {
554    const char* name = "updating inline caches";
555    EventSafepointCleanupTask event;
556    TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
557    InlineCacheBuffer::update_inline_caches();
558    event_safepoint_cleanup_task_commit(event, name);
559  }
560  {
561    const char* name = "compilation policy safepoint handler";
562    EventSafepointCleanupTask event;
563    TraceTime timer("compilation policy safepoint handler", TRACETIME_LOG(Info, safepoint, cleanup));
564    CompilationPolicy::policy()->do_safepoint_work();
565    event_safepoint_cleanup_task_commit(event, name);
566  }
567
568  {
569    const char* name = "mark nmethods";
570    EventSafepointCleanupTask event;
571    TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
572    NMethodSweeper::mark_active_nmethods();
573    event_safepoint_cleanup_task_commit(event, name);
574  }
575
576  if (SymbolTable::needs_rehashing()) {
577    const char* name = "rehashing symbol table";
578    EventSafepointCleanupTask event;
579    TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
580    SymbolTable::rehash_table();
581    event_safepoint_cleanup_task_commit(event, name);
582  }
583
584  if (StringTable::needs_rehashing()) {
585    const char* name = "rehashing string table";
586    EventSafepointCleanupTask event;
587    TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
588    StringTable::rehash_table();
589    event_safepoint_cleanup_task_commit(event, name);
590  }
591
592  {
593    // CMS delays purging the CLDG until the beginning of the next safepoint and to
594    // make sure concurrent sweep is done
595    const char* name = "purging class loader data graph";
596    EventSafepointCleanupTask event;
597    TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
598    ClassLoaderDataGraph::purge_if_needed();
599    event_safepoint_cleanup_task_commit(event, name);
600  }
601}
602
603
604bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
605  switch(state) {
606  case _thread_in_native:
607    // native threads are safe if they have no java stack or have walkable stack
608    return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
609
610   // blocked threads should have already have walkable stack
611  case _thread_blocked:
612    assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
613    return true;
614
615  default:
616    return false;
617  }
618}
619
620
621// See if the thread is running inside a lazy critical native and
622// update the thread critical count if so.  Also set a suspend flag to
623// cause the native wrapper to return into the JVM to do the unlock
624// once the native finishes.
625void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
626  if (state == _thread_in_native &&
627      thread->has_last_Java_frame() &&
628      thread->frame_anchor()->walkable()) {
629    // This thread might be in a critical native nmethod so look at
630    // the top of the stack and increment the critical count if it
631    // is.
632    frame wrapper_frame = thread->last_frame();
633    CodeBlob* stub_cb = wrapper_frame.cb();
634    if (stub_cb != NULL &&
635        stub_cb->is_nmethod() &&
636        stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
637      // A thread could potentially be in a critical native across
638      // more than one safepoint, so only update the critical state on
639      // the first one.  When it returns it will perform the unlock.
640      if (!thread->do_critical_native_unlock()) {
641#ifdef ASSERT
642        if (!thread->in_critical()) {
643          GCLocker::increment_debug_jni_lock_count();
644        }
645#endif
646        thread->enter_critical();
647        // Make sure the native wrapper calls back on return to
648        // perform the needed critical unlock.
649        thread->set_critical_native_unlock();
650      }
651    }
652  }
653}
654
655
656
657// -------------------------------------------------------------------------------------------------------
658// Implementation of Safepoint callback point
659
660void SafepointSynchronize::block(JavaThread *thread) {
661  assert(thread != NULL, "thread must be set");
662  assert(thread->is_Java_thread(), "not a Java thread");
663
664  // Threads shouldn't block if they are in the middle of printing, but...
665  ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
666
667  // Only bail from the block() call if the thread is gone from the
668  // thread list; starting to exit should still block.
669  if (thread->is_terminated()) {
670     // block current thread if we come here from native code when VM is gone
671     thread->block_if_vm_exited();
672
673     // otherwise do nothing
674     return;
675  }
676
677  JavaThreadState state = thread->thread_state();
678  thread->frame_anchor()->make_walkable(thread);
679
680  // Check that we have a valid thread_state at this point
681  switch(state) {
682    case _thread_in_vm_trans:
683    case _thread_in_Java:        // From compiled code
684
685      // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
686      // we pretend we are still in the VM.
