os.cpp revision 5177:d8e99408faad
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "gc_implementation/shared/vmGCOperations.hpp"
33#include "interpreter/interpreter.hpp"
34#include "memory/allocation.inline.hpp"
35#include "oops/oop.inline.hpp"
36#include "prims/jvm.h"
37#include "prims/jvm_misc.hpp"
38#include "prims/privilegedStack.hpp"
39#include "runtime/arguments.hpp"
40#include "runtime/frame.inline.hpp"
41#include "runtime/interfaceSupport.hpp"
42#include "runtime/java.hpp"
43#include "runtime/javaCalls.hpp"
44#include "runtime/mutexLocker.hpp"
45#include "runtime/os.hpp"
46#include "runtime/stubRoutines.hpp"
47#include "runtime/thread.inline.hpp"
48#include "services/attachListener.hpp"
49#include "services/memTracker.hpp"
50#include "services/threadService.hpp"
51#include "utilities/defaultStream.hpp"
52#include "utilities/events.hpp"
53#ifdef TARGET_OS_FAMILY_linux
54# include "os_linux.inline.hpp"
55#endif
56#ifdef TARGET_OS_FAMILY_solaris
57# include "os_solaris.inline.hpp"
58#endif
59#ifdef TARGET_OS_FAMILY_windows
60# include "os_windows.inline.hpp"
61#endif
62#ifdef TARGET_OS_FAMILY_bsd
63# include "os_bsd.inline.hpp"
64#endif
65
66# include <signal.h>
67
68OSThread*         os::_starting_thread    = NULL;
69address           os::_polling_page       = NULL;
70volatile int32_t* os::_mem_serialize_page = NULL;
71uintptr_t         os::_serialize_page_mask = 0;
72long              os::_rand_seed          = 1;
73int               os::_processor_count    = 0;
74size_t            os::_page_sizes[os::page_sizes_max];
75
76#ifndef PRODUCT
77julong os::num_mallocs = 0;         // # of calls to malloc/realloc
78julong os::alloc_bytes = 0;         // # of bytes allocated
79julong os::num_frees = 0;           // # of calls to free
80julong os::free_bytes = 0;          // # of bytes freed
81#endif
82
83static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
84
85void os_init_globals() {
86  // Called from init_globals().
87  // See Threads::create_vm() in thread.cpp, and init.cpp.
88  os::init_globals();
89}
90
91// Fill in buffer with current local time as an ISO-8601 string.
92// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
93// Returns buffer, or NULL if it failed.
94// This would mostly be a call to
95//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
96// except that on Windows the %z behaves badly, so we do it ourselves.
97// Also, people wanted milliseconds on there,
98// and strftime doesn't do milliseconds.
99char* os::iso8601_time(char* buffer, size_t buffer_length) {
100  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
101  //                                      1         2
102  //                             12345678901234567890123456789
103  static const char* iso8601_format =
104    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
105  static const size_t needed_buffer = 29;
106
107  // Sanity check the arguments
108  if (buffer == NULL) {
109    assert(false, "NULL buffer");
110    return NULL;
111  }
112  if (buffer_length < needed_buffer) {
113    assert(false, "buffer_length too small");
114    return NULL;
115  }
116  // Get the current time
117  jlong milliseconds_since_19700101 = javaTimeMillis();
118  const int milliseconds_per_microsecond = 1000;
119  const time_t seconds_since_19700101 =
120    milliseconds_since_19700101 / milliseconds_per_microsecond;
121  const int milliseconds_after_second =
122    milliseconds_since_19700101 % milliseconds_per_microsecond;
123  // Convert the time value to a tm and timezone variable
124  struct tm time_struct;
125  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
126    assert(false, "Failed localtime_pd");
127    return NULL;
128  }
129#if defined(_ALLBSD_SOURCE)
130  const time_t zone = (time_t) time_struct.tm_gmtoff;
131#else
132  const time_t zone = timezone;
133#endif
134
135  // If daylight savings time is in effect,
136  // we are 1 hour East of our time zone
137  const time_t seconds_per_minute = 60;
138  const time_t minutes_per_hour = 60;
139  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
140  time_t UTC_to_local = zone;
141  if (time_struct.tm_isdst > 0) {
142    UTC_to_local = UTC_to_local - seconds_per_hour;
143  }
144  // Compute the time zone offset.
145  //    localtime_pd() sets timezone to the difference (in seconds)
146  //    between UTC and and local time.
147  //    ISO 8601 says we need the difference between local time and UTC,
148  //    we change the sign of the localtime_pd() result.
149  const time_t local_to_UTC = -(UTC_to_local);
150  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
151  char sign_local_to_UTC = '+';
152  time_t abs_local_to_UTC = local_to_UTC;
153  if (local_to_UTC < 0) {
154    sign_local_to_UTC = '-';
155    abs_local_to_UTC = -(abs_local_to_UTC);
156  }
157  // Convert time zone offset seconds to hours and minutes.
