os.cpp revision 2622:24cee90e9453
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "gc_implementation/shared/vmGCOperations.hpp"
33#include "interpreter/interpreter.hpp"
34#include "memory/allocation.inline.hpp"
35#include "oops/oop.inline.hpp"
36#include "prims/jvm.h"
37#include "prims/jvm_misc.hpp"
38#include "prims/privilegedStack.hpp"
39#include "runtime/arguments.hpp"
40#include "runtime/frame.inline.hpp"
41#include "runtime/interfaceSupport.hpp"
42#include "runtime/java.hpp"
43#include "runtime/javaCalls.hpp"
44#include "runtime/mutexLocker.hpp"
45#include "runtime/os.hpp"
46#include "runtime/stubRoutines.hpp"
47#include "services/attachListener.hpp"
48#include "services/threadService.hpp"
49#include "utilities/defaultStream.hpp"
50#include "utilities/events.hpp"
51#ifdef TARGET_OS_FAMILY_linux
52# include "os_linux.inline.hpp"
53# include "thread_linux.inline.hpp"
54#endif
55#ifdef TARGET_OS_FAMILY_solaris
56# include "os_solaris.inline.hpp"
57# include "thread_solaris.inline.hpp"
58#endif
59#ifdef TARGET_OS_FAMILY_windows
60# include "os_windows.inline.hpp"
61# include "thread_windows.inline.hpp"
62#endif
63
64# include <signal.h>
65
66OSThread*         os::_starting_thread    = NULL;
67address           os::_polling_page       = NULL;
68volatile int32_t* os::_mem_serialize_page = NULL;
69uintptr_t         os::_serialize_page_mask = 0;
70long              os::_rand_seed          = 1;
71int               os::_processor_count    = 0;
72size_t            os::_page_sizes[os::page_sizes_max];
73
74#ifndef PRODUCT
75julong os::num_mallocs = 0;         // # of calls to malloc/realloc
76julong os::alloc_bytes = 0;         // # of bytes allocated
77julong os::num_frees = 0;           // # of calls to free
78julong os::free_bytes = 0;          // # of bytes freed
79#endif
80
81// Fill in buffer with current local time as an ISO-8601 string.
82// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
83// Returns buffer, or NULL if it failed.
84// This would mostly be a call to
85//     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
86// except that on Windows the %z behaves badly, so we do it ourselves.
87// Also, people wanted milliseconds on there,
88// and strftime doesn't do milliseconds.
89char* os::iso8601_time(char* buffer, size_t buffer_length) {
90  // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
91  //                                      1         2
92  //                             12345678901234567890123456789
93  static const char* iso8601_format =
94    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
95  static const size_t needed_buffer = 29;
96
97  // Sanity check the arguments
98  if (buffer == NULL) {
99    assert(false, "NULL buffer");
100    return NULL;
101  }
102  if (buffer_length < needed_buffer) {
103    assert(false, "buffer_length too small");
104    return NULL;
105  }
106  // Get the current time
107  jlong milliseconds_since_19700101 = javaTimeMillis();
108  const int milliseconds_per_microsecond = 1000;
109  const time_t seconds_since_19700101 =
110    milliseconds_since_19700101 / milliseconds_per_microsecond;
111  const int milliseconds_after_second =
112    milliseconds_since_19700101 % milliseconds_per_microsecond;
113  // Convert the time value to a tm and timezone variable
114  struct tm time_struct;
115  if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
116    assert(false, "Failed localtime_pd");
117    return NULL;
118  }
119  const time_t zone = timezone;
120
121  // If daylight savings time is in effect,
122  // we are 1 hour East of our time zone
123  const time_t seconds_per_minute = 60;
124  const time_t minutes_per_hour = 60;
125  const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
126  time_t UTC_to_local = zone;
127  if (time_struct.tm_isdst > 0) {
128    UTC_to_local = UTC_to_local - seconds_per_hour;
129  }
130  // Compute the time zone offset.
131  //    localtime_pd() sets timezone to the difference (in seconds)
132  //    between UTC and and local time.
133  //    ISO 8601 says we need the difference between local time and UTC,
134  //    we change the sign of the localtime_pd() result.