687      thread->set_thread_state(_thread_in_vm);
688
689      if (is_synchronizing()) {
690         Atomic::inc (&TryingToBlock) ;
691      }
692
693      // We will always be holding the Safepoint_lock when we are examine the state
694      // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
695      // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
696      Safepoint_lock->lock_without_safepoint_check();
697      if (is_synchronizing()) {
698        // Decrement the number of threads to wait for and signal vm thread
699        assert(_waiting_to_block > 0, "sanity check");
700        _waiting_to_block--;
701        thread->safepoint_state()->set_has_called_back(true);
702
703        DEBUG_ONLY(thread->set_visited_for_critical_count(true));
704        if (thread->in_critical()) {
705          // Notice that this thread is in a critical section
706          increment_jni_active_count();
707        }
708
709        // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
710        if (_waiting_to_block == 0) {
711          Safepoint_lock->notify_all();
712        }
713      }
714
715      // We transition the thread to state _thread_blocked here, but
716      // we can't do our usual check for external suspension and then
717      // self-suspend after the lock_without_safepoint_check() call
718      // below because we are often called during transitions while
719      // we hold different locks. That would leave us suspended while
720      // holding a resource which results in deadlocks.
721      thread->set_thread_state(_thread_blocked);
722      Safepoint_lock->unlock();
723
724      // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
725      // the entire safepoint, the threads will all line up here during the safepoint.
726      Threads_lock->lock_without_safepoint_check();
727      // restore original state. This is important if the thread comes from compiled code, so it
728      // will continue to execute with the _thread_in_Java state.
729      thread->set_thread_state(state);
730      Threads_lock->unlock();
731      break;
732
733    case _thread_in_native_trans:
734    case _thread_blocked_trans:
735    case _thread_new_trans:
736      if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
737        thread->print_thread_state();
738        fatal("Deadlock in safepoint code.  "
739              "Should have called back to the VM before blocking.");
740      }
741
742      // We transition the thread to state _thread_blocked here, but
743      // we can't do our usual check for external suspension and then
744      // self-suspend after the lock_without_safepoint_check() call
745      // below because we are often called during transitions while
746      // we hold different locks. That would leave us suspended while
747      // holding a resource which results in deadlocks.
748      thread->set_thread_state(_thread_blocked);
749
750      // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
751      // the safepoint code might still be waiting for it to block. We need to change the state here,
752      // so it can see that it is at a safepoint.
753
754      // Block until the safepoint operation is completed.
755      Threads_lock->lock_without_safepoint_check();
756
757      // Restore state
758      thread->set_thread_state(state);
759
760      Threads_lock->unlock();
761      break;
762
763    default:
764     fatal("Illegal threadstate encountered: %d", state);
765  }
766
767  // Check for pending. async. exceptions or suspends - except if the
768  // thread was blocked inside the VM. has_special_runtime_exit_condition()
769  // is called last since it grabs a lock and we only want to do that when
770  // we must.
771  //
772  // Note: we never deliver an async exception at a polling point as the
773  // compiler may not have an exception handler for it. The polling
774  // code will notice the async and deoptimize and the exception will
775  // be delivered. (Polling at a return point is ok though). Sure is
776  // a lot of bother for a deprecated feature...
777  //
778  // We don't deliver an async exception if the thread state is
779  // _thread_in_native_trans so JNI functions won't be called with
780  // a surprising pending exception. If the thread state is going back to java,
781  // async exception is checked in check_special_condition_for_native_trans().
782
783  if (state != _thread_blocked_trans &&
784      state != _thread_in_vm_trans &&
785      thread->has_special_runtime_exit_condition()) {
786    thread->handle_special_runtime_exit_condition(
787      !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
788  }
789}
790
791// ------------------------------------------------------------------------------------------------------
792// Exception handlers
793
794
795void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
796  assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
797  assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
798  assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
799
800  if (ShowSafepointMsgs) {
801    tty->print("handle_polling_page_exception: ");
802  }
803
804  if (PrintSafepointStatistics) {
805    inc_page_trap_count();
806  }
807
808  ThreadSafepointState* state = thread->safepoint_state();
809
810  state->handle_polling_page_exception();
811}
812
813
814void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
815  if (!timeout_error_printed) {
816    timeout_error_printed = true;
817    // Print out the thread info which didn't reach the safepoint for debugging
818    // purposes (useful when there are lots of threads in the debugger).
