1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/moduleEntry.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "classfile/vmSymbols.hpp"
31#include "code/codeCache.hpp"
32#include "code/icBuffer.hpp"
33#include "code/vtableStubs.hpp"
34#include "gc/shared/vmGCOperations.hpp"
35#include "interpreter/interpreter.hpp"
36#include "logging/log.hpp"
37#include "logging/logStream.inline.hpp"
38#include "memory/allocation.inline.hpp"
39#ifdef ASSERT
40#include "memory/guardedMemory.hpp"
41#endif
42#include "memory/resourceArea.hpp"
43#include "oops/oop.inline.hpp"
44#include "prims/jvm.h"
45#include "prims/jvm_misc.hpp"
46#include "prims/privilegedStack.hpp"
47#include "runtime/arguments.hpp"
48#include "runtime/atomic.hpp"
49#include "runtime/frame.inline.hpp"
50#include "runtime/interfaceSupport.hpp"
51#include "runtime/java.hpp"
52#include "runtime/javaCalls.hpp"
53#include "runtime/mutexLocker.hpp"
54#include "runtime/os.inline.hpp"
55#include "runtime/stubRoutines.hpp"
56#include "runtime/thread.inline.hpp"
57#include "runtime/vm_version.hpp"
58#include "services/attachListener.hpp"
59#include "services/mallocTracker.hpp"
60#include "services/memTracker.hpp"
61#include "services/nmtCommon.hpp"
62#include "services/threadService.hpp"
63#include "utilities/defaultStream.hpp"
64#include "utilities/events.hpp"
65
66# include <signal.h>
67# include <errno.h>
68
69OSThread*         os::_starting_thread    = NULL;
70address           os::_polling_page       = NULL;
71volatile int32_t* os::_mem_serialize_page = NULL;
72uintptr_t         os::_serialize_page_mask = 0;
73long              os::_rand_seed          = 1;
74int               os::_processor_count    = 0;
75int               os::_initial_active_processor_count = 0;
76size_t            os::_page_sizes[os::page_sizes_max];
77
78#ifndef PRODUCT
79julong os::num_mallocs = 0;         // # of calls to malloc/realloc
80julong os::alloc_bytes = 0;         // # of bytes allocated
81julong os::num_frees = 0;           // # of calls to free
82julong os::free_bytes = 0;          // # of bytes freed
83#endif
84
85static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
86
87void os_init_globals() {
88  // Called from init_globals().
89  // See Threads::create_vm() in thread.cpp, and init.cpp.
90  os::init_globals();
91}
92
93// Fill in buffer with current local time as an ISO-8601 string.
94// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
95// Returns buffer, or NULL if it failed.
96// This would mostly be a call to
97//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
98// except that on Windows the %z behaves badly, so we do it ourselves.
99// Also, people wanted milliseconds on there,
100// and strftime doesn't do milliseconds.
101char* os::iso8601_time(char* buffer, size_t buffer_length, bool utc) {
102  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
103  //                                      1         2
104  //                             12345678901234567890123456789
105  // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
106  static const size_t needed_buffer = 29;
107
108  // Sanity check the arguments
109  if (buffer == NULL) {
110    assert(false, "NULL buffer");
111    return NULL;
112  }
113  if (buffer_length < needed_buffer) {
114    assert(false, "buffer_length too small");
115    return NULL;
116  }
117  // Get the current time
118  jlong milliseconds_since_19700101 = javaTimeMillis();
119  const int milliseconds_per_microsecond = 1000;
120  const time_t seconds_since_19700101 =
121    milliseconds_since_19700101 / milliseconds_per_microsecond;
122  const int milliseconds_after_second =
123    milliseconds_since_19700101 % milliseconds_per_microsecond;
124  // Convert the time value to a tm and timezone variable
125  struct tm time_struct;
126  if (utc) {
127    if (gmtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
128      assert(false, "Failed gmtime_pd");
129      return NULL;
130    }
131  } else {
132    if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
133      assert(false, "Failed localtime_pd");
134      return NULL;
135    }
136  }
137#if defined(_ALLBSD_SOURCE)
138  const time_t zone = (time_t) time_struct.tm_gmtoff;
139#else
140  const time_t zone = timezone;
141#endif
142
143  // If daylight savings time is in effect,
144  // we are 1 hour East of our time zone
145  const time_t seconds_per_minute = 60;
146  const time_t minutes_per_hour = 60;
147  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
148  time_t UTC_to_local = zone;
149  if (time_struct.tm_isdst > 0) {
150    UTC_to_local = UTC_to_local - seconds_per_hour;
151  }
152
153  // No offset when dealing with UTC
154  if (utc) {
155    UTC_to_local = 0;
156  }
157
158  // Compute the time zone offset.
159  //    localtime_pd() sets timezone to the difference (in seconds)
160  //    between UTC and and local time.
161  //    ISO 8601 says we need the difference between local time and UTC,
162  //    we change the sign of the localtime_pd() result.
163  const time_t local_to_UTC = -(UTC_to_local);
164  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
165  char sign_local_to_UTC = '+';
166  time_t abs_local_to_UTC = local_to_UTC;
167  if (local_to_UTC < 0) {
168    sign_local_to_UTC = '-';
169    abs_local_to_UTC = -(abs_local_to_UTC);
170  }
171  // Convert time zone offset seconds to hours and minutes.
172  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
173  const time_t zone_min =
174    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
175
176  // Print an ISO 8601 date and time stamp into the buffer
177  const int year = 1900 + time_struct.tm_year;
178  const int month = 1 + time_struct.tm_mon;
179  const int printed = jio_snprintf(buffer, buffer_length,
180                                   "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
181                                   year,
182                                   month,
183                                   time_struct.tm_mday,
184                                   time_struct.tm_hour,
185                                   time_struct.tm_min,
186                                   time_struct.tm_sec,
187                                   milliseconds_after_second,
188                                   sign_local_to_UTC,
189                                   zone_hours,
190                                   zone_min);
191  if (printed == 0) {
192    assert(false, "Failed jio_printf");
193    return NULL;
194  }
195  return buffer;
196}
197
198OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
199#ifdef ASSERT
200  if (!(!thread->is_Java_thread() ||
201         Thread::current() == thread  ||
202         Threads_lock->owned_by_self()
203         || thread->is_Compiler_thread()
204        )) {
205    assert(false, "possibility of dangling Thread pointer");
206  }
207#endif
208
209  if (p >= MinPriority && p <= MaxPriority) {
210    int priority = java_to_os_priority[p];
211    return set_native_priority(thread, priority);
212  } else {
213    assert(false, "Should not happen");
214    return OS_ERR;
215  }
216}
217
218// The mapping from OS priority back to Java priority may be inexact because
219// Java priorities can map M:1 with native priorities. If you want the definite
220// Java priority then use JavaThread::java_priority()
221OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
222  int p;
223  int os_prio;
224  OSReturn ret = get_native_priority(thread, &os_prio);
225  if (ret != OS_OK) return ret;
226
227  if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
228    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
229  } else {
230    // niceness values are in reverse order
231    for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
232  }
233  priority = (ThreadPriority)p;
234  return OS_OK;
235}
236
237
238// --------------------- sun.misc.Signal (optional) ---------------------
239
240
241// SIGBREAK is sent by the keyboard to query the VM state
242#ifndef SIGBREAK
243#define SIGBREAK SIGQUIT
244#endif
245
246// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
247
248
249static void signal_thread_entry(JavaThread* thread, TRAPS) {
250  os::set_priority(thread, NearMaxPriority);
251  while (true) {
252    int sig;
253    {
254      // FIXME : Currently we have not decided what should be the status
255      //         for this java thread blocked here. Once we decide about
256      //         that we should fix this.