158  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
159  const time_t zone_min =
160    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
161
162  // Print an ISO 8601 date and time stamp into the buffer
163  const int year = 1900 + time_struct.tm_year;
164  const int month = 1 + time_struct.tm_mon;
165  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
166                                   year,
167                                   month,
168                                   time_struct.tm_mday,
169                                   time_struct.tm_hour,
170                                   time_struct.tm_min,
171                                   time_struct.tm_sec,
172                                   milliseconds_after_second,
173                                   sign_local_to_UTC,
174                                   zone_hours,
175                                   zone_min);
176  if (printed == 0) {
177    assert(false, "Failed jio_printf");
178    return NULL;
179  }
180  return buffer;
181}
182
183OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
184#ifdef ASSERT
185  if (!(!thread->is_Java_thread() ||
186         Thread::current() == thread  ||
187         Threads_lock->owned_by_self()
188         || thread->is_Compiler_thread()
189        )) {
190    assert(false, "possibility of dangling Thread pointer");
191  }
192#endif
193
194  if (p >= MinPriority && p <= MaxPriority) {
195    int priority = java_to_os_priority[p];
196    return set_native_priority(thread, priority);
197  } else {
198    assert(false, "Should not happen");
199    return OS_ERR;
200  }
201}
202
203// The mapping from OS priority back to Java priority may be inexact because
204// Java priorities can map M:1 with native priorities. If you want the definite
205// Java priority then use JavaThread::java_priority()
206OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
207  int p;
208  int os_prio;
209  OSReturn ret = get_native_priority(thread, &os_prio);
210  if (ret != OS_OK) return ret;
211
212  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
213    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
214  } else {
215    // niceness values are in reverse order
216    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
217  }
218  priority = (ThreadPriority)p;
219  return OS_OK;
220}
221
222
223// --------------------- sun.misc.Signal (optional) ---------------------
224
225
226// SIGBREAK is sent by the keyboard to query the VM state
227#ifndef SIGBREAK
228#define SIGBREAK SIGQUIT
229#endif
230
231// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
232
233
234static void signal_thread_entry(JavaThread* thread, TRAPS) {
235  os::set_priority(thread, NearMaxPriority);
236  while (true) {
237    int sig;
238    {
239      // FIXME : Currently we have not decieded what should be the status
240      //         for this java thread blocked here. Once we decide about
241      //         that we should fix this.
242      sig = os::signal_wait();
243    }
244    if (sig == os::sigexitnum_pd()) {
245       // Terminate the signal thread
246       return;
247    }
248
249    switch (sig) {
250      case SIGBREAK: {
251        // Check if the signal is a trigger to start the Attach Listener - in that
252        // case don't print stack traces.
253        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
254          continue;
255        }
256        // Print stack traces
257        // Any SIGBREAK operations added here should make sure to flush
258        // the output stream (e.g. tty->flush()) after output.  See 4803766.
259        // Each module also prints an extra carriage return after its output.
260        VM_PrintThreads op;
261        VMThread::execute(&op);
262        VM_PrintJNI jni_op;
263        VMThread::execute(&jni_op);
264        VM_FindDeadlocks op1(tty);
265        VMThread::execute(&op1);
266        Universe::print_heap_at_SIGBREAK();
267        if (PrintClassHistogram) {
268          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
269          VMThread::execute(&op1);
270        }
271        if (JvmtiExport::should_post_data_dump()) {
272          JvmtiExport::post_data_dump();
273        }
274        break;
275      }
276      default: {
277        // Dispatch the signal to java
278        HandleMark hm(THREAD);
279        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
280        KlassHandle klass (THREAD, k);
281        if (klass.not_null()) {
282          JavaValue result(T_VOID);
283          JavaCallArguments args;
284          args.push_int(sig);
285          JavaCalls::call_static(
286            &result,
287            klass,
288            vmSymbols::dispatch_name(),
289            vmSymbols::int_void_signature(),
290            &args,
291            THREAD
292          );
293        }
294        if (HAS_PENDING_EXCEPTION) {
295          // tty is initialized early so we don't expect it to be null, but
296          // if it is we can't risk doing an initialization that might
297          // trigger additional out-of-memory conditions
298          if (tty != NULL) {
299            char klass_name[256];
300            char tmp_sig_name[16];
301            const char* sig_name = "UNKNOWN";
302            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
303              name()->as_klass_external_name(klass_name, 256);
304            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
305              sig_name = tmp_sig_name;
306            warning("Exception %s occurred dispatching signal %s to handler"
307                    "- the VM may need to be forcibly terminated",
308                    klass_name, sig_name );
309          }
310          CLEAR_PENDING_EXCEPTION;
311        }
312      }
313    }
314  }
315}
316
317
318void os::signal_init() {
319  if (!ReduceSignalUsage) {
320    // Setup JavaThread for processing signals
321    EXCEPTION_MARK;
322    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
323    instanceKlassHandle klass (THREAD, k);
324    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
325
326    const char thread_name[] = "Signal Dispatcher";
327    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
328
329    // Initialize thread_oop to put it into the system threadGroup
330    Handle thread_group (THREAD, Universe::system_thread_group());
331    JavaValue result(T_VOID);
332    JavaCalls::call_special(&result, thread_oop,
333                           klass,
334                           vmSymbols::object_initializer_name(),
335                           vmSymbols::threadgroup_string_void_signature(),
336                           thread_group,
337                           string,
338                           CHECK);
339
340    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
341    JavaCalls::call_special(&result,
342                            thread_group,
343                            group,
344                            vmSymbols::add_method_name(),
345                            vmSymbols::thread_void_signature(),
346                            thread_oop,         // ARG 1
347                            CHECK);
348
349    os::signal_init_pd();
350
351    { MutexLocker mu(Threads_lock);
352      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
353
354      // At this point it may be possible that no osthread was created for the
355      // JavaThread due to lack of memory. We would have to throw an exception
356      // in that case. However, since this must work and we do not allow
357      // exceptions anyway, check and abort if this fails.
358      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
359        vm_exit_during_initialization("java.lang.OutOfMemoryError",
360                                      "unable to create new native thread");
361      }
362
363      java_lang_Thread::set_thread(thread_oop(), signal_thread);
364      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
365      java_lang_Thread::set_daemon(thread_oop());
366
367      signal_thread->set_threadObj(thread_oop());
368      Threads::add(signal_thread);
369      Thread::start(signal_thread);
370    }
371    // Handle ^BREAK
372    os::signal(SIGBREAK, os::user_handler());
373  }
374}
375
376
377void os::terminate_signal_thread() {
378  if (!ReduceSignalUsage)
379    signal_notify(sigexitnum_pd());
380}
381
382
383// --------------------- loading libraries ---------------------
384
385typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
386extern struct JavaVM_ main_vm;
387
388static void* _native_java_library = NULL;
389
390void* os::native_java_library() {
391  if (_native_java_library == NULL) {
392    char buffer[JVM_MAXPATHLEN];
393    char ebuf[1024];
394
395    // Try to load verify dll first. In 1.3 java dll depends on it and is not
396    // always able to find it when the loading executable is outside the JDK.