819    tty->cr();
820    tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
821    if (reason ==  _spinning_timeout) {
822      tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
823    } else if (reason == _blocking_timeout) {
824      tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
825    }
826
827    tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
828    ThreadSafepointState *cur_state;
829    ResourceMark rm;
830    for(JavaThread *cur_thread = Threads::first(); cur_thread;
831        cur_thread = cur_thread->next()) {
832      cur_state = cur_thread->safepoint_state();
833
834      if (cur_thread->thread_state() != _thread_blocked &&
835          ((reason == _spinning_timeout && cur_state->is_running()) ||
836           (reason == _blocking_timeout && !cur_state->has_called_back()))) {
837        tty->print("# ");
838        cur_thread->print();
839        tty->cr();
840      }
841    }
842    tty->print_cr("# SafepointSynchronize::begin: (End of list)");
843  }
844
845  // To debug the long safepoint, specify both DieOnSafepointTimeout &
846  // ShowMessageBoxOnError.
847  if (DieOnSafepointTimeout) {
848    VM_Operation *op = VMThread::vm_operation();
849    fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
850          SafepointTimeoutDelay,
851          op != NULL ? op->name() : "no vm operation");
852  }
853}
854
855
856// -------------------------------------------------------------------------------------------------------
857// Implementation of ThreadSafepointState
858
859ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
860  _thread = thread;
861  _type   = _running;
862  _has_called_back = false;
863  _at_poll_safepoint = false;
864}
865
866void ThreadSafepointState::create(JavaThread *thread) {
867  ThreadSafepointState *state = new ThreadSafepointState(thread);
868  thread->set_safepoint_state(state);
869}
870
871void ThreadSafepointState::destroy(JavaThread *thread) {
872  if (thread->safepoint_state()) {
873    delete(thread->safepoint_state());
874    thread->set_safepoint_state(NULL);
875  }
876}
877
878void ThreadSafepointState::examine_state_of_thread() {
879  assert(is_running(), "better be running or just have hit safepoint poll");
880
881  JavaThreadState state = _thread->thread_state();
882
883  // Save the state at the start of safepoint processing.
884  _orig_thread_state = state;
885
886  // Check for a thread that is suspended. Note that thread resume tries
887  // to grab the Threads_lock which we own here, so a thread cannot be
888  // resumed during safepoint synchronization.
889
890  // We check to see if this thread is suspended without locking to
891  // avoid deadlocking with a third thread that is waiting for this
892  // thread to be suspended. The third thread can notice the safepoint
893  // that we're trying to start at the beginning of its SR_lock->wait()
894  // call. If that happens, then the third thread will block on the
895  // safepoint while still holding the underlying SR_lock. We won't be
896  // able to get the SR_lock and we'll deadlock.
897  //
898  // We don't need to grab the SR_lock here for two reasons:
899  // 1) The suspend flags are both volatile and are set with an
900  //    Atomic::cmpxchg() call so we should see the suspended
901  //    state right away.
902  // 2) We're being called from the safepoint polling loop; if
903  //    we don't see the suspended state on this iteration, then
904  //    we'll come around again.
905  //
906  bool is_suspended = _thread->is_ext_suspended();
907  if (is_suspended) {
908    roll_forward(_at_safepoint);
909    return;
910  }
911
912  // Some JavaThread states have an initial safepoint state of
913  // running, but are actually at a safepoint. We will happily
914  // agree and update the safepoint state here.
915  if (SafepointSynchronize::safepoint_safe(_thread, state)) {
916    SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
917    roll_forward(_at_safepoint);
918    return;
919  }
920
921  if (state == _thread_in_vm) {
922    roll_forward(_call_back);
923    return;
924  }
925
926  // All other thread states will continue to run until they
927  // transition and self-block in state _blocked
928  // Safepoint polling in compiled code causes the Java threads to do the same.
929  // Note: new threads may require a malloc so they must be allowed to finish
930
931  assert(is_running(), "examine_state_of_thread on non-running thread");
932  return;
933}
934
935// Returns true is thread could not be rolled forward at present position.