135  const time_t local_to_UTC = -(UTC_to_local);
136  // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
137  char sign_local_to_UTC = '+';
138  time_t abs_local_to_UTC = local_to_UTC;
139  if (local_to_UTC < 0) {
140    sign_local_to_UTC = '-';
141    abs_local_to_UTC = -(abs_local_to_UTC);
142  }
143  // Convert time zone offset seconds to hours and minutes.
144  const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
145  const time_t zone_min =
146    ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
147
148  // Print an ISO 8601 date and time stamp into the buffer
149  const int year = 1900 + time_struct.tm_year;
150  const int month = 1 + time_struct.tm_mon;
151  const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
152                                   year,
153                                   month,
154                                   time_struct.tm_mday,
155                                   time_struct.tm_hour,
156                                   time_struct.tm_min,
157                                   time_struct.tm_sec,
158                                   milliseconds_after_second,
159                                   sign_local_to_UTC,
160                                   zone_hours,
161                                   zone_min);
162  if (printed == 0) {
163    assert(false, "Failed jio_printf");
164    return NULL;
165  }
166  return buffer;
167}
168
169OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
170#ifdef ASSERT
171  if (!(!thread->is_Java_thread() ||
172         Thread::current() == thread  ||
173         Threads_lock->owned_by_self()
174         || thread->is_Compiler_thread()
175        )) {
176    assert(false, "possibility of dangling Thread pointer");
177  }
178#endif
179
180  if (p >= MinPriority && p <= MaxPriority) {
181    int priority = java_to_os_priority[p];
182    return set_native_priority(thread, priority);
183  } else {
184    assert(false, "Should not happen");
185    return OS_ERR;
186  }
187}
188
189
190OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
191  int p;
192  int os_prio;
193  OSReturn ret = get_native_priority(thread, &os_prio);
194  if (ret != OS_OK) return ret;
195
196  for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
197  priority = (ThreadPriority)p;
198  return OS_OK;
199}
200
201
202// --------------------- sun.misc.Signal (optional) ---------------------
203
204
205// SIGBREAK is sent by the keyboard to query the VM state
206#ifndef SIGBREAK
207#define SIGBREAK SIGQUIT
208#endif
209
210// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
211
212
213static void signal_thread_entry(JavaThread* thread, TRAPS) {
214  os::set_priority(thread, NearMaxPriority);
215  while (true) {
216    int sig;
217    {
218      // FIXME : Currently we have not decieded what should be the status
219      //         for this java thread blocked here. Once we decide about
220      //         that we should fix this.
221      sig = os::signal_wait();
222    }
223    if (sig == os::sigexitnum_pd()) {
224       // Terminate the signal thread
225       return;
226    }
227
228    switch (sig) {
229      case SIGBREAK: {
230        // Check if the signal is a trigger to start the Attach Listener - in that
231        // case don't print stack traces.
232        if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
233          continue;
234        }
235        // Print stack traces
236        // Any SIGBREAK operations added here should make sure to flush
237        // the output stream (e.g. tty->flush()) after output.  See 4803766.
238        // Each module also prints an extra carriage return after its output.
239        VM_PrintThreads op;
240        VMThread::execute(&op);
241        VM_PrintJNI jni_op;
242        VMThread::execute(&jni_op);
243        VM_FindDeadlocks op1(tty);
244        VMThread::execute(&op1);
245        Universe::print_heap_at_SIGBREAK();
246        if (PrintClassHistogram) {
247          VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
248                                   true /* need_prologue */);
249          VMThread::execute(&op1);
250        }
251        if (JvmtiExport::should_post_data_dump()) {
252          JvmtiExport::post_data_dump();
253        }
254        break;
255      }
256      default: {
257        // Dispatch the signal to java
258        HandleMark hm(THREAD);
259        klassOop k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
260        KlassHandle klass (THREAD, k);
261        if (klass.not_null()) {
262          JavaValue result(T_VOID);
263          JavaCallArguments args;
264          args.push_int(sig);
265          JavaCalls::call_static(
266            &result,
267            klass,
268            vmSymbols::dispatch_name(),
269            vmSymbols::int_void_signature(),