397    // In order to keep working with 1.2 we ignore any loading errors.
398    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
399                       "verify")) {
400      dll_load(buffer, ebuf, sizeof(ebuf));
401    }
402
403    // Load java dll
404    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
405                       "java")) {
406      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
407    }
408    if (_native_java_library == NULL) {
409      vm_exit_during_initialization("Unable to load native library", ebuf);
410    }
411
412#if defined(__OpenBSD__)
413    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
414    // ignore errors
415    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
416                       "net")) {
417      dll_load(buffer, ebuf, sizeof(ebuf));
418    }
419#endif
420  }
421  static jboolean onLoaded = JNI_FALSE;
422  if (onLoaded) {
423    // We may have to wait to fire OnLoad until TLS is initialized.
424    if (ThreadLocalStorage::is_initialized()) {
425      // The JNI_OnLoad handling is normally done by method load in
426      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
427      // explicitly so we have to check for JNI_OnLoad as well
428      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
429      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
430          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
431      if (JNI_OnLoad != NULL) {
432        JavaThread* thread = JavaThread::current();
433        ThreadToNativeFromVM ttn(thread);
434        HandleMark hm(thread);
435        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
436        onLoaded = JNI_TRUE;
437        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
438          vm_exit_during_initialization("Unsupported JNI version");
439        }
440      }
441    }
442  }
443  return _native_java_library;
444}
445
446// --------------------- heap allocation utilities ---------------------
447
448char *os::strdup(const char *str, MEMFLAGS flags) {
449  size_t size = strlen(str);
450  char *dup_str = (char *)malloc(size + 1, flags);
451  if (dup_str == NULL) return NULL;
452  strcpy(dup_str, str);
453  return dup_str;
454}
455
456
457
458#ifdef ASSERT
459#define space_before             (MallocCushion + sizeof(double))
460#define space_after              MallocCushion
461#define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
462#define size_addr_from_obj(p)    ((size_t*)p - 1)
463// MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
464// NB: cannot be debug variable, because these aren't set from the command line until
465// *after* the first few allocs already happened
466#define MallocCushion            16
467#else
468#define space_before             0
469#define space_after              0
470#define size_addr_from_base(p)   should not use w/o ASSERT
471#define size_addr_from_obj(p)    should not use w/o ASSERT
472#define MallocCushion            0
473#endif
474#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
475
476#ifdef ASSERT
477inline size_t get_size(void* obj) {
478  size_t size = *size_addr_from_obj(obj);
479  if (size < 0) {
480    fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
481                  SIZE_FORMAT ")", obj, size));
482  }
483  return size;
484}
485
486u_char* find_cushion_backwards(u_char* start) {
487  u_char* p = start;
488  while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
489         p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
490  // ok, we have four consecutive marker bytes; find start
491  u_char* q = p - 4;
492  while (*q == badResourceValue) q--;
493  return q + 1;
494}
495
496u_char* find_cushion_forwards(u_char* start) {
497  u_char* p = start;
498  while (p[0] != badResourceValue || p[1] != badResourceValue ||
499         p[2] != badResourceValue || p[3] != badResourceValue) p++;
500  // ok, we have four consecutive marker bytes; find end of cushion
501  u_char* q = p + 4;
502  while (*q == badResourceValue) q++;
503  return q - MallocCushion;
504}
505
506void print_neighbor_blocks(void* ptr) {
507  // find block allocated before ptr (not entirely crash-proof)
508  if (MallocCushion < 4) {
509    tty->print_cr("### cannot find previous block (MallocCushion < 4)");
510    return;
511  }
512  u_char* start_of_this_block = (u_char*)ptr - space_before;
513  u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
514  // look for cushion in front of prev. block
515  u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
516  ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
517  u_char* obj = start_of_prev_block + space_before;
518  if (size <= 0 ) {
519    // start is bad; mayhave been confused by OS data inbetween objects
520    // search one more backwards
521    start_of_prev_block = find_cushion_backwards(start_of_prev_block);
522    size = *size_addr_from_base(start_of_prev_block);
523    obj = start_of_prev_block + space_before;
524  }
525
526  if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
527    tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
528  } else {
529    tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
530  }
531
532  // now find successor block
533  u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
534  start_of_next_block = find_cushion_forwards(start_of_next_block);
535  u_char* next_obj = start_of_next_block + space_before;
536  ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
537  if (start_of_next_block[0] == badResourceValue &&
538      start_of_next_block[1] == badResourceValue &&
539      start_of_next_block[2] == badResourceValue &&
540      start_of_next_block[3] == badResourceValue) {
541    tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
542  } else {
543    tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
544  }
545}
546
547
548void report_heap_error(void* memblock, void* bad, const char* where) {
549  tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
550  tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
551  print_neighbor_blocks(memblock);
552  fatal("memory stomping error");
553}
554
555void verify_block(void* memblock) {
556  size_t size = get_size(memblock);
557  if (MallocCushion) {
558    u_char* ptr = (u_char*)memblock - space_before;
559    for (int i = 0; i < MallocCushion; i++) {
560      if (ptr[i] != badResourceValue) {
561        report_heap_error(memblock, ptr+i, "in front of");
562      }
563    }
564    u_char* end = (u_char*)memblock + size + space_after;
565    for (int j = -MallocCushion; j < 0; j++) {
566      if (end[j] != badResourceValue) {
567        report_heap_error(memblock, end+j, "after");
568      }
569    }
570  }
571}
572#endif
573
574//
575// This function supports testing of the malloc out of memory
576// condition without really running the system out of memory.