257      sig = os::signal_wait();
258    }
259    if (sig == os::sigexitnum_pd()) {
260       // Terminate the signal thread
261       return;
262    }
263
264    switch (sig) {
265      case SIGBREAK: {
266        // Check if the signal is a trigger to start the Attach Listener - in that
267        // case don't print stack traces.
268        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
269          continue;
270        }
271        // Print stack traces
272        // Any SIGBREAK operations added here should make sure to flush
273        // the output stream (e.g. tty->flush()) after output.  See 4803766.
274        // Each module also prints an extra carriage return after its output.
275        VM_PrintThreads op;
276        VMThread::execute(&op);
277        VM_PrintJNI jni_op;
278        VMThread::execute(&jni_op);
279        VM_FindDeadlocks op1(tty);
280        VMThread::execute(&op1);
281        Universe::print_heap_at_SIGBREAK();
282        if (PrintClassHistogram) {
283          VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
284          VMThread::execute(&op1);
285        }
286        if (JvmtiExport::should_post_data_dump()) {
287          JvmtiExport::post_data_dump();
288        }
289        break;
290      }
291      default: {
292        // Dispatch the signal to java
293        HandleMark hm(THREAD);
294        Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
295        KlassHandle klass (THREAD, k);
296        if (klass.not_null()) {
297          JavaValue result(T_VOID);
298          JavaCallArguments args;
299          args.push_int(sig);
300          JavaCalls::call_static(
301            &result,
302            klass,
303            vmSymbols::dispatch_name(),
304            vmSymbols::int_void_signature(),
305            &args,
306            THREAD
307          );
308        }
309        if (HAS_PENDING_EXCEPTION) {
310          // tty is initialized early so we don't expect it to be null, but
311          // if it is we can't risk doing an initialization that might
312          // trigger additional out-of-memory conditions
313          if (tty != NULL) {
314            char klass_name[256];
315            char tmp_sig_name[16];
316            const char* sig_name = "UNKNOWN";
317            InstanceKlass::cast(PENDING_EXCEPTION->klass())->
318              name()->as_klass_external_name(klass_name, 256);
319            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
320              sig_name = tmp_sig_name;
321            warning("Exception %s occurred dispatching signal %s to handler"
322                    "- the VM may need to be forcibly terminated",
323                    klass_name, sig_name );
324          }
325          CLEAR_PENDING_EXCEPTION;
326        }
327      }
328    }
329  }
330}
331
332void os::init_before_ergo() {
333  initialize_initial_active_processor_count();
334  // We need to initialize large page support here because ergonomics takes some
335  // decisions depending on large page support and the calculated large page size.
336  large_page_init();
337
338  // We need to adapt the configured number of stack protection pages given
339  // in 4K pages to the actual os page size. We must do this before setting
340  // up minimal stack sizes etc. in os::init_2().
341  JavaThread::set_stack_red_zone_size     (align_size_up(StackRedPages      * 4 * K, vm_page_size()));
342  JavaThread::set_stack_yellow_zone_size  (align_size_up(StackYellowPages   * 4 * K, vm_page_size()));
343  JavaThread::set_stack_reserved_zone_size(align_size_up(StackReservedPages * 4 * K, vm_page_size()));
344  JavaThread::set_stack_shadow_zone_size  (align_size_up(StackShadowPages   * 4 * K, vm_page_size()));
345
346  // VM version initialization identifies some characteristics of the
347  // platform that are used during ergonomic decisions.
348  VM_Version::init_before_ergo();
349}
350
351void os::signal_init() {
352  if (!ReduceSignalUsage) {
353    // Setup JavaThread for processing signals
354    EXCEPTION_MARK;
355    Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
356    instanceKlassHandle klass (THREAD, k);
357    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
358
359    const char thread_name[] = "Signal Dispatcher";
360    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
361
362    // Initialize thread_oop to put it into the system threadGroup
363    Handle thread_group (THREAD, Universe::system_thread_group());
364    JavaValue result(T_VOID);
365    JavaCalls::call_special(&result, thread_oop,
366                           klass,
367                           vmSymbols::object_initializer_name(),
368                           vmSymbols::threadgroup_string_void_signature(),
369                           thread_group,
370                           string,
371                           CHECK);
372
373    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
374    JavaCalls::call_special(&result,
375                            thread_group,
376                            group,
377                            vmSymbols::add_method_name(),
378                            vmSymbols::thread_void_signature(),
379                            thread_oop,         // ARG 1
380                            CHECK);
381
382    os::signal_init_pd();
383
384    { MutexLocker mu(Threads_lock);
385      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
386
387      // At this point it may be possible that no osthread was created for the
388      // JavaThread due to lack of memory. We would have to throw an exception
389      // in that case. However, since this must work and we do not allow
390      // exceptions anyway, check and abort if this fails.
391      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
392        vm_exit_during_initialization("java.lang.OutOfMemoryError",
393                                      os::native_thread_creation_failed_msg());
394      }
395
396      java_lang_Thread::set_thread(thread_oop(), signal_thread);
397      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
398      java_lang_Thread::set_daemon(thread_oop());
399
400      signal_thread->set_threadObj(thread_oop());
401      Threads::add(signal_thread);
402      Thread::start(signal_thread);
403    }
404    // Handle ^BREAK
405    os::signal(SIGBREAK, os::user_handler());
406  }
407}
408
409
410void os::terminate_signal_thread() {
411  if (!ReduceSignalUsage)
412    signal_notify(sigexitnum_pd());
413}
414
415
416// --------------------- loading libraries ---------------------
417
418typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
419extern struct JavaVM_ main_vm;
420
421static void* _native_java_library = NULL;
422
423void* os::native_java_library() {
424  if (_native_java_library == NULL) {
425    char buffer[JVM_MAXPATHLEN];
426    char ebuf[1024];
427
428    // Try to load verify dll first. In 1.3 java dll depends on it and is not
429    // always able to find it when the loading executable is outside the JDK.
430    // In order to keep working with 1.2 we ignore any loading errors.