270            &args,
271            THREAD
272          );
273        }
274        if (HAS_PENDING_EXCEPTION) {
275          // tty is initialized early so we don't expect it to be null, but
276          // if it is we can't risk doing an initialization that might
277          // trigger additional out-of-memory conditions
278          if (tty != NULL) {
279            char klass_name[256];
280            char tmp_sig_name[16];
281            const char* sig_name = "UNKNOWN";
282            instanceKlass::cast(PENDING_EXCEPTION->klass())->
283              name()->as_klass_external_name(klass_name, 256);
284            if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
285              sig_name = tmp_sig_name;
286            warning("Exception %s occurred dispatching signal %s to handler"
287                    "- the VM may need to be forcibly terminated",
288                    klass_name, sig_name );
289          }
290          CLEAR_PENDING_EXCEPTION;
291        }
292      }
293    }
294  }
295}
296
297
298void os::signal_init() {
299  if (!ReduceSignalUsage) {
300    // Setup JavaThread for processing signals
301    EXCEPTION_MARK;
302    klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
303    instanceKlassHandle klass (THREAD, k);
304    instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
305
306    const char thread_name[] = "Signal Dispatcher";
307    Handle string = java_lang_String::create_from_str(thread_name, CHECK);
308
309    // Initialize thread_oop to put it into the system threadGroup
310    Handle thread_group (THREAD, Universe::system_thread_group());
311    JavaValue result(T_VOID);
312    JavaCalls::call_special(&result, thread_oop,
313                           klass,
314                           vmSymbols::object_initializer_name(),
315                           vmSymbols::threadgroup_string_void_signature(),
316                           thread_group,
317                           string,
318                           CHECK);
319
320    KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
321    JavaCalls::call_special(&result,
322                            thread_group,
323                            group,
324                            vmSymbols::add_method_name(),
325                            vmSymbols::thread_void_signature(),
326                            thread_oop,         // ARG 1
327                            CHECK);
328
329    os::signal_init_pd();
330
331    { MutexLocker mu(Threads_lock);
332      JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
333
334      // At this point it may be possible that no osthread was created for the
335      // JavaThread due to lack of memory. We would have to throw an exception
336      // in that case. However, since this must work and we do not allow
337      // exceptions anyway, check and abort if this fails.
338      if (signal_thread == NULL || signal_thread->osthread() == NULL) {
339        vm_exit_during_initialization("java.lang.OutOfMemoryError",
340                                      "unable to create new native thread");
341      }
342
343      java_lang_Thread::set_thread(thread_oop(), signal_thread);
344      java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
345      java_lang_Thread::set_daemon(thread_oop());
346
347      signal_thread->set_threadObj(thread_oop());
348      Threads::add(signal_thread);
349      Thread::start(signal_thread);
350    }
351    // Handle ^BREAK
352    os::signal(SIGBREAK, os::user_handler());
353  }
354}
355
356
357void os::terminate_signal_thread() {
358  if (!ReduceSignalUsage)
359    signal_notify(sigexitnum_pd());
360}
361
362
363// --------------------- loading libraries ---------------------
364
365typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
366extern struct JavaVM_ main_vm;
367
368static void* _native_java_library = NULL;
369
370void* os::native_java_library() {
371  if (_native_java_library == NULL) {
372    char buffer[JVM_MAXPATHLEN];
373    char ebuf[1024];
374
375    // Try to load verify dll first. In 1.3 java dll depends on it and is not
376    // always able to find it when the loading executable is outside the JDK.
377    // In order to keep working with 1.2 we ignore any loading errors.
378    dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
379    dll_load(buffer, ebuf, sizeof(ebuf));
380
381    // Load java dll
382    dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
383    _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
384    if (_native_java_library == NULL) {
385      vm_exit_during_initialization("Unable to load native library", ebuf);
386    }
387  }
388  static jboolean onLoaded = JNI_FALSE;
389  if (onLoaded) {
390    // We may have to wait to fire OnLoad until TLS is initialized.