577//
578static u_char* testMalloc(size_t alloc_size) {
579  assert(MallocMaxTestWords > 0, "sanity check");
580
581  if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
582    return NULL;
583  }
584
585  u_char* ptr = (u_char*)::malloc(alloc_size);
586
587  if (ptr != NULL) {
588    Atomic::add(((jint) (alloc_size / BytesPerWord)),
589                (volatile jint *) &cur_malloc_words);
590  }
591  return ptr;
592}
593
594void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
595  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
596  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
597
598#ifdef ASSERT
599  // checking for the WatcherThread and crash_protection first
600  // since os::malloc can be called when the libjvm.{dll,so} is
601  // first loaded and we don't have a thread yet.
602  // try to find the thread after we see that the watcher thread
603  // exists and has crash protection.
604  WatcherThread *wt = WatcherThread::watcher_thread();
605  if (wt != NULL && wt->has_crash_protection()) {
606    Thread* thread = ThreadLocalStorage::get_thread_slow();
607    if (thread == wt) {
608      assert(!wt->has_crash_protection(),
609          "Can't malloc with crash protection from WatcherThread");
610    }
611  }
612#endif
613
614  if (size == 0) {
615    // return a valid pointer if size is zero
616    // if NULL is returned the calling functions assume out of memory.
617    size = 1;
618  }
619
620  const size_t alloc_size = size + space_before + space_after;
621
622  if (size > alloc_size) { // Check for rollover.
623    return NULL;
624  }
625
626  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
627
628  u_char* ptr;
629
630  if (MallocMaxTestWords > 0) {
631    ptr = testMalloc(alloc_size);
632  } else {
633    ptr = (u_char*)::malloc(alloc_size);
634  }
635
636#ifdef ASSERT
637  if (ptr == NULL) return NULL;
638  if (MallocCushion) {
639    for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
640    u_char* end = ptr + space_before + size;
641    for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
642    for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
643  }
644  // put size just before data
645  *size_addr_from_base(ptr) = size;
646#endif
647  u_char* memblock = ptr + space_before;
648  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
649    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
650    breakpoint();
651  }
652  debug_only(if (paranoid) verify_block(memblock));
653  if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
654
655  // we do not track MallocCushion memory
656    MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
657
658  return memblock;
659}
660
661
662void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
663#ifndef ASSERT
664  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
665  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
666  MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
667  void* ptr = ::realloc(memblock, size);
668  if (ptr != NULL) {
669    tkr.record((address)memblock, (address)ptr, size, memflags,
670     caller == 0 ? CALLER_PC : caller);
671  } else {
672    tkr.discard();
673  }
674  return ptr;
675#else
676  if (memblock == NULL) {
677    return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
678  }
679  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
680    tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
681    breakpoint();
682  }
683  verify_block(memblock);
684  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
685  if (size == 0) return NULL;
686  // always move the block
687  void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
688  if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
689  // Copy to new memory if malloc didn't fail
690  if ( ptr != NULL ) {
691    memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
692    if (paranoid) verify_block(ptr);
693    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
694      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
695      breakpoint();
696    }
697    free(memblock);
698  }
699  return ptr;
700#endif
701}
702
703
704void  os::free(void *memblock, MEMFLAGS memflags) {
705  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
706#ifdef ASSERT
707  if (memblock == NULL) return;
708  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
709    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
710    breakpoint();
711  }
712  verify_block(memblock);
713  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
714  // Added by detlefs.
715  if (MallocCushion) {
716    u_char* ptr = (u_char*)memblock - space_before;
717    for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
718      guarantee(*p == badResourceValue,
719                "Thing freed should be malloc result.");
720      *p = (u_char)freeBlockPad;
721    }
722    size_t size = get_size(memblock);
723    inc_stat_counter(&free_bytes, size);
724    u_char* end = ptr + space_before + size;
725    for (u_char* q = end; q < end + MallocCushion; q++) {
726      guarantee(*q == badResourceValue,
727                "Thing freed should be malloc result.");
728      *q = (u_char)freeBlockPad;
729    }
730    if (PrintMalloc && tty != NULL)
731      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
732  } else if (PrintMalloc && tty != NULL) {
733    // tty->print_cr("os::free %p", memblock);
734    fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
735  }
736#endif
737  MemTracker::record_free((address)memblock, memflags);
738
739  ::free((char*)memblock - space_before);
740}
741
742void os::init_random(long initval) {
743  _rand_seed = initval;
744}
745
746
747long os::random() {
748  /* standard, well-known linear congruential random generator with
749   * next_rand = (16807*seed) mod (2**31-1)
750   * see
751   * (1) "Random Number Generators: Good Ones Are Hard to Find",
752   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
753   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
754   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
755  */
756  const long a = 16807;
757  const unsigned long m = 2147483647;
758  const long q = m / a;        assert(q == 127773, "weird math");
759  const long r = m % a;        assert(r == 2836, "weird math");
760
761  // compute az=2^31p+q
762  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
763  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
764  lo += (hi & 0x7FFF) << 16;
765
766  // if q overflowed, ignore the overflow and increment q
767  if (lo > m) {
768    lo &= m;
769    ++lo;
770  }
771  lo += hi >> 15;
772
773  // if (p+q) overflowed, ignore the overflow and increment (p+q)
774  if (lo > m) {
775    lo &= m;
776    ++lo;
777  }
778  return (_rand_seed = lo);
779}
780
781// The INITIALIZED state is distinguished from the SUSPENDED state because the
782// conditions in which a thread is first started are different from those in which
783// a suspension is resumed.  These differences make it hard for us to apply the
784// tougher checks when starting threads that we want to do when resuming them.
785// However, when start_thread is called as a result of Thread.start, on a Java
786// thread, the operation is synchronized on the Java Thread object.  So there
787// cannot be a race to start the thread and hence for the thread to exit while
788// we are working on it.  Non-Java threads that start Java threads either have
789// to do so in a context in which races are impossible, or should do appropriate
790// locking.