431    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
432                       "verify")) {
433      dll_load(buffer, ebuf, sizeof(ebuf));
434    }
435
436    // Load java dll
437    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
438                       "java")) {
439      _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
440    }
441    if (_native_java_library == NULL) {
442      vm_exit_during_initialization("Unable to load native library", ebuf);
443    }
444
445#if defined(__OpenBSD__)
446    // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
447    // ignore errors
448    if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
449                       "net")) {
450      dll_load(buffer, ebuf, sizeof(ebuf));
451    }
452#endif
453  }
454  return _native_java_library;
455}
456
457/*
458 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
459 * If check_lib == true then we are looking for an
460 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
461 * this library is statically linked into the image.
462 * If check_lib == false then we will look for the appropriate symbol in the
463 * executable if agent_lib->is_static_lib() == true or in the shared library
464 * referenced by 'handle'.
465 */
466void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
467                              const char *syms[], size_t syms_len) {
468  assert(agent_lib != NULL, "sanity check");
469  const char *lib_name;
470  void *handle = agent_lib->os_lib();
471  void *entryName = NULL;
472  char *agent_function_name;
473  size_t i;
474
475  // If checking then use the agent name otherwise test is_static_lib() to
476  // see how to process this lookup
477  lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
478  for (i = 0; i < syms_len; i++) {
479    agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
480    if (agent_function_name == NULL) {
481      break;
482    }
483    entryName = dll_lookup(handle, agent_function_name);
484    FREE_C_HEAP_ARRAY(char, agent_function_name);
485    if (entryName != NULL) {
486      break;
487    }
488  }
489  return entryName;
490}
491
492// See if the passed in agent is statically linked into the VM image.
493bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
494                            size_t syms_len) {
495  void *ret;
496  void *proc_handle;
497  void *save_handle;
498
499  assert(agent_lib != NULL, "sanity check");
500  if (agent_lib->name() == NULL) {
501    return false;
502  }
503  proc_handle = get_default_process_handle();
504  // Check for Agent_OnLoad/Attach_lib_name function
505  save_handle = agent_lib->os_lib();
506  // We want to look in this process' symbol table.
507  agent_lib->set_os_lib(proc_handle);
508  ret = find_agent_function(agent_lib, true, syms, syms_len);
509  if (ret != NULL) {
510    // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
511    agent_lib->set_valid();
512    agent_lib->set_static_lib(true);
513    return true;
514  }
515  agent_lib->set_os_lib(save_handle);
516  return false;
517}
518
519// --------------------- heap allocation utilities ---------------------
520
521char *os::strdup(const char *str, MEMFLAGS flags) {
522  size_t size = strlen(str);
523  char *dup_str = (char *)malloc(size + 1, flags);
524  if (dup_str == NULL) return NULL;
525  strcpy(dup_str, str);
526  return dup_str;
527}
528
529char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
530  char* p = os::strdup(str, flags);
531  if (p == NULL) {
532    vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
533  }
534  return p;
535}
536
537
538#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
539
540#ifdef ASSERT
541
542static void verify_memory(void* ptr) {
543  GuardedMemory guarded(ptr);
544  if (!guarded.verify_guards()) {
545    tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
546    tty->print_cr("## memory stomp:");
547    guarded.print_on(tty);
548    fatal("memory stomping error");
549  }
550}
551
552#endif
553
554//
555// This function supports testing of the malloc out of memory
556// condition without really running the system out of memory.
557//
558static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
559  if (MallocMaxTestWords > 0) {
560    jint words = (jint)(alloc_size / BytesPerWord);
561
562    if ((cur_malloc_words + words) > MallocMaxTestWords) {
563      return true;
564    }
565    Atomic::add(words, (volatile jint *)&cur_malloc_words);
566  }
567  return false;
568}
569
570void* os::malloc(size_t size, MEMFLAGS flags) {
571  return os::malloc(size, flags, CALLER_PC);
572}
573
574void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
575  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
576  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
577
578#ifdef ASSERT
579  // checking for the WatcherThread and crash_protection first
580  // since os::malloc can be called when the libjvm.{dll,so} is
581  // first loaded and we don't have a thread yet.
582  // try to find the thread after we see that the watcher thread
583  // exists and has crash protection.
584  WatcherThread *wt = WatcherThread::watcher_thread();
585  if (wt != NULL && wt->has_crash_protection()) {
586    Thread* thread = Thread::current_or_null();
587    if (thread == wt) {
588      assert(!wt->has_crash_protection(),
589          "Can't malloc with crash protection from WatcherThread");
590    }
591  }
592#endif
593
594  if (size == 0) {
595    // return a valid pointer if size is zero
596    // if NULL is returned the calling functions assume out of memory.
597    size = 1;
598  }
599
600  // NMT support
601  NMT_TrackingLevel level = MemTracker::tracking_level();
602  size_t            nmt_header_size = MemTracker::malloc_header_size(level);
603
604#ifndef ASSERT
605  const size_t alloc_size = size + nmt_header_size;
606#else
607  const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
608  if (size + nmt_header_size > alloc_size) { // Check for rollover.
609    return NULL;
610  }
611#endif
612
613  // For the test flag -XX:MallocMaxTestWords
614  if (has_reached_max_malloc_test_peak(size)) {
615    return NULL;
616  }
617
618  u_char* ptr;
619  ptr = (u_char*)::malloc(alloc_size);
620
621#ifdef ASSERT
622  if (ptr == NULL) {
623    return NULL;
624  }
625  // Wrap memory with guard
626  GuardedMemory guarded(ptr, size + nmt_header_size);
627  ptr = guarded.get_user_ptr();
628#endif
629  if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
630    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
631    breakpoint();
632  }
633  debug_only(if (paranoid) verify_memory(ptr));
634  if (PrintMalloc && tty != NULL) {
635    tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
636  }
637
638  // we do not track guard memory
639  return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
640}
641
642void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
643  return os::realloc(memblock, size, flags, CALLER_PC);
644}
645
646void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
647
648  // For the test flag -XX:MallocMaxTestWords
649  if (has_reached_max_malloc_test_peak(size)) {
650    return NULL;
651  }
652
653#ifndef ASSERT
654  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
655  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
656   // NMT support
657  void* membase = MemTracker::record_free(memblock);
658  NMT_TrackingLevel level = MemTracker::tracking_level();
659  size_t  nmt_header_size = MemTracker::malloc_header_size(level);
660  void* ptr = ::realloc(membase, size + nmt_header_size);
661  return MemTracker::record_malloc(ptr, size, memflags, stack, level);
662#else
663  if (memblock == NULL) {
664    return os::malloc(size, memflags, stack);
665  }
666  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
667    tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
668    breakpoint();
669  }
670  // NMT support
671  void* membase = MemTracker::malloc_base(memblock);
672  verify_memory(membase);
673  if (size == 0) {
674    return NULL;
675  }
676  // always move the block
677  void* ptr = os::malloc(size, memflags, stack);
678  if (PrintMalloc && tty != NULL) {
679    tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
680  }
681  // Copy to new memory if malloc didn't fail
682  if ( ptr != NULL ) {
683    GuardedMemory guarded(MemTracker::malloc_base(memblock));
684    // Guard's user data contains NMT header
685    size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
686    memcpy(ptr, memblock, MIN2(size, memblock_size));
687    if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
688    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
689      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
690      breakpoint();
691    }
692    os::free(memblock);
693  }
694  return ptr;
695#endif
696}
697
698
699void  os::free(void *memblock) {
700  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
701#ifdef ASSERT
702  if (memblock == NULL) return;
703  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
704    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
705    breakpoint();
706  }
707  void* membase = MemTracker::record_free(memblock);
708  verify_memory(membase);
709
710  GuardedMemory guarded(membase);
711  size_t size = guarded.get_user_size();
712  inc_stat_counter(&free_bytes, size);
713  membase = guarded.release_for_freeing();
714  if (PrintMalloc && tty != NULL) {
715      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
716  }
717  ::free(membase);
718#else
719  void* membase = MemTracker::record_free(memblock);
720  ::free(membase);
721#endif
722}
723
724void os::init_random(long initval) {
725  _rand_seed = initval;
726}
727
728
729long os::random() {
730  /* standard, well-known linear congruential random generator with
731   * next_rand = (16807*seed) mod (2**31-1)
732   * see
733   * (1) "Random Number Generators: Good Ones Are Hard to Find",
734   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
735   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
736   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
737  */
738  const long a = 16807;
739  const unsigned long m = 2147483647;
740  const long q = m / a;        assert(q == 127773, "weird math");
741  const long r = m % a;        assert(r == 2836, "weird math");
742
743  // compute az=2^31p+q
744  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
745  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
746  lo += (hi & 0x7FFF) << 16;
747
748  // if q overflowed, ignore the overflow and increment q
749  if (lo > m) {
750    lo &= m;
751    ++lo;
752  }
753  lo += hi >> 15;
754
755  // if (p+q) overflowed, ignore the overflow and increment (p+q)
756  if (lo > m) {
757    lo &= m;
758    ++lo;
759  }
760  return (_rand_seed = lo);
761}
762
763// The INITIALIZED state is distinguished from the SUSPENDED state because the
764// conditions in which a thread is first started are different from those in which
765// a suspension is resumed.  These differences make it hard for us to apply the
766// tougher checks when starting threads that we want to do when resuming them.