391    if (ThreadLocalStorage::is_initialized()) {
392      // The JNI_OnLoad handling is normally done by method load in
393      // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
394      // explicitly so we have to check for JNI_OnLoad as well
395      const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
396      JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
397          JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
398      if (JNI_OnLoad != NULL) {
399        JavaThread* thread = JavaThread::current();
400        ThreadToNativeFromVM ttn(thread);
401        HandleMark hm(thread);
402        jint ver = (*JNI_OnLoad)(&main_vm, NULL);
403        onLoaded = JNI_TRUE;
404        if (!Threads::is_supported_jni_version_including_1_1(ver)) {
405          vm_exit_during_initialization("Unsupported JNI version");
406        }
407      }
408    }
409  }
410  return _native_java_library;
411}
412
413// --------------------- heap allocation utilities ---------------------
414
415char *os::strdup(const char *str) {
416  size_t size = strlen(str);
417  char *dup_str = (char *)malloc(size + 1);
418  if (dup_str == NULL) return NULL;
419  strcpy(dup_str, str);
420  return dup_str;
421}
422
423
424
425#ifdef ASSERT
426#define space_before             (MallocCushion + sizeof(double))
427#define space_after              MallocCushion
428#define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
429#define size_addr_from_obj(p)    ((size_t*)p - 1)
430// MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
431// NB: cannot be debug variable, because these aren't set from the command line until
432// *after* the first few allocs already happened
433#define MallocCushion            16
434#else
435#define space_before             0
436#define space_after              0
437#define size_addr_from_base(p)   should not use w/o ASSERT
438#define size_addr_from_obj(p)    should not use w/o ASSERT
439#define MallocCushion            0
440#endif
441#define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
442
443#ifdef ASSERT
444inline size_t get_size(void* obj) {
445  size_t size = *size_addr_from_obj(obj);
446  if (size < 0) {
447    fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
448                  SIZE_FORMAT ")", obj, size));
449  }
450  return size;
451}
452
453u_char* find_cushion_backwards(u_char* start) {
454  u_char* p = start;
455  while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
456         p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
457  // ok, we have four consecutive marker bytes; find start
458  u_char* q = p - 4;
459  while (*q == badResourceValue) q--;
460  return q + 1;
461}
462
463u_char* find_cushion_forwards(u_char* start) {
464  u_char* p = start;
465  while (p[0] != badResourceValue || p[1] != badResourceValue ||
466         p[2] != badResourceValue || p[3] != badResourceValue) p++;
467  // ok, we have four consecutive marker bytes; find end of cushion
468  u_char* q = p + 4;
469  while (*q == badResourceValue) q++;
470  return q - MallocCushion;
471}
472
473void print_neighbor_blocks(void* ptr) {
474  // find block allocated before ptr (not entirely crash-proof)
475  if (MallocCushion < 4) {
476    tty->print_cr("### cannot find previous block (MallocCushion < 4)");
477    return;
478  }
479  u_char* start_of_this_block = (u_char*)ptr - space_before;
480  u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
481  // look for cushion in front of prev. block
482  u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
483  ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
484  u_char* obj = start_of_prev_block + space_before;
485  if (size <= 0 ) {
486    // start is bad; mayhave been confused by OS data inbetween objects
487    // search one more backwards
488    start_of_prev_block = find_cushion_backwards(start_of_prev_block);
489    size = *size_addr_from_base(start_of_prev_block);
490    obj = start_of_prev_block + space_before;
491  }
492
493  if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
494    tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
495  } else {
496    tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
497  }
498
499  // now find successor block
500  u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
501  start_of_next_block = find_cushion_forwards(start_of_next_block);
502  u_char* next_obj = start_of_next_block + space_before;
503  ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
504  if (start_of_next_block[0] == badResourceValue &&
505      start_of_next_block[1] == badResourceValue &&
506      start_of_next_block[2] == badResourceValue &&
507      start_of_next_block[3] == badResourceValue) {
508    tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
509  } else {
510    tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
511  }
512}
513
514
515void report_heap_error(void* memblock, void* bad, const char* where) {
516  tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
517  tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
518  print_neighbor_blocks(memblock);
519  fatal("memory stomping error");
520}
521
522void verify_block(void* memblock) {
523  size_t size = get_size(memblock);
524  if (MallocCushion) {
525    u_char* ptr = (u_char*)memblock - space_before;
526    for (int i = 0; i < MallocCushion; i++) {
527      if (ptr[i] != badResourceValue) {
528        report_heap_error(memblock, ptr+i, "in front of");
529      }
530    }
531    u_char* end = (u_char*)memblock + size + space_after;
532    for (int j = -MallocCushion; j < 0; j++) {
533      if (end[j] != badResourceValue) {
534        report_heap_error(memblock, end+j, "after");
535      }
536    }
537  }
538}
539#endif
540
541void* os::malloc(size_t size) {
542  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
543  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
544
545  if (size == 0) {
546    // return a valid pointer if size is zero
547    // if NULL is returned the calling functions assume out of memory.