791
792void os::start_thread(Thread* thread) {
793  // guard suspend/resume
794  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
795  OSThread* osthread = thread->osthread();
796  osthread->set_state(RUNNABLE);
797  pd_start_thread(thread);
798}
799
800//---------------------------------------------------------------------------
801// Helper functions for fatal error handler
802
803void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
804  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
805
806  int cols = 0;
807  int cols_per_line = 0;
808  switch (unitsize) {
809    case 1: cols_per_line = 16; break;
810    case 2: cols_per_line = 8;  break;
811    case 4: cols_per_line = 4;  break;
812    case 8: cols_per_line = 2;  break;
813    default: return;
814  }
815
816  address p = start;
817  st->print(PTR_FORMAT ":   ", start);
818  while (p < end) {
819    switch (unitsize) {
820      case 1: st->print("%02x", *(u1*)p); break;
821      case 2: st->print("%04x", *(u2*)p); break;
822      case 4: st->print("%08x", *(u4*)p); break;
823      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
824    }
825    p += unitsize;
826    cols++;
827    if (cols >= cols_per_line && p < end) {
828       cols = 0;
829       st->cr();
830       st->print(PTR_FORMAT ":   ", p);
831    } else {
832       st->print(" ");
833    }
834  }
835  st->cr();
836}
837
838void os::print_environment_variables(outputStream* st, const char** env_list,
839                                     char* buffer, int len) {
840  if (env_list) {
841    st->print_cr("Environment Variables:");
842
843    for (int i = 0; env_list[i] != NULL; i++) {
844      if (getenv(env_list[i], buffer, len)) {
845        st->print(env_list[i]);
846        st->print("=");
847        st->print_cr(buffer);
848      }
849    }
850  }
851}
852
853void os::print_cpu_info(outputStream* st) {
854  // cpu
855  st->print("CPU:");
856  st->print("total %d", os::processor_count());
857  // It's not safe to query number of active processors after crash
858  // st->print("(active %d)", os::active_processor_count());
859  st->print(" %s", VM_Version::cpu_features());
860  st->cr();
861  pd_print_cpu_info(st);
862}
863
864void os::print_date_and_time(outputStream *st) {
865  time_t tloc;
866  (void)time(&tloc);
867  st->print("time: %s", ctime(&tloc));  // ctime adds newline.
868
869  double t = os::elapsedTime();
870  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
871  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
872  //       before printf. We lost some precision, but who cares?
873  st->print_cr("elapsed time: %d seconds", (int)t);
874}
875
876// moved from debug.cpp (used to be find()) but still called from there
877// The verbose parameter is only set by the debug code in one case
878void os::print_location(outputStream* st, intptr_t x, bool verbose) {
879  address addr = (address)x;
880  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
881  if (b != NULL) {
882    if (b->is_buffer_blob()) {
883      // the interpreter is generated into a buffer blob
884      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
885      if (i != NULL) {
886        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
887        i->print_on(st);
888        return;
889      }
890      if (Interpreter::contains(addr)) {
891        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
892                     " (not bytecode specific)", addr);
893        return;
894      }
895      //
896      if (AdapterHandlerLibrary::contains(b)) {
897        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
898        AdapterHandlerLibrary::print_handler_on(st, b);
899      }
900      // the stubroutines are generated into a buffer blob
901      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
902      if (d != NULL) {
903        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
904        d->print_on(st);
905        st->cr();
906        return;
907      }
908      if (StubRoutines::contains(addr)) {
909        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
910                     "stub routine", addr);
911        return;
912      }
913      // the InlineCacheBuffer is using stubs generated into a buffer blob
914      if (InlineCacheBuffer::contains(addr)) {
915        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
916        return;
917      }
918      VtableStub* v = VtableStubs::stub_containing(addr);
919      if (v != NULL) {
920        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
921        v->print_on(st);
922        st->cr();
923        return;
924      }
925    }
926    nmethod* nm = b->as_nmethod_or_null();
927    if (nm != NULL) {
928      ResourceMark rm;
929      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
930                addr, (int)(addr - nm->entry_point()), nm);
931      if (verbose) {
932        st->print(" for ");
933        nm->method()->print_value_on(st);
934      }
935      st->cr();
936      nm->print_nmethod(verbose);
937      return;
938    }
939    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
940    b->print_on(st);
941    return;
942  }
943
944  if (Universe::heap()->is_in(addr)) {
945    HeapWord* p = Universe::heap()->block_start(addr);
946    bool print = false;
947    // If we couldn't find it it just may mean that heap wasn't parseable
948    // See if we were just given an oop directly
949    if (p != NULL && Universe::heap()->block_is_obj(p)) {
950      print = true;
951    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
952      p = (HeapWord*) addr;
953      print = true;
954    }
955    if (print) {
956      if (p == (HeapWord*) addr) {
957        st->print_cr(INTPTR_FORMAT " is an oop", addr);
958      } else {
959        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
960      }
961      oop(p)->print_on(st);
962      return;
963    }
964  } else {
965    if (Universe::heap()->is_in_reserved(addr)) {
966      st->print_cr(INTPTR_FORMAT " is an unallocated location "
967                   "in the heap", addr);
968      return;
969    }
970  }
971  if (JNIHandles::is_global_handle((jobject) addr)) {
972    st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
973    return;
974  }
975  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
976    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
977    return;
978  }
979#ifndef PRODUCT
980  // we don't keep the block list in product mode
981  if (JNIHandleBlock::any_contains((jobject) addr)) {
982    st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
983    return;
984  }
985#endif
986
987  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
988    // Check for privilege stack
989    if (thread->privileged_stack_top() != NULL &&
990        thread->privileged_stack_top()->contains(addr)) {
991      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
992                   "for thread: " INTPTR_FORMAT, addr, thread);
993      if (verbose) thread->print_on(st);
994      return;
995    }
996    // If the addr is a java thread print information about that.