767// However, when start_thread is called as a result of Thread.start, on a Java
768// thread, the operation is synchronized on the Java Thread object.  So there
769// cannot be a race to start the thread and hence for the thread to exit while
770// we are working on it.  Non-Java threads that start Java threads either have
771// to do so in a context in which races are impossible, or should do appropriate
772// locking.
773
774void os::start_thread(Thread* thread) {
775  // guard suspend/resume
776  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
777  OSThread* osthread = thread->osthread();
778  osthread->set_state(RUNNABLE);
779  pd_start_thread(thread);
780}
781
782void os::abort(bool dump_core) {
783  abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
784}
785
786//---------------------------------------------------------------------------
787// Helper functions for fatal error handler
788
789void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
790  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
791
792  int cols = 0;
793  int cols_per_line = 0;
794  switch (unitsize) {
795    case 1: cols_per_line = 16; break;
796    case 2: cols_per_line = 8;  break;
797    case 4: cols_per_line = 4;  break;
798    case 8: cols_per_line = 2;  break;
799    default: return;
800  }
801
802  address p = start;
803  st->print(PTR_FORMAT ":   ", p2i(start));
804  while (p < end) {
805    switch (unitsize) {
806      case 1: st->print("%02x", *(u1*)p); break;
807      case 2: st->print("%04x", *(u2*)p); break;
808      case 4: st->print("%08x", *(u4*)p); break;
809      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
810    }
811    p += unitsize;
812    cols++;
813    if (cols >= cols_per_line && p < end) {
814       cols = 0;
815       st->cr();
816       st->print(PTR_FORMAT ":   ", p2i(p));
817    } else {
818       st->print(" ");
819    }
820  }
821  st->cr();
822}
823
824void os::print_environment_variables(outputStream* st, const char** env_list) {
825  if (env_list) {
826    st->print_cr("Environment Variables:");
827
828    for (int i = 0; env_list[i] != NULL; i++) {
829      char *envvar = ::getenv(env_list[i]);
830      if (envvar != NULL) {
831        st->print("%s", env_list[i]);
832        st->print("=");
833        st->print_cr("%s", envvar);
834      }
835    }
836  }
837}
838
839void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
840  // cpu
841  st->print("CPU:");
842  st->print("total %d", os::processor_count());
843  // It's not safe to query number of active processors after crash
844  // st->print("(active %d)", os::active_processor_count()); but we can
845  // print the initial number of active processors.
846  // We access the raw value here because the assert in the accessor will
847  // fail if the crash occurs before initialization of this value.
848  st->print(" (initial active %d)", _initial_active_processor_count);
849  st->print(" %s", VM_Version::features_string());
850  st->cr();
851  pd_print_cpu_info(st, buf, buflen);
852}
853
854// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
855void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
856  st->print("Host: ");
857#ifndef PRODUCT
858  if (get_host_name(buf, buflen)) {
859    st->print("%s, ", buf);
860  }
861#endif // PRODUCT
862  get_summary_cpu_info(buf, buflen);
863  st->print("%s, ", buf);
864  size_t mem = physical_memory()/G;
865  if (mem == 0) {  // for low memory systems
866    mem = physical_memory()/M;
867    st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
868  } else {
869    st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
870  }
871  get_summary_os_info(buf, buflen);
872  st->print_raw(buf);
873  st->cr();
874}
875
876void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
877  const int secs_per_day  = 86400;
878  const int secs_per_hour = 3600;
879  const int secs_per_min  = 60;
880
881  time_t tloc;
882  (void)time(&tloc);
883  char* timestring = ctime(&tloc);  // ctime adds newline.
884  // edit out the newline
885  char* nl = strchr(timestring, '\n');
886  if (nl != NULL) {
887    *nl = '\0';
888  }
889
890  struct tm tz;
891  if (localtime_pd(&tloc, &tz) != NULL) {
892    ::strftime(buf, buflen, "%Z", &tz);
893    st->print("Time: %s %s", timestring, buf);
894  } else {
895    st->print("Time: %s", timestring);
896  }
897
898  double t = os::elapsedTime();
899  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
900  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
901  //       before printf. We lost some precision, but who cares?