548    size = 1;
549  }
550
551  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
552  u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
553#ifdef ASSERT
554  if (ptr == NULL) return NULL;
555  if (MallocCushion) {
556    for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
557    u_char* end = ptr + space_before + size;
558    for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
559    for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
560  }
561  // put size just before data
562  *size_addr_from_base(ptr) = size;
563#endif
564  u_char* memblock = ptr + space_before;
565  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
566    tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
567    breakpoint();
568  }
569  debug_only(if (paranoid) verify_block(memblock));
570  if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
571  return memblock;
572}
573
574
575void* os::realloc(void *memblock, size_t size) {
576#ifndef ASSERT
577  NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
578  NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
579  return ::realloc(memblock, size);
580#else
581  if (memblock == NULL) {
582    return malloc(size);
583  }
584  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
585    tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
586    breakpoint();
587  }
588  verify_block(memblock);
589  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
590  if (size == 0) return NULL;
591  // always move the block
592  void* ptr = malloc(size);
593  if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
594  // Copy to new memory if malloc didn't fail
595  if ( ptr != NULL ) {
596    memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
597    if (paranoid) verify_block(ptr);
598    if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
599      tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
600      breakpoint();
601    }
602    free(memblock);
603  }
604  return ptr;
605#endif
606}
607
608
609void  os::free(void *memblock) {
610  NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
611#ifdef ASSERT
612  if (memblock == NULL) return;
613  if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
614    if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
615    breakpoint();
616  }
617  verify_block(memblock);
618  NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
619  // Added by detlefs.
620  if (MallocCushion) {
621    u_char* ptr = (u_char*)memblock - space_before;
622    for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
623      guarantee(*p == badResourceValue,
624                "Thing freed should be malloc result.");
625      *p = (u_char)freeBlockPad;
626    }
627    size_t size = get_size(memblock);
628    inc_stat_counter(&free_bytes, size);
629    u_char* end = ptr + space_before + size;
630    for (u_char* q = end; q < end + MallocCushion; q++) {
631      guarantee(*q == badResourceValue,
632                "Thing freed should be malloc result.");
633      *q = (u_char)freeBlockPad;
634    }
635    if (PrintMalloc && tty != NULL)
636      fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
637  } else if (PrintMalloc && tty != NULL) {
638    // tty->print_cr("os::free %p", memblock);
639    fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
640  }
641#endif
642  ::free((char*)memblock - space_before);
643}
644
645void os::init_random(long initval) {
646  _rand_seed = initval;
647}
648
649
650long os::random() {
651  /* standard, well-known linear congruential random generator with
652   * next_rand = (16807*seed) mod (2**31-1)
653   * see
654   * (1) "Random Number Generators: Good Ones Are Hard to Find",
655   *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
656   * (2) "Two Fast Implementations of the 'Minimal Standard' Random
657   *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
658  */
659  const long a = 16807;
660  const unsigned long m = 2147483647;
661  const long q = m / a;        assert(q == 127773, "weird math");
662  const long r = m % a;        assert(r == 2836, "weird math");
663
664  // compute az=2^31p+q
665  unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
666  unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
667  lo += (hi & 0x7FFF) << 16;
668
669  // if q overflowed, ignore the overflow and increment q
670  if (lo > m) {
671    lo &= m;
672    ++lo;
673  }
674  lo += hi >> 15;
675
676  // if (p+q) overflowed, ignore the overflow and increment (p+q)
677  if (lo > m) {
678    lo &= m;
679    ++lo;
680  }
681  return (_rand_seed = lo);
682}
683
684// The INITIALIZED state is distinguished from the SUSPENDED state because the
685// conditions in which a thread is first started are different from those in which
686// a suspension is resumed.  These differences make it hard for us to apply the
687// tougher checks when starting threads that we want to do when resuming them.
688// However, when start_thread is called as a result of Thread.start, on a Java
689// thread, the operation is synchronized on the Java Thread object.  So there
690// cannot be a race to start the thread and hence for the thread to exit while
691// we are working on it.  Non-Java threads that start Java threads either have
692// to do so in a context in which races are impossible, or should do appropriate
693// locking.