997    if (addr == (address)thread) {
998      if (verbose) {
999        thread->print_on(st);
1000      } else {
1001        st->print_cr(INTPTR_FORMAT " is a thread", addr);
1002      }
1003      return;
1004    }
1005    // If the addr is in the stack region for this thread then report that
1006    // and print thread info
1007    if (thread->stack_base() >= addr &&
1008        addr > (thread->stack_base() - thread->stack_size())) {
1009      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1010                   INTPTR_FORMAT, addr, thread);
1011      if (verbose) thread->print_on(st);
1012      return;
1013    }
1014
1015  }
1016
1017#ifndef PRODUCT
1018  // Check if in metaspace.
1019  if (ClassLoaderDataGraph::contains((address)addr)) {
1020    // Use addr->print() from the debugger instead (not here)
1021    st->print_cr(INTPTR_FORMAT
1022                 " is pointing into metadata", addr);
1023    return;
1024  }
1025#endif
1026
1027  // Try an OS specific find
1028  if (os::find(addr, st)) {
1029    return;
1030  }
1031
1032  st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1033}
1034
1035// Looks like all platforms except IA64 can use the same function to check
1036// if C stack is walkable beyond current frame. The check for fp() is not
1037// necessary on Sparc, but it's harmless.
1038bool os::is_first_C_frame(frame* fr) {
1039#if defined(IA64) && !defined(_WIN32)
1040  // On IA64 we have to check if the callers bsp is still valid
1041  // (i.e. within the register stack bounds).
1042  // Notice: this only works for threads created by the VM and only if
1043  // we walk the current stack!!! If we want to be able to walk
1044  // arbitrary other threads, we'll have to somehow store the thread
1045  // object in the frame.
1046  Thread *thread = Thread::current();
1047  if ((address)fr->fp() <=
1048      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1049    // This check is a little hacky, because on Linux the first C
1050    // frame's ('start_thread') register stack frame starts at
1051    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1052    // ('__pthread_bound_body') register stack frame seems to really
1053    // start at "register_stack_base".
1054    return true;
1055  } else {
1056    return false;
1057  }
1058#elif defined(IA64) && defined(_WIN32)
1059  return true;
1060#else
1061  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1062  // Check usp first, because if that's bad the other accessors may fault
1063  // on some architectures.  Ditto ufp second, etc.
1064  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1065  // sp on amd can be 32 bit aligned.
1066  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1067
1068  uintptr_t usp    = (uintptr_t)fr->sp();
1069  if ((usp & sp_align_mask) != 0) return true;
1070
1071  uintptr_t ufp    = (uintptr_t)fr->fp();
1072  if ((ufp & fp_align_mask) != 0) return true;
1073
1074  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1075  if ((old_sp & sp_align_mask) != 0) return true;
1076  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1077
1078  uintptr_t old_fp = (uintptr_t)fr->link();
1079  if ((old_fp & fp_align_mask) != 0) return true;
1080  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1081
1082  // stack grows downwards; if old_fp is below current fp or if the stack
1083  // frame is too large, either the stack is corrupted or fp is not saved
1084  // on stack (i.e. on x86, ebp may be used as general register). The stack
1085  // is not walkable beyond current frame.
1086  if (old_fp < ufp) return true;
1087  if (old_fp - ufp > 64 * K) return true;
1088
1089  return false;
1090#endif
1091}
1092
1093#ifdef ASSERT
1094extern "C" void test_random() {
1095  const double m = 2147483647;
1096  double mean = 0.0, variance = 0.0, t;
1097  long reps = 10000;
1098  unsigned long seed = 1;
1099
1100  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1101  os::init_random(seed);
1102  long num;
1103  for (int k = 0; k < reps; k++) {
1104    num = os::random();
1105    double u = (double)num / m;
1106    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1107
1108    // calculate mean and variance of the random sequence
1109    mean += u;
1110    variance += (u*u);
1111  }
1112  mean /= reps;
1113  variance /= (reps - 1);
1114
1115  assert(num == 1043618065, "bad seed");
1116  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1117  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1118  const double eps = 0.0001;
1119  t = fabsd(mean - 0.5018);
1120  assert(t < eps, "bad mean");
1121  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1122  assert(t < eps, "bad variance");
1123}
1124#endif
1125
1126
1127// Set up the boot classpath.
1128
1129char* os::format_boot_path(const char* format_string,
1130                           const char* home,
1131                           int home_len,
1132                           char fileSep,
1133                           char pathSep) {
1134    assert((fileSep == '/' && pathSep == ':') ||
1135           (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1136
1137    // Scan the format string to determine the length of the actual
1138    // boot classpath, and handle platform dependencies as well.
1139    int formatted_path_len = 0;
1140    const char* p;
1141    for (p = format_string; *p != 0; ++p) {
1142        if (*p == '%') formatted_path_len += home_len - 1;
1143        ++formatted_path_len;
1144    }
1145
1146    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1147    if (formatted_path == NULL) {
1148        return NULL;
1149    }
1150
1151    // Create boot classpath from format, substituting separator chars and
1152    // java home directory.
1153    char* q = formatted_path;
1154    for (p = format_string; *p != 0; ++p) {
1155        switch (*p) {
1156        case '%':
1157            strcpy(q, home);
1158            q += home_len;
1159            break;
1160        case '/':
1161            *q++ = fileSep;
1162            break;
1163        case ':':
1164            *q++ = pathSep;
1165            break;
1166        default:
1167            *q++ = *p;
1168        }
1169    }
1170    *q = '\0';
1171
1172    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1173    return formatted_path;
1174}
1175
1176
1177bool os::set_boot_path(char fileSep, char pathSep) {
1178    const char* home = Arguments::get_java_home();
1179    int home_len = (int)strlen(home);
1180
1181    static const char* meta_index_dir_format = "%/lib/";
1182    static const char* meta_index_format = "%/lib/meta-index";
1183    char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1184    if (meta_index == NULL) return false;
1185    char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1186    if (meta_index_dir == NULL) return false;
1187    Arguments::set_meta_index_path(meta_index, meta_index_dir);
1188
1189    // Any modification to the JAR-file list, for the boot classpath must be
1190    // aligned with install/install/make/common/Pack.gmk. Note: boot class
1191    // path class JARs, are stripped for StackMapTable to reduce download size.