902  int eltime = (int)t;  // elapsed time in seconds
903
904  // print elapsed time in a human-readable format:
905  int eldays = eltime / secs_per_day;
906  int day_secs = eldays * secs_per_day;
907  int elhours = (eltime - day_secs) / secs_per_hour;
908  int hour_secs = elhours * secs_per_hour;
909  int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
910  int minute_secs = elmins * secs_per_min;
911  int elsecs = (eltime - day_secs - hour_secs - minute_secs);
912  st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
913}
914
915// moved from debug.cpp (used to be find()) but still called from there
916// The verbose parameter is only set by the debug code in one case
917void os::print_location(outputStream* st, intptr_t x, bool verbose) {
918  address addr = (address)x;
919  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
920  if (b != NULL) {
921    if (b->is_buffer_blob()) {
922      // the interpreter is generated into a buffer blob
923      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
924      if (i != NULL) {
925        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
926        i->print_on(st);
927        return;
928      }
929      if (Interpreter::contains(addr)) {
930        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
931                     " (not bytecode specific)", p2i(addr));
932        return;
933      }
934      //
935      if (AdapterHandlerLibrary::contains(b)) {
936        st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
937        AdapterHandlerLibrary::print_handler_on(st, b);
938      }
939      // the stubroutines are generated into a buffer blob
940      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
941      if (d != NULL) {
942        st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
943        d->print_on(st);
944        st->cr();
945        return;
946      }
947      if (StubRoutines::contains(addr)) {
948        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
949        return;
950      }
951      // the InlineCacheBuffer is using stubs generated into a buffer blob
952      if (InlineCacheBuffer::contains(addr)) {
953        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
954        return;
955      }
956      VtableStub* v = VtableStubs::stub_containing(addr);
957      if (v != NULL) {
958        st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
959        v->print_on(st);
960        st->cr();
961        return;
962      }
963    }
964    nmethod* nm = b->as_nmethod_or_null();
965    if (nm != NULL) {
966      ResourceMark rm;
967      st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
968                p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
969      if (verbose) {
970        st->print(" for ");
971        nm->method()->print_value_on(st);
972      }
973      st->cr();
974      nm->print_nmethod(verbose);
975      return;
976    }
977    st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
978    b->print_on(st);
979    return;
980  }
981
982  if (Universe::heap()->is_in(addr)) {
983    HeapWord* p = Universe::heap()->block_start(addr);
984    bool print = false;
985    // If we couldn't find it it just may mean that heap wasn't parsable
986    // See if we were just given an oop directly
987    if (p != NULL && Universe::heap()->block_is_obj(p)) {
988      print = true;
989    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
990      p = (HeapWord*) addr;
991      print = true;
992    }
993    if (print) {
994      if (p == (HeapWord*) addr) {
995        st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
996      } else {
997        st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
998      }
999      oop(p)->print_on(st);
1000      return;
1001    }
1002  } else {
1003    if (Universe::heap()->is_in_reserved(addr)) {
1004      st->print_cr(INTPTR_FORMAT " is an unallocated location "
1005                   "in the heap", p2i(addr));
1006      return;
1007    }
1008  }
1009  if (JNIHandles::is_global_handle((jobject) addr)) {
1010    st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1011    return;
1012  }
1013  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1014    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1015    return;
1016  }
1017#ifndef PRODUCT
1018  // we don't keep the block list in product mode
1019  if (JNIHandleBlock::any_contains((jobject) addr)) {
1020    st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1021    return;
1022  }
1023#endif
1024
1025  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1026    // Check for privilege stack
1027    if (thread->privileged_stack_top() != NULL &&
1028        thread->privileged_stack_top()->contains(addr)) {
1029      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1030                   "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1031      if (verbose) thread->print_on(st);
1032      return;
1033    }
1034    // If the addr is a java thread print information about that.
1035    if (addr == (address)thread) {
1036      if (verbose) {
1037        thread->print_on(st);
1038      } else {
1039        st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1040      }
1041      return;
1042    }
1043    // If the addr is in the stack region for this thread then report that
1044    // and print thread info
1045    if (thread->on_local_stack(addr)) {
1046      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1047                   INTPTR_FORMAT, p2i(addr), p2i(thread));
1048      if (verbose) thread->print_on(st);
1049      return;
1050    }
1051
1052  }
1053
1054  // Check if in metaspace and print types that have vptrs (only method now)
1055  if (Metaspace::contains(addr)) {
1056    if (Method::has_method_vptr((const void*)addr)) {
1057      ((Method*)addr)->print_value_on(st);
1058      st->cr();
1059    } else {
1060      // Use addr->print() from the debugger instead (not here)
1061      st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1062    }
1063    return;
1064  }
1065
1066  // Try an OS specific find
1067  if (os::find(addr, st)) {
1068    return;
1069  }
1070
1071  st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1072}
1073
1074// Looks like all platforms except IA64 can use the same function to check
1075// if C stack is walkable beyond current frame. The check for fp() is not
1076// necessary on Sparc, but it's harmless.
1077bool os::is_first_C_frame(frame* fr) {
1078#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1079  // On IA64 we have to check if the callers bsp is still valid
1080  // (i.e. within the register stack bounds).
1081  // Notice: this only works for threads created by the VM and only if
1082  // we walk the current stack!!! If we want to be able to walk
1083  // arbitrary other threads, we'll have to somehow store the thread
1084  // object in the frame.
1085  Thread *thread = Thread::current();
1086  if ((address)fr->fp() <=
1087      thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1088    // This check is a little hacky, because on Linux the first C
1089    // frame's ('start_thread') register stack frame starts at
1090    // "register_stack_base + 0x48" while on HPUX, the first C frame's
1091    // ('__pthread_bound_body') register stack frame seems to really
1092    // start at "register_stack_base".
1093    return true;
1094  } else {
1095    return false;
1096  }
1097#elif defined(IA64) && defined(_WIN32)
1098  return true;
1099#else
1100  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1101  // Check usp first, because if that's bad the other accessors may fault
1102  // on some architectures.  Ditto ufp second, etc.
1103  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1104  // sp on amd can be 32 bit aligned.
1105  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1106
1107  uintptr_t usp    = (uintptr_t)fr->sp();
1108  if ((usp & sp_align_mask) != 0) return true;
1109
1110  uintptr_t ufp    = (uintptr_t)fr->fp();
1111  if ((ufp & fp_align_mask) != 0) return true;
1112
1113  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1114  if ((old_sp & sp_align_mask) != 0) return true;
1115  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1116
1117  uintptr_t old_fp = (uintptr_t)fr->link();
1118  if ((old_fp & fp_align_mask) != 0) return true;
1119  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1120
1121  // stack grows downwards; if old_fp is below current fp or if the stack
1122  // frame is too large, either the stack is corrupted or fp is not saved
1123  // on stack (i.e. on x86, ebp may be used as general register). The stack
1124  // is not walkable beyond current frame.
1125  if (old_fp < ufp) return true;
1126  if (old_fp - ufp > 64 * K) return true;
1127
1128  return false;
1129#endif
1130}
1131
1132#ifdef ASSERT
1133extern "C" void test_random() {
1134  const double m = 2147483647;
1135  double mean = 0.0, variance = 0.0, t;
1136  long reps = 10000;
1137  unsigned long seed = 1;
1138
1139  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1140  os::init_random(seed);
1141  long num;
1142  for (int k = 0; k < reps; k++) {
1143    num = os::random();
1144    double u = (double)num / m;
1145    assert(u >= 0.0 && u <= 1.0, "bad random number!");
1146
1147    // calculate mean and variance of the random sequence
1148    mean += u;
1149    variance += (u*u);
1150  }
1151  mean /= reps;
1152  variance /= (reps - 1);
1153
1154  assert(num == 1043618065, "bad seed");
1155  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1156  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1157  const double eps = 0.0001;
1158  t = fabsd(mean - 0.5018);
1159  assert(t < eps, "bad mean");
1160  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1161  assert(t < eps, "bad variance");
1162}
1163#endif
1164
1165
1166// Set up the boot classpath.