694
695void os::start_thread(Thread* thread) {
696  // guard suspend/resume
697  MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
698  OSThread* osthread = thread->osthread();
699  osthread->set_state(RUNNABLE);
700  pd_start_thread(thread);
701}
702
703//---------------------------------------------------------------------------
704// Helper functions for fatal error handler
705
706void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
707  assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
708
709  int cols = 0;
710  int cols_per_line = 0;
711  switch (unitsize) {
712    case 1: cols_per_line = 16; break;
713    case 2: cols_per_line = 8;  break;
714    case 4: cols_per_line = 4;  break;
715    case 8: cols_per_line = 2;  break;
716    default: return;
717  }
718
719  address p = start;
720  st->print(PTR_FORMAT ":   ", start);
721  while (p < end) {
722    switch (unitsize) {
723      case 1: st->print("%02x", *(u1*)p); break;
724      case 2: st->print("%04x", *(u2*)p); break;
725      case 4: st->print("%08x", *(u4*)p); break;
726      case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
727    }
728    p += unitsize;
729    cols++;
730    if (cols >= cols_per_line && p < end) {
731       cols = 0;
732       st->cr();
733       st->print(PTR_FORMAT ":   ", p);
734    } else {
735       st->print(" ");
736    }
737  }
738  st->cr();
739}
740
741void os::print_environment_variables(outputStream* st, const char** env_list,
742                                     char* buffer, int len) {
743  if (env_list) {
744    st->print_cr("Environment Variables:");
745
746    for (int i = 0; env_list[i] != NULL; i++) {
747      if (getenv(env_list[i], buffer, len)) {
748        st->print(env_list[i]);
749        st->print("=");
750        st->print_cr(buffer);
751      }
752    }
753  }
754}
755
756void os::print_cpu_info(outputStream* st) {
757  // cpu
758  st->print("CPU:");
759  st->print("total %d", os::processor_count());
760  // It's not safe to query number of active processors after crash
761  // st->print("(active %d)", os::active_processor_count());
762  st->print(" %s", VM_Version::cpu_features());
763  st->cr();
764  pd_print_cpu_info(st);
765}
766
767void os::print_date_and_time(outputStream *st) {
768  time_t tloc;
769  (void)time(&tloc);
770  st->print("time: %s", ctime(&tloc));  // ctime adds newline.
771
772  double t = os::elapsedTime();
773  // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
774  //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
775  //       before printf. We lost some precision, but who cares?
776  st->print_cr("elapsed time: %d seconds", (int)t);
777}
778
779// moved from debug.cpp (used to be find()) but still called from there
780// The verbose parameter is only set by the debug code in one case
781void os::print_location(outputStream* st, intptr_t x, bool verbose) {
782  address addr = (address)x;
783  CodeBlob* b = CodeCache::find_blob_unsafe(addr);
784  if (b != NULL) {
785    if (b->is_buffer_blob()) {
786      // the interpreter is generated into a buffer blob
787      InterpreterCodelet* i = Interpreter::codelet_containing(addr);
788      if (i != NULL) {
789        st->print_cr(INTPTR_FORMAT " is an Interpreter codelet", addr);
790        i->print_on(st);
791        return;
792      }
793      if (Interpreter::contains(addr)) {
794        st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
795                     " (not bytecode specific)", addr);
796        return;
797      }
798      //
799      if (AdapterHandlerLibrary::contains(b)) {
800        st->print_cr(INTPTR_FORMAT " is an AdapterHandler", addr);
801        AdapterHandlerLibrary::print_handler_on(st, b);
802      }
803      // the stubroutines are generated into a buffer blob
804      StubCodeDesc* d = StubCodeDesc::desc_for(addr);
805      if (d != NULL) {
806        d->print_on(st);
807        if (verbose) st->cr();
808        return;
809      }
810      if (StubRoutines::contains(addr)) {
811        st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
812                     "stub routine", addr);
813        return;
814      }
815      // the InlineCacheBuffer is using stubs generated into a buffer blob
816      if (InlineCacheBuffer::contains(addr)) {
817        st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
818        return;
819      }
820      VtableStub* v = VtableStubs::stub_containing(addr);
821      if (v != NULL) {
822        v->print_on(st);
823        return;
824      }
825    }
826    if (verbose && b->is_nmethod()) {
827      ResourceMark rm;