936void ThreadSafepointState::roll_forward(suspend_type type) {
937  _type = type;
938
939  switch(_type) {
940    case _at_safepoint:
941      SafepointSynchronize::signal_thread_at_safepoint();
942      DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
943      if (_thread->in_critical()) {
944        // Notice that this thread is in a critical section
945        SafepointSynchronize::increment_jni_active_count();
946      }
947      break;
948
949    case _call_back:
950      set_has_called_back(false);
951      break;
952
953    case _running:
954    default:
955      ShouldNotReachHere();
956  }
957}
958
959void ThreadSafepointState::restart() {
960  switch(type()) {
961    case _at_safepoint:
962    case _call_back:
963      break;
964
965    case _running:
966    default:
967       tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
968                     p2i(_thread), _type);
969       _thread->print();
970      ShouldNotReachHere();
971  }
972  _type = _running;
973  set_has_called_back(false);
974}
975
976
977void ThreadSafepointState::print_on(outputStream *st) const {
978  const char *s = NULL;
979
980  switch(_type) {
981    case _running                : s = "_running";              break;
982    case _at_safepoint           : s = "_at_safepoint";         break;
983    case _call_back              : s = "_call_back";            break;
984    default:
985      ShouldNotReachHere();
986  }
987
988  st->print_cr("Thread: " INTPTR_FORMAT
989              "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
990               p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
991               _at_poll_safepoint);
992
993  _thread->print_thread_state_on(st);
994}
995
996// ---------------------------------------------------------------------------------------------------------------------
997
998// Block the thread at the safepoint poll or poll return.
999void ThreadSafepointState::handle_polling_page_exception() {
1000
1001  // Check state.  block() will set thread state to thread_in_vm which will
1002  // cause the safepoint state _type to become _call_back.
1003  assert(type() == ThreadSafepointState::_running,
1004         "polling page exception on thread not running state");
1005
1006  // Step 1: Find the nmethod from the return address
1007  if (ShowSafepointMsgs && Verbose) {
1008    tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1009  }
1010  address real_return_addr = thread()->saved_exception_pc();
1011
1012  CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1013  assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1014  CompiledMethod* nm = (CompiledMethod*)cb;
1015
1016  // Find frame of caller
1017  frame stub_fr = thread()->last_frame();
1018  CodeBlob* stub_cb = stub_fr.cb();
1019  assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1020  RegisterMap map(thread(), true);
1021  frame caller_fr = stub_fr.sender(&map);
1022
1023  // Should only be poll_return or poll
1024  assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1025
1026  // This is a poll immediately before a return. The exception handling code
1027  // has already had the effect of causing the return to occur, so the execution
1028  // will continue immediately after the call. In addition, the oopmap at the
1029  // return point does not mark the return value as an oop (if it is), so
1030  // it needs a handle here to be updated.
1031  if( nm->is_at_poll_return(real_return_addr) ) {
1032    // See if return type is an oop.
1033    bool return_oop = nm->method()->is_returning_oop();
1034    Handle return_value;
1035    if (return_oop) {
1036      // The oop result has been saved on the stack together with all
1037      // the other registers. In order to preserve it over GCs we need
1038      // to keep it in a handle.
1039      oop result = caller_fr.saved_oop_result(&map);
1040      assert(result == NULL || result->is_oop(), "must be oop");
1041      return_value = Handle(thread(), result);
1042      assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1043    }
1044
1045    // Block the thread
1046    SafepointSynchronize::block(thread());
1047
1048    // restore oop result, if any
1049    if (return_oop) {
1050      caller_fr.set_saved_oop_result(&map, return_value());
1051    }
1052  }
1053
1054  // This is a safepoint poll. Verify the return address and block.
1055  else {
1056    set_at_poll_safepoint(true);
1057
1058    // verify the blob built the "return address" correctly
1059    assert(real_return_addr == caller_fr.pc(), "must match");
1060
1061    // Block the thread
1062    SafepointSynchronize::block(thread());
1063    set_at_poll_safepoint(false);
1064
1065    // If we have a pending async exception deoptimize the frame
1066    // as otherwise we may never deliver it.
1067    if (thread()->has_async_condition()) {
1068      ThreadInVMfromJavaNoAsyncException __tiv(thread());
1069      Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1070    }
1071
1072    // If an exception has been installed we must check for a pending deoptimization
1073    // Deoptimize frame if exception has been thrown.
1074
1075    if (thread()->has_pending_exception() ) {
1076      RegisterMap map(thread(), true);
1077      frame caller_fr = stub_fr.sender(&map);
1078      if (caller_fr.is_deoptimized_frame()) {
1079        // The exception patch will destroy registers that are still
1080        // live and will be needed during deoptimization. Defer the
1081        // Async exception should have deferred the exception until the
1082        // next safepoint which will be detected when we get into
1083        // the interpreter so if we have an exception now things
1084        // are messed up.