1167
1168char* os::format_boot_path(const char* format_string,
1169                           const char* home,
1170                           int home_len,
1171                           char fileSep,
1172                           char pathSep) {
1173    assert((fileSep == '/' && pathSep == ':') ||
1174           (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1175
1176    // Scan the format string to determine the length of the actual
1177    // boot classpath, and handle platform dependencies as well.
1178    int formatted_path_len = 0;
1179    const char* p;
1180    for (p = format_string; *p != 0; ++p) {
1181        if (*p == '%') formatted_path_len += home_len - 1;
1182        ++formatted_path_len;
1183    }
1184
1185    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1186    if (formatted_path == NULL) {
1187        return NULL;
1188    }
1189
1190    // Create boot classpath from format, substituting separator chars and
1191    // java home directory.
1192    char* q = formatted_path;
1193    for (p = format_string; *p != 0; ++p) {
1194        switch (*p) {
1195        case '%':
1196            strcpy(q, home);
1197            q += home_len;
1198            break;
1199        case '/':
1200            *q++ = fileSep;
1201            break;
1202        case ':':
1203            *q++ = pathSep;
1204            break;
1205        default:
1206            *q++ = *p;
1207        }
1208    }
1209    *q = '\0';
1210
1211    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1212    return formatted_path;
1213}
1214
1215bool os::set_boot_path(char fileSep, char pathSep) {
1216  const char* home = Arguments::get_java_home();
1217  int home_len = (int)strlen(home);
1218
1219  struct stat st;
1220
1221  // modular image if "modules" jimage exists
1222  char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
1223  if (jimage == NULL) return false;
1224  bool has_jimage = (os::stat(jimage, &st) == 0);
1225  if (has_jimage) {
1226    Arguments::set_sysclasspath(jimage, true);
1227    FREE_C_HEAP_ARRAY(char, jimage);
1228    return true;
1229  }
1230  FREE_C_HEAP_ARRAY(char, jimage);
1231
1232  // check if developer build with exploded modules
1233  char* base_classes = format_boot_path("%/modules/" JAVA_BASE_NAME, home, home_len, fileSep, pathSep);
1234  if (base_classes == NULL) return false;
1235  if (os::stat(base_classes, &st) == 0) {
1236    Arguments::set_sysclasspath(base_classes, false);
1237    FREE_C_HEAP_ARRAY(char, base_classes);
1238    return true;
1239  }
1240  FREE_C_HEAP_ARRAY(char, base_classes);
1241
1242  return false;
1243}
1244
1245/*
1246 * Splits a path, based on its separator, the number of
1247 * elements is returned back in n.
1248 * It is the callers responsibility to:
1249 *   a> check the value of n, and n may be 0.
1250 *   b> ignore any empty path elements
1251 *   c> free up the data.
1252 */
1253char** os::split_path(const char* path, int* n) {
1254  *n = 0;
1255  if (path == NULL || strlen(path) == 0) {
1256    return NULL;
1257  }
1258  const char psepchar = *os::path_separator();
1259  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1260  if (inpath == NULL) {
1261    return NULL;
1262  }
1263  strcpy(inpath, path);
1264  int count = 1;
1265  char* p = strchr(inpath, psepchar);
1266  // Get a count of elements to allocate memory
1267  while (p != NULL) {
1268    count++;
1269    p++;
1270    p = strchr(p, psepchar);
1271  }
1272  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1273  if (opath == NULL) {
1274    return NULL;
1275  }
1276
1277  // do the actual splitting
1278  p = inpath;
1279  for (int i = 0 ; i < count ; i++) {
1280    size_t len = strcspn(p, os::path_separator());
1281    if (len > JVM_MAXPATHLEN) {
1282      return NULL;
1283    }
1284    // allocate the string and add terminator storage
1285    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1286    if (s == NULL) {
1287      return NULL;
1288    }
1289    strncpy(s, p, len);
1290    s[len] = '\0';
1291    opath[i] = s;
1292    p += len + 1;
1293  }
1294  FREE_C_HEAP_ARRAY(char, inpath);
1295  *n = count;
1296  return opath;
1297}
1298
1299void os::set_memory_serialize_page(address page) {
1300  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1301  _mem_serialize_page = (volatile int32_t *)page;
1302  // We initialize the serialization page shift count here
1303  // We assume a cache line size of 64 bytes
1304  assert(SerializePageShiftCount == count, "JavaThread size changed; "
1305         "SerializePageShiftCount constant should be %d", count);
1306  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1307}
1308
1309static volatile intptr_t SerializePageLock = 0;
1310
1311// This method is called from signal handler when SIGSEGV occurs while the current
1312// thread tries to store to the "read-only" memory serialize page during state
1313// transition.
1314void os::block_on_serialize_page_trap() {
1315  log_debug(safepoint)("Block until the serialize page permission restored");
1316
1317  // When VMThread is holding the SerializePageLock during modifying the
1318  // access permission of the memory serialize page, the following call
1319  // will block until the permission of that page is restored to rw.
1320  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1321  // this case, it's OK as the signal is synchronous and we know precisely when
1322  // it can occur.
1323  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1324  Thread::muxRelease(&SerializePageLock);
1325}
1326
1327// Serialize all thread state variables
1328void os::serialize_thread_states() {
1329  // On some platforms such as Solaris & Linux, the time duration of the page
1330  // permission restoration is observed to be much longer than expected  due to
1331  // scheduler starvation problem etc. To avoid the long synchronization
1332  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1333  // the mutator thread if such case is encountered. See bug 6546278 for details.
1334  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1335  os::protect_memory((char *)os::get_memory_serialize_page(),
1336                     os::vm_page_size(), MEM_PROT_READ);
1337  os::protect_memory((char *)os::get_memory_serialize_page(),
1338                     os::vm_page_size(), MEM_PROT_RW);
1339  Thread::muxRelease(&SerializePageLock);
1340}
1341
1342// Returns true if the current stack pointer is above the stack shadow
1343// pages, false otherwise.
1344bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
1345  if (!thread->is_Java_thread()) return false;
1346  // Check if we have StackShadowPages above the yellow zone.  This parameter
1347  // is dependent on the depth of the maximum VM call stack possible from
1348  // the handler for stack overflow.  'instanceof' in the stack overflow
1349  // handler or a println uses at least 8k stack of VM and native code
1350  // respectively.