1192    static const char classpath_format[] =
1193        "%/lib/resources.jar:"
1194        "%/lib/rt.jar:"
1195        "%/lib/sunrsasign.jar:"
1196        "%/lib/jsse.jar:"
1197        "%/lib/jce.jar:"
1198        "%/lib/charsets.jar:"
1199        "%/lib/jfr.jar:"
1200#ifdef __APPLE__
1201        "%/lib/JObjC.jar:"
1202#endif
1203        "%/classes";
1204    char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1205    if (sysclasspath == NULL) return false;
1206    Arguments::set_sysclasspath(sysclasspath);
1207
1208    return true;
1209}
1210
1211/*
1212 * Splits a path, based on its separator, the number of
1213 * elements is returned back in n.
1214 * It is the callers responsibility to:
1215 *   a> check the value of n, and n may be 0.
1216 *   b> ignore any empty path elements
1217 *   c> free up the data.
1218 */
1219char** os::split_path(const char* path, int* n) {
1220  *n = 0;
1221  if (path == NULL || strlen(path) == 0) {
1222    return NULL;
1223  }
1224  const char psepchar = *os::path_separator();
1225  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1226  if (inpath == NULL) {
1227    return NULL;
1228  }
1229  strcpy(inpath, path);
1230  int count = 1;
1231  char* p = strchr(inpath, psepchar);
1232  // Get a count of elements to allocate memory
1233  while (p != NULL) {
1234    count++;
1235    p++;
1236    p = strchr(p, psepchar);
1237  }
1238  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1239  if (opath == NULL) {
1240    return NULL;
1241  }
1242
1243  // do the actual splitting
1244  p = inpath;
1245  for (int i = 0 ; i < count ; i++) {
1246    size_t len = strcspn(p, os::path_separator());
1247    if (len > JVM_MAXPATHLEN) {
1248      return NULL;
1249    }
1250    // allocate the string and add terminator storage
1251    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1252    if (s == NULL) {
1253      return NULL;
1254    }
1255    strncpy(s, p, len);
1256    s[len] = '\0';
1257    opath[i] = s;
1258    p += len + 1;
1259  }
1260  FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1261  *n = count;
1262  return opath;
1263}
1264
1265void os::set_memory_serialize_page(address page) {
1266  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1267  _mem_serialize_page = (volatile int32_t *)page;
1268  // We initialize the serialization page shift count here
1269  // We assume a cache line size of 64 bytes
1270  assert(SerializePageShiftCount == count,
1271         "thread size changed, fix SerializePageShiftCount constant");
1272  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1273}
1274
1275static volatile intptr_t SerializePageLock = 0;
1276
1277// This method is called from signal handler when SIGSEGV occurs while the current
1278// thread tries to store to the "read-only" memory serialize page during state
1279// transition.
1280void os::block_on_serialize_page_trap() {
1281  if (TraceSafepoint) {
1282    tty->print_cr("Block until the serialize page permission restored");
1283  }
1284  // When VMThread is holding the SerializePageLock during modifying the
1285  // access permission of the memory serialize page, the following call
1286  // will block until the permission of that page is restored to rw.
1287  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1288  // this case, it's OK as the signal is synchronous and we know precisely when
1289  // it can occur.
1290  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1291  Thread::muxRelease(&SerializePageLock);
1292}
1293
1294// Serialize all thread state variables
1295void os::serialize_thread_states() {
1296  // On some platforms such as Solaris & Linux, the time duration of the page
1297  // permission restoration is observed to be much longer than expected  due to
1298  // scheduler starvation problem etc. To avoid the long synchronization
1299  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1300  // the mutator thread if such case is encountered. See bug 6546278 for details.
1301  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1302  os::protect_memory((char *)os::get_memory_serialize_page(),
1303                     os::vm_page_size(), MEM_PROT_READ);
1304  os::protect_memory((char *)os::get_memory_serialize_page(),
1305                     os::vm_page_size(), MEM_PROT_RW);
1306  Thread::muxRelease(&SerializePageLock);
1307}
1308
1309// Returns true if the current stack pointer is above the stack shadow
1310// pages, false otherwise.
1311
1312bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1313  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1314  address sp = current_stack_pointer();
1315  // Check if we have StackShadowPages above the yellow zone.  This parameter
1316  // is dependent on the depth of the maximum VM call stack possible from
1317  // the handler for stack overflow.  'instanceof' in the stack overflow
1318  // handler or a println uses at least 8k stack of VM and native code
1319  // respectively.
1320  const int framesize_in_bytes =
1321    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1322  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1323                      * vm_page_size()) + framesize_in_bytes;
1324  // The very lower end of the stack
1325  address stack_limit = thread->stack_base() - thread->stack_size();
1326  return (sp > (stack_limit + reserved_area));
1327}
1328
1329size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1330                                uint min_pages)
1331{
1332  assert(min_pages > 0, "sanity");
1333  if (UseLargePages) {
1334    const size_t max_page_size = region_max_size / min_pages;
1335
1336    for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1337      const size_t sz = _page_sizes[i];
1338      const size_t mask = sz - 1;
1339      if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1340        // The largest page size with no fragmentation.
1341        return sz;
1342      }
1343
1344      if (sz <= max_page_size) {
1345        // The largest page size that satisfies the min_pages requirement.