1085
1086        fatal("Exception installed and deoptimization is pending");
1087      }
1088    }
1089  }
1090}
1091
1092
1093//
1094//                     Statistics & Instrumentations
1095//
1096SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1097jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1098int    SafepointSynchronize::_cur_stat_index = 0;
1099julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1100julong SafepointSynchronize::_coalesced_vmop_count = 0;
1101jlong  SafepointSynchronize::_max_sync_time = 0;
1102jlong  SafepointSynchronize::_max_vmop_time = 0;
1103float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1104
1105static jlong  cleanup_end_time = 0;
1106static bool   need_to_track_page_armed_status = false;
1107static bool   init_done = false;
1108
1109// Helper method to print the header.
1110static void print_header() {
1111  tty->print("         vmop                    "
1112             "[threads: total initially_running wait_to_block]    ");
1113  tty->print("[time: spin block sync cleanup vmop] ");
1114
1115  // no page armed status printed out if it is always armed.
1116  if (need_to_track_page_armed_status) {
1117    tty->print("page_armed ");
1118  }
1119
1120  tty->print_cr("page_trap_count");
1121}
1122
1123void SafepointSynchronize::deferred_initialize_stat() {
1124  if (init_done) return;
1125
1126  // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1127  // be printed right away, in which case, _safepoint_stats will regress to
1128  // a single element array. Otherwise, it is a circular ring buffer with default
1129  // size of PrintSafepointStatisticsCount.
1130  int stats_array_size;
1131  if (PrintSafepointStatisticsTimeout > 0) {
1132    stats_array_size = 1;
1133    PrintSafepointStatistics = true;
1134  } else {
1135    stats_array_size = PrintSafepointStatisticsCount;
1136  }
1137  _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1138                                                 * sizeof(SafepointStats), mtInternal);
1139  guarantee(_safepoint_stats != NULL,
1140            "not enough memory for safepoint instrumentation data");
1141
1142  if (DeferPollingPageLoopCount >= 0) {
1143    need_to_track_page_armed_status = true;
1144  }
1145  init_done = true;
1146}
1147
1148void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1149  assert(init_done, "safepoint statistics array hasn't been initialized");
1150  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1151
1152  spstat->_time_stamp = _ts_of_current_safepoint;
1153
1154  VM_Operation *op = VMThread::vm_operation();
1155  spstat->_vmop_type = (op != NULL ? op->type() : -1);
1156  if (op != NULL) {
1157    _safepoint_reasons[spstat->_vmop_type]++;
1158  }
1159
1160  spstat->_nof_total_threads = nof_threads;
1161  spstat->_nof_initial_running_threads = nof_running;
1162  spstat->_nof_threads_hit_page_trap = 0;
1163
1164  // Records the start time of spinning. The real time spent on spinning
1165  // will be adjusted when spin is done. Same trick is applied for time
1166  // spent on waiting for threads to block.
1167  if (nof_running != 0) {
1168    spstat->_time_to_spin = os::javaTimeNanos();
1169  }  else {
1170    spstat->_time_to_spin = 0;
1171  }
1172}
1173
1174void SafepointSynchronize::update_statistics_on_spin_end() {
1175  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1176
1177  jlong cur_time = os::javaTimeNanos();
1178
1179  spstat->_nof_threads_wait_to_block = _waiting_to_block;
1180  if (spstat->_nof_initial_running_threads != 0) {
1181    spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1182  }
1183
1184  if (need_to_track_page_armed_status) {
1185    spstat->_page_armed = (PageArmed == 1);
1186  }
1187
1188  // Records the start time of waiting for to block. Updated when block is done.
1189  if (_waiting_to_block != 0) {
1190    spstat->_time_to_wait_to_block = cur_time;
1191  } else {
1192    spstat->_time_to_wait_to_block = 0;
1193  }
1194}
1195
1196void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1197  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1198
1199  if (spstat->_nof_threads_wait_to_block != 0) {
1200    spstat->_time_to_wait_to_block = end_time -
1201      spstat->_time_to_wait_to_block;
1202  }
1203
1204  // Records the end time of sync which will be used to calculate the total
1205  // vm operation time. Again, the real time spending in syncing will be deducted
1206  // from the start of the sync time later when end_statistics is called.
1207  spstat->_time_to_sync = end_time - _safepoint_begin_time;
1208  if (spstat->_time_to_sync > _max_sync_time) {
1209    _max_sync_time = spstat->_time_to_sync;
1210  }
1211
1212  spstat->_time_to_do_cleanups = end_time;
1213}
1214
1215void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1216  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1217
1218  // Record how long spent in cleanup tasks.