1351  const int framesize_in_bytes =
1352    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1353
1354  address limit = ((JavaThread*)thread)->stack_end() +
1355                  (JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
1356
1357  return sp > (limit + framesize_in_bytes);
1358}
1359
1360size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1361  assert(min_pages > 0, "sanity");
1362  if (UseLargePages) {
1363    const size_t max_page_size = region_size / min_pages;
1364
1365    for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1366      const size_t page_size = _page_sizes[i];
1367      if (page_size <= max_page_size) {
1368        if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1369          return page_size;
1370        }
1371      }
1372    }
1373  }
1374
1375  return vm_page_size();
1376}
1377
1378size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1379  return page_size_for_region(region_size, min_pages, true);
1380}
1381
1382size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1383  return page_size_for_region(region_size, min_pages, false);
1384}
1385
1386static const char* errno_to_string (int e, bool short_text) {
1387  #define ALL_SHARED_ENUMS(X) \
1388    X(E2BIG, "Argument list too long") \
1389    X(EACCES, "Permission denied") \
1390    X(EADDRINUSE, "Address in use") \
1391    X(EADDRNOTAVAIL, "Address not available") \
1392    X(EAFNOSUPPORT, "Address family not supported") \
1393    X(EAGAIN, "Resource unavailable, try again") \
1394    X(EALREADY, "Connection already in progress") \
1395    X(EBADF, "Bad file descriptor") \
1396    X(EBADMSG, "Bad message") \
1397    X(EBUSY, "Device or resource busy") \
1398    X(ECANCELED, "Operation canceled") \
1399    X(ECHILD, "No child processes") \
1400    X(ECONNABORTED, "Connection aborted") \
1401    X(ECONNREFUSED, "Connection refused") \
1402    X(ECONNRESET, "Connection reset") \
1403    X(EDEADLK, "Resource deadlock would occur") \
1404    X(EDESTADDRREQ, "Destination address required") \
1405    X(EDOM, "Mathematics argument out of domain of function") \
1406    X(EEXIST, "File exists") \
1407    X(EFAULT, "Bad address") \
1408    X(EFBIG, "File too large") \
1409    X(EHOSTUNREACH, "Host is unreachable") \
1410    X(EIDRM, "Identifier removed") \
1411    X(EILSEQ, "Illegal byte sequence") \
1412    X(EINPROGRESS, "Operation in progress") \
1413    X(EINTR, "Interrupted function") \
1414    X(EINVAL, "Invalid argument") \
1415    X(EIO, "I/O error") \
1416    X(EISCONN, "Socket is connected") \
1417    X(EISDIR, "Is a directory") \
1418    X(ELOOP, "Too many levels of symbolic links") \
1419    X(EMFILE, "Too many open files") \
1420    X(EMLINK, "Too many links") \
1421    X(EMSGSIZE, "Message too large") \
1422    X(ENAMETOOLONG, "Filename too long") \
1423    X(ENETDOWN, "Network is down") \
1424    X(ENETRESET, "Connection aborted by network") \
1425    X(ENETUNREACH, "Network unreachable") \
1426    X(ENFILE, "Too many files open in system") \
1427    X(ENOBUFS, "No buffer space available") \
1428    X(ENODATA, "No message is available on the STREAM head read queue") \
1429    X(ENODEV, "No such device") \
1430    X(ENOENT, "No such file or directory") \
1431    X(ENOEXEC, "Executable file format error") \
1432    X(ENOLCK, "No locks available") \
1433    X(ENOLINK, "Reserved") \
1434    X(ENOMEM, "Not enough space") \
1435    X(ENOMSG, "No message of the desired type") \
1436    X(ENOPROTOOPT, "Protocol not available") \
1437    X(ENOSPC, "No space left on device") \
1438    X(ENOSR, "No STREAM resources") \
1439    X(ENOSTR, "Not a STREAM") \
1440    X(ENOSYS, "Function not supported") \
1441    X(ENOTCONN, "The socket is not connected") \
1442    X(ENOTDIR, "Not a directory") \
1443    X(ENOTEMPTY, "Directory not empty") \
1444    X(ENOTSOCK, "Not a socket") \
1445    X(ENOTSUP, "Not supported") \
1446    X(ENOTTY, "Inappropriate I/O control operation") \
1447    X(ENXIO, "No such device or address") \
1448    X(EOPNOTSUPP, "Operation not supported on socket") \
1449    X(EOVERFLOW, "Value too large to be stored in data type") \
1450    X(EPERM, "Operation not permitted") \
1451    X(EPIPE, "Broken pipe") \
1452    X(EPROTO, "Protocol error") \
1453    X(EPROTONOSUPPORT, "Protocol not supported") \
1454    X(EPROTOTYPE, "Protocol wrong type for socket") \
1455    X(ERANGE, "Result too large") \
1456    X(EROFS, "Read-only file system") \
1457    X(ESPIPE, "Invalid seek") \
1458    X(ESRCH, "No such process") \
1459    X(ETIME, "Stream ioctl() timeout") \
1460    X(ETIMEDOUT, "Connection timed out") \
1461    X(ETXTBSY, "Text file busy") \
1462    X(EWOULDBLOCK, "Operation would block") \
1463    X(EXDEV, "Cross-device link")
1464
1465  #define DEFINE_ENTRY(e, text) { e, #e, text },
1466
1467  static const struct {
1468    int v;
1469    const char* short_text;
1470    const char* long_text;
1471  } table [] = {
1472
1473    ALL_SHARED_ENUMS(DEFINE_ENTRY)
1474
1475    // The following enums are not defined on all platforms.
1476    #ifdef ESTALE
1477    DEFINE_ENTRY(ESTALE, "Reserved")
1478    #endif
1479    #ifdef EDQUOT
1480    DEFINE_ENTRY(EDQUOT, "Reserved")
1481    #endif
1482    #ifdef EMULTIHOP
1483    DEFINE_ENTRY(EMULTIHOP, "Reserved")
1484    #endif
1485
1486    // End marker.
1487    { -1, "Unknown errno", "Unknown error" }
1488
1489  };
1490
1491  #undef DEFINE_ENTRY
1492  #undef ALL_FLAGS
1493
1494  int i = 0;
1495  while (table[i].v != -1 && table[i].v != e) {
1496    i ++;
1497  }
1498
1499  return short_text ? table[i].short_text : table[i].long_text;
1500
1501}
1502
1503const char* os::strerror(int e) {
1504  return errno_to_string(e, false);
1505}
1506
1507const char* os::errno_name(int e) {
1508  return errno_to_string(e, true);
1509}
1510
1511void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
1512  LogTarget(Info, pagesize) log;
1513  if (log.is_enabled()) {
1514    LogStreamCHeap out(log);
1515
1516    out.print("%s: ", str);
1517    for (int i = 0; i < count; ++i) {
1518      out.print(" " SIZE_FORMAT, page_sizes[i]);
1519    }
1520    out.cr();
1521  }
1522}
1523
1524#define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
1525
1526void os::trace_page_sizes(const char* str,
1527                          const size_t region_min_size,
1528                          const size_t region_max_size,
1529                          const size_t page_size,
1530                          const char* base,
1531                          const size_t size) {
1532
1533  log_info(pagesize)("%s: "
1534                     " min=" SIZE_FORMAT "%s"
1535                     " max=" SIZE_FORMAT "%s"
1536                     " base=" PTR_FORMAT
1537                     " page_size=" SIZE_FORMAT "%s"
1538                     " size=" SIZE_FORMAT "%s",
1539                     str,
1540                     trace_page_size_params(region_min_size),
1541                     trace_page_size_params(region_max_size),
1542                     p2i(base),
1543                     trace_page_size_params(page_size),
1544                     trace_page_size_params(size));
1545}
1546
1547void os::trace_page_sizes_for_requested_size(const char* str,
1548                                             const size_t requested_size,
1549                                             const size_t page_size,
1550                                             const size_t alignment,
1551                                             const char* base,
1552                                             const size_t size) {
1553
1554  log_info(pagesize)("%s:"
1555                     " req_size=" SIZE_FORMAT "%s"
1556                     " base=" PTR_FORMAT
1557                     " page_size=" SIZE_FORMAT "%s"
1558                     " alignment=" SIZE_FORMAT "%s"
1559                     " size=" SIZE_FORMAT "%s",
1560                     str,
1561                     trace_page_size_params(requested_size),
1562                     p2i(base),
1563                     trace_page_size_params(page_size),
1564                     trace_page_size_params(alignment),
1565                     trace_page_size_params(size));
1566}
1567
1568
1569// This is the working definition of a server class machine:
1570// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1571// because the graphics memory (?) sometimes masks physical memory.