1346        return sz;
1347      }
1348    }
1349  }
1350
1351  return vm_page_size();
1352}
1353
1354#ifndef PRODUCT
1355void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1356{
1357  if (TracePageSizes) {
1358    tty->print("%s: ", str);
1359    for (int i = 0; i < count; ++i) {
1360      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1361    }
1362    tty->cr();
1363  }
1364}
1365
1366void os::trace_page_sizes(const char* str, const size_t region_min_size,
1367                          const size_t region_max_size, const size_t page_size,
1368                          const char* base, const size_t size)
1369{
1370  if (TracePageSizes) {
1371    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1372                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1373                  " size=" SIZE_FORMAT,
1374                  str, region_min_size, region_max_size,
1375                  page_size, base, size);
1376  }
1377}
1378#endif  // #ifndef PRODUCT
1379
1380// This is the working definition of a server class machine:
1381// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1382// because the graphics memory (?) sometimes masks physical memory.
1383// If you want to change the definition of a server class machine
1384// on some OS or platform, e.g., >=4GB on Windohs platforms,
1385// then you'll have to parameterize this method based on that state,
1386// as was done for logical processors here, or replicate and
1387// specialize this method for each platform.  (Or fix os to have
1388// some inheritance structure and use subclassing.  Sigh.)
1389// If you want some platform to always or never behave as a server
1390// class machine, change the setting of AlwaysActAsServerClassMachine
1391// and NeverActAsServerClassMachine in globals*.hpp.
1392bool os::is_server_class_machine() {
1393  // First check for the early returns
1394  if (NeverActAsServerClassMachine) {
1395    return false;
1396  }
1397  if (AlwaysActAsServerClassMachine) {
1398    return true;
1399  }
1400  // Then actually look at the machine
1401  bool         result            = false;
1402  const unsigned int    server_processors = 2;
1403  const julong server_memory     = 2UL * G;
1404  // We seem not to get our full complement of memory.
1405  //     We allow some part (1/8?) of the memory to be "missing",
1406  //     based on the sizes of DIMMs, and maybe graphics cards.
1407  const julong missing_memory   = 256UL * M;
1408
1409  /* Is this a server class machine? */
1410  if ((os::active_processor_count() >= (int)server_processors) &&
1411      (os::physical_memory() >= (server_memory - missing_memory))) {
1412    const unsigned int logical_processors =
1413      VM_Version::logical_processors_per_package();
1414    if (logical_processors > 1) {
1415      const unsigned int physical_packages =
1416        os::active_processor_count() / logical_processors;
1417      if (physical_packages > server_processors) {
1418        result = true;
1419      }
1420    } else {
1421      result = true;
1422    }
1423  }
1424  return result;
1425}
1426
1427void os::SuspendedThreadTask::run() {
1428  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1429  internal_do_task();
1430  _done = true;
1431}
1432
1433bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1434  return os::pd_create_stack_guard_pages(addr, bytes);
1435}
1436
1437char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1438  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1439  if (result != NULL) {
1440    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1441  }
1442
1443  return result;
1444}
1445
1446char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1447   MEMFLAGS flags) {
1448  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1449  if (result != NULL) {
1450    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1451    MemTracker::record_virtual_memory_type((address)result, flags);
1452  }
1453
1454  return result;
1455}
1456
1457char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1458  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1459  if (result != NULL) {
1460    MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
1461  }
1462  return result;
1463}
1464
1465void os::split_reserved_memory(char *base, size_t size,
1466                                 size_t split, bool realloc) {
1467  pd_split_reserved_memory(base, size, split, realloc);
1468}
1469
1470bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1471  bool res = pd_commit_memory(addr, bytes, executable);
1472  if (res) {
1473    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1474  }
1475  return res;
1476}
1477
1478bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1479                              bool executable) {
1480  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1481  if (res) {
1482    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1483  }
1484  return res;
1485}
1486
1487void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1488                               const char* mesg) {
1489  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1490  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1491}
1492
1493void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1494                               bool executable, const char* mesg) {
1495  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1496  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1497}
1498
1499bool os::uncommit_memory(char* addr, size_t bytes) {
1500  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1501  bool res = pd_uncommit_memory(addr, bytes);
1502  if (res) {
1503    tkr.record((address)addr, bytes);
1504  } else {
1505    tkr.discard();
1506  }
1507  return res;
1508}
1509
1510bool os::release_memory(char* addr, size_t bytes) {
1511  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1512  bool res = pd_release_memory(addr, bytes);
1513  if (res) {
1514    tkr.record((address)addr, bytes);
1515  } else {
1516    tkr.discard();
1517  }
1518  return res;
1519}
1520
1521
1522char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1523                           char *addr, size_t bytes, bool read_only,
1524                           bool allow_exec) {
1525  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1526  if (result != NULL) {
1527    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
1528  }
1529  return result;
1530}
1531
1532char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1533                             char *addr, size_t bytes, bool read_only,
1534                             bool allow_exec) {
1535  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1536                    read_only, allow_exec);
1537}
1538
1539bool os::unmap_memory(char *addr, size_t bytes) {
1540  MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1541  bool result = pd_unmap_memory(addr, bytes);
1542  if (result) {
1543    tkr.record((address)addr, bytes);
1544  } else {
1545    tkr.discard();
1546  }
1547  return result;
1548}
1549
1550void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1551  pd_free_memory(addr, bytes, alignment_hint);
1552}
1553
1554void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1555  pd_realign_memory(addr, bytes, alignment_hint);
1556}
1557
1558#ifndef TARGET_OS_FAMILY_windows
1559/* try to switch state from state "from" to state "to"
1560 * returns the state set after the method is complete
1561 */
1562os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1563                                                         os::SuspendResume::State to)
1564{
1565  os::SuspendResume::State result =
1566    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1567  if (result == from) {
1568    // success
1569    return to;
1570  }
1571  return result;
1572}
1573#endif
1574