828      st->print("%#p: Compiled ", addr);
829      ((nmethod*)b)->method()->print_value_on(st);
830      st->print("  = (CodeBlob*)" INTPTR_FORMAT, b);
831      st->cr();
832      return;
833    }
834    st->print(INTPTR_FORMAT " ", b);
835    if ( b->is_nmethod()) {
836      if (b->is_zombie()) {
837        st->print_cr("is zombie nmethod");
838      } else if (b->is_not_entrant()) {
839        st->print_cr("is non-entrant nmethod");
840      }
841    }
842    b->print_on(st);
843    return;
844  }
845
846  if (Universe::heap()->is_in(addr)) {
847    HeapWord* p = Universe::heap()->block_start(addr);
848    bool print = false;
849    // If we couldn't find it it just may mean that heap wasn't parseable
850    // See if we were just given an oop directly
851    if (p != NULL && Universe::heap()->block_is_obj(p)) {
852      print = true;
853    } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
854      p = (HeapWord*) addr;
855      print = true;
856    }
857    if (print) {
858      st->print_cr(INTPTR_FORMAT " is an oop", addr);
859      oop(p)->print_on(st);
860      if (p != (HeapWord*)x && oop(p)->is_constMethod() &&
861          constMethodOop(p)->contains(addr)) {
862        Thread *thread = Thread::current();
863        HandleMark hm(thread);
864        methodHandle mh (thread, constMethodOop(p)->method());
865        if (!mh->is_native()) {
866          st->print_cr("bci_from(%p) = %d; print_codes():",
867                        addr, mh->bci_from(address(x)));
868          mh->print_codes_on(st);
869        }
870      }
871      return;
872    }
873  } else {
874    if (Universe::heap()->is_in_reserved(addr)) {
875      st->print_cr(INTPTR_FORMAT " is an unallocated location "
876                   "in the heap", addr);
877      return;
878    }
879  }
880  if (JNIHandles::is_global_handle((jobject) addr)) {
881    st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
882    return;
883  }
884  if (JNIHandles::is_weak_global_handle((jobject) addr)) {
885    st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
886    return;
887  }
888#ifndef PRODUCT
889  // we don't keep the block list in product mode
890  if (JNIHandleBlock::any_contains((jobject) addr)) {
891    st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
892    return;
893  }
894#endif
895
896  for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
897    // Check for privilege stack
898    if (thread->privileged_stack_top() != NULL &&
899        thread->privileged_stack_top()->contains(addr)) {
900      st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
901                   "for thread: " INTPTR_FORMAT, addr, thread);
902      if (verbose) thread->print_on(st);
903      return;
904    }
905    // If the addr is a java thread print information about that.
906    if (addr == (address)thread) {
907      if (verbose) {
908        thread->print_on(st);
909      } else {
910        st->print_cr(INTPTR_FORMAT " is a thread", addr);
911      }
912      return;
913    }
914    // If the addr is in the stack region for this thread then report that
915    // and print thread info
916    if (thread->stack_base() >= addr &&
917        addr > (thread->stack_base() - thread->stack_size())) {
918      st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
919                   INTPTR_FORMAT, addr, thread);
920      if (verbose) thread->print_on(st);
921      return;
922    }
923
924  }
925  // Try an OS specific find
926  if (os::find(addr, st)) {
927    return;
928  }
929
930  st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
931}
932
933// Looks like all platforms except IA64 can use the same function to check
934// if C stack is walkable beyond current frame. The check for fp() is not
935// necessary on Sparc, but it's harmless.
936bool os::is_first_C_frame(frame* fr) {
937#ifdef IA64
938  // In order to walk native frames on Itanium, we need to access the unwind
939  // table, which is inside ELF. We don't want to parse ELF after fatal error,
940  // so return true for IA64. If we need to support C stack walking on IA64,
941  // this function needs to be moved to CPU specific files, as fp() on IA64
942  // is register stack, which grows towards higher memory address.
943  return true;
944#endif
945
946  // Load up sp, fp, sender sp and sender fp, check for reasonable values.
947  // Check usp first, because if that's bad the other accessors may fault
948  // on some architectures.  Ditto ufp second, etc.
949  uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
950  // sp on amd can be 32 bit aligned.