1219  spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1220
1221  cleanup_end_time = end_time;
1222}
1223
1224void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1225  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1226
1227  // Update the vm operation time.
1228  spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1229  if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1230    _max_vmop_time = spstat->_time_to_exec_vmop;
1231  }
1232  // Only the sync time longer than the specified
1233  // PrintSafepointStatisticsTimeout will be printed out right away.
1234  // By default, it is -1 meaning all samples will be put into the list.
1235  if ( PrintSafepointStatisticsTimeout > 0) {
1236    if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1237      print_statistics();
1238    }
1239  } else {
1240    // The safepoint statistics will be printed out when the _safepoin_stats
1241    // array fills up.
1242    if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1243      print_statistics();
1244      _cur_stat_index = 0;
1245    } else {
1246      _cur_stat_index++;
1247    }
1248  }
1249}
1250
1251void SafepointSynchronize::print_statistics() {
1252  SafepointStats* sstats = _safepoint_stats;
1253
1254  for (int index = 0; index <= _cur_stat_index; index++) {
1255    if (index % 30 == 0) {
1256      print_header();
1257    }
1258    sstats = &_safepoint_stats[index];
1259    tty->print("%.3f: ", sstats->_time_stamp);
1260    tty->print("%-26s       ["
1261               INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
1262               "    ]    ",
1263               sstats->_vmop_type == -1 ? "no vm operation" :
1264               VM_Operation::name(sstats->_vmop_type),
1265               sstats->_nof_total_threads,
1266               sstats->_nof_initial_running_threads,
1267               sstats->_nof_threads_wait_to_block);
1268    // "/ MICROUNITS " is to convert the unit from nanos to millis.
1269    tty->print("  ["
1270               INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1271               INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1272               INT64_FORMAT_W(6) "    ]  ",
1273               sstats->_time_to_spin / MICROUNITS,
1274               sstats->_time_to_wait_to_block / MICROUNITS,
1275               sstats->_time_to_sync / MICROUNITS,
1276               sstats->_time_to_do_cleanups / MICROUNITS,
1277               sstats->_time_to_exec_vmop / MICROUNITS);
1278
1279    if (need_to_track_page_armed_status) {
1280      tty->print(INT32_FORMAT "         ", sstats->_page_armed);
1281    }
1282    tty->print_cr(INT32_FORMAT "   ", sstats->_nof_threads_hit_page_trap);
1283  }
1284}
1285
1286// This method will be called when VM exits. It will first call
1287// print_statistics to print out the rest of the sampling.  Then
1288// it tries to summarize the sampling.
1289void SafepointSynchronize::print_stat_on_exit() {
1290  if (_safepoint_stats == NULL) return;
1291
1292  SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1293
1294  // During VM exit, end_statistics may not get called and in that
1295  // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1296  // don't print it out.
1297  // Approximate the vm op time.
1298  _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1299    os::javaTimeNanos() - cleanup_end_time;
1300
1301  if ( PrintSafepointStatisticsTimeout < 0 ||
1302       spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1303    print_statistics();
1304  }
1305  tty->cr();
1306
1307  // Print out polling page sampling status.
1308  if (!need_to_track_page_armed_status) {
1309    tty->print_cr("Polling page always armed");
1310  } else {
1311    tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1312                  DeferPollingPageLoopCount);
1313  }
1314
1315  for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1316    if (_safepoint_reasons[index] != 0) {
1317      tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1318                    _safepoint_reasons[index]);
1319    }
1320  }
1321
1322  tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1323                _coalesced_vmop_count);
1324  tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1325                _max_sync_time / MICROUNITS);
1326  tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1327                INT64_FORMAT_W(5) " ms",
1328                _max_vmop_time / MICROUNITS);
1329}
1330
1331// ------------------------------------------------------------------------------------------------
1332// Non-product code
1333
1334#ifndef PRODUCT
1335
1336void SafepointSynchronize::print_state() {
1337  if (_state == _not_synchronized) {
1338    tty->print_cr("not synchronized");
1339  } else if (_state == _synchronizing || _state == _synchronized) {
1340    tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1341                  "synchronized");
1342
1343    for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1344       cur->safepoint_state()->print();
1345    }
1346  }
1347}
1348
1349void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1350  if (ShowSafepointMsgs) {
1351    va_list ap;
1352    va_start(ap, format);
1353    tty->vprint_cr(format, ap);
1354    va_end(ap);
1355  }
1356}
1357
1358#endif // !PRODUCT
1359