1572// If you want to change the definition of a server class machine
1573// on some OS or platform, e.g., >=4GB on Windows platforms,
1574// then you'll have to parameterize this method based on that state,
1575// as was done for logical processors here, or replicate and
1576// specialize this method for each platform.  (Or fix os to have
1577// some inheritance structure and use subclassing.  Sigh.)
1578// If you want some platform to always or never behave as a server
1579// class machine, change the setting of AlwaysActAsServerClassMachine
1580// and NeverActAsServerClassMachine in globals*.hpp.
1581bool os::is_server_class_machine() {
1582  // First check for the early returns
1583  if (NeverActAsServerClassMachine) {
1584    return false;
1585  }
1586  if (AlwaysActAsServerClassMachine) {
1587    return true;
1588  }
1589  // Then actually look at the machine
1590  bool         result            = false;
1591  const unsigned int    server_processors = 2;
1592  const julong server_memory     = 2UL * G;
1593  // We seem not to get our full complement of memory.
1594  //     We allow some part (1/8?) of the memory to be "missing",
1595  //     based on the sizes of DIMMs, and maybe graphics cards.
1596  const julong missing_memory   = 256UL * M;
1597
1598  /* Is this a server class machine? */
1599  if ((os::active_processor_count() >= (int)server_processors) &&
1600      (os::physical_memory() >= (server_memory - missing_memory))) {
1601    const unsigned int logical_processors =
1602      VM_Version::logical_processors_per_package();
1603    if (logical_processors > 1) {
1604      const unsigned int physical_packages =
1605        os::active_processor_count() / logical_processors;
1606      if (physical_packages >= server_processors) {
1607        result = true;
1608      }
1609    } else {
1610      result = true;
1611    }
1612  }
1613  return result;
1614}
1615
1616void os::initialize_initial_active_processor_count() {
1617  assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1618  _initial_active_processor_count = active_processor_count();
1619  log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
1620}
1621
1622void os::SuspendedThreadTask::run() {
1623  assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1624  internal_do_task();
1625  _done = true;
1626}
1627
1628bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1629  return os::pd_create_stack_guard_pages(addr, bytes);
1630}
1631
1632char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1633  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1634  if (result != NULL) {
1635    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1636  }
1637
1638  return result;
1639}
1640
1641char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1642   MEMFLAGS flags) {
1643  char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1644  if (result != NULL) {
1645    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1646    MemTracker::record_virtual_memory_type((address)result, flags);
1647  }
1648
1649  return result;
1650}
1651
1652char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1653  char* result = pd_attempt_reserve_memory_at(bytes, addr);
1654  if (result != NULL) {
1655    MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1656  }
1657  return result;
1658}
1659
1660void os::split_reserved_memory(char *base, size_t size,
1661                                 size_t split, bool realloc) {
1662  pd_split_reserved_memory(base, size, split, realloc);
1663}
1664
1665bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1666  bool res = pd_commit_memory(addr, bytes, executable);
1667  if (res) {
1668    MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1669  }
1670  return res;
1671}
1672
1673bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1674                              bool executable) {
1675  bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1676  if (res) {
1677    MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1678  }
1679  return res;
1680}
1681
1682void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1683                               const char* mesg) {
1684  pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1685  MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1686}
1687
1688void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1689                               bool executable, const char* mesg) {
1690  os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1691  MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1692}
1693
1694bool os::uncommit_memory(char* addr, size_t bytes) {
1695  bool res;
1696  if (MemTracker::tracking_level() > NMT_minimal) {
1697    Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1698    res = pd_uncommit_memory(addr, bytes);
1699    if (res) {
1700      tkr.record((address)addr, bytes);
1701    }
1702  } else {
1703    res = pd_uncommit_memory(addr, bytes);
1704  }
1705  return res;
1706}
1707
1708bool os::release_memory(char* addr, size_t bytes) {
1709  bool res;
1710  if (MemTracker::tracking_level() > NMT_minimal) {
1711    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1712    res = pd_release_memory(addr, bytes);
1713    if (res) {
1714      tkr.record((address)addr, bytes);
1715    }
1716  } else {
1717    res = pd_release_memory(addr, bytes);
1718  }
1719  return res;
1720}
1721
1722void os::pretouch_memory(void* start, void* end, size_t page_size) {
1723  for (volatile char *p = (char*)start; p < (char*)end; p += page_size) {
1724    *p = 0;
1725  }
1726}
1727
1728char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1729                           char *addr, size_t bytes, bool read_only,
1730                           bool allow_exec) {
1731  char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1732  if (result != NULL) {
1733    MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1734  }
1735  return result;
1736}
1737
1738char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1739                             char *addr, size_t bytes, bool read_only,
1740                             bool allow_exec) {
1741  return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1742                    read_only, allow_exec);
1743}
1744
1745bool os::unmap_memory(char *addr, size_t bytes) {
1746  bool result;
1747  if (MemTracker::tracking_level() > NMT_minimal) {
1748    Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1749    result = pd_unmap_memory(addr, bytes);
1750    if (result) {
1751      tkr.record((address)addr, bytes);
1752    }
1753  } else {
1754    result = pd_unmap_memory(addr, bytes);
1755  }
1756  return result;
1757}
1758
1759void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1760  pd_free_memory(addr, bytes, alignment_hint);
1761}
1762
1763void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1764  pd_realign_memory(addr, bytes, alignment_hint);
1765}
1766
1767#ifndef _WINDOWS
1768/* try to switch state from state "from" to state "to"
1769 * returns the state set after the method is complete
1770 */
1771os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1772                                                         os::SuspendResume::State to)
1773{
1774  os::SuspendResume::State result =
1775    (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1776  if (result == from) {
1777    // success
1778    return to;
1779  }
1780  return result;
1781}
1782#endif
1783