951  uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
952
953  uintptr_t usp    = (uintptr_t)fr->sp();
954  if ((usp & sp_align_mask) != 0) return true;
955
956  uintptr_t ufp    = (uintptr_t)fr->fp();
957  if ((ufp & fp_align_mask) != 0) return true;
958
959  uintptr_t old_sp = (uintptr_t)fr->sender_sp();
960  if ((old_sp & sp_align_mask) != 0) return true;
961  if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
962
963  uintptr_t old_fp = (uintptr_t)fr->link();
964  if ((old_fp & fp_align_mask) != 0) return true;
965  if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
966
967  // stack grows downwards; if old_fp is below current fp or if the stack
968  // frame is too large, either the stack is corrupted or fp is not saved
969  // on stack (i.e. on x86, ebp may be used as general register). The stack
970  // is not walkable beyond current frame.
971  if (old_fp < ufp) return true;
972  if (old_fp - ufp > 64 * K) return true;
973
974  return false;
975}
976
977#ifdef ASSERT
978extern "C" void test_random() {
979  const double m = 2147483647;
980  double mean = 0.0, variance = 0.0, t;
981  long reps = 10000;
982  unsigned long seed = 1;
983
984  tty->print_cr("seed %ld for %ld repeats...", seed, reps);
985  os::init_random(seed);
986  long num;
987  for (int k = 0; k < reps; k++) {
988    num = os::random();
989    double u = (double)num / m;
990    assert(u >= 0.0 && u <= 1.0, "bad random number!");
991
992    // calculate mean and variance of the random sequence
993    mean += u;
994    variance += (u*u);
995  }
996  mean /= reps;
997  variance /= (reps - 1);
998
999  assert(num == 1043618065, "bad seed");
1000  tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1001  tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1002  const double eps = 0.0001;
1003  t = fabsd(mean - 0.5018);
1004  assert(t < eps, "bad mean");
1005  t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1006  assert(t < eps, "bad variance");
1007}
1008#endif
1009
1010
1011// Set up the boot classpath.
1012
1013char* os::format_boot_path(const char* format_string,
1014                           const char* home,
1015                           int home_len,
1016                           char fileSep,
1017                           char pathSep) {
1018    assert((fileSep == '/' && pathSep == ':') ||
1019           (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1020
1021    // Scan the format string to determine the length of the actual
1022    // boot classpath, and handle platform dependencies as well.
1023    int formatted_path_len = 0;
1024    const char* p;
1025    for (p = format_string; *p != 0; ++p) {
1026        if (*p == '%') formatted_path_len += home_len - 1;
1027        ++formatted_path_len;
1028    }
1029
1030    char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1);
1031    if (formatted_path == NULL) {
1032        return NULL;
1033    }
1034
1035    // Create boot classpath from format, substituting separator chars and
1036    // java home directory.
1037    char* q = formatted_path;
1038    for (p = format_string; *p != 0; ++p) {
1039        switch (*p) {
1040        case '%':
1041            strcpy(q, home);
1042            q += home_len;
1043            break;
1044        case '/':
1045            *q++ = fileSep;
1046            break;
1047        case ':':
1048            *q++ = pathSep;
1049            break;
1050        default:
1051            *q++ = *p;
1052        }
1053    }
1054    *q = '\0';
1055
1056    assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1057    return formatted_path;
1058}
1059
1060
1061bool os::set_boot_path(char fileSep, char pathSep) {
1062    const char* home = Arguments::get_java_home();
1063    int home_len = (int)strlen(home);
1064
1065    static const char* meta_index_dir_format = "%/lib/";
1066    static const char* meta_index_format = "%/lib/meta-index";
1067    char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1068    if (meta_index == NULL) return false;
1069    char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1070    if (meta_index_dir == NULL) return false;
1071    Arguments::set_meta_index_path(meta_index, meta_index_dir);
1072
1073    // Any modification to the JAR-file list, for the boot classpath must be
1074    // aligned with install/install/make/common/Pack.gmk. Note: boot class
1075    // path class JARs, are stripped for StackMapTable to reduce download size.
1076    static const char classpath_format[] =
1077        "%/lib/resources.jar:"
1078        "%/lib/rt.jar:"
1079        "%/lib/sunrsasign.jar:"
1080        "%/lib/jsse.jar:"
1081        "%/lib/jce.jar:"
1082        "%/lib/charsets.jar:"
1083        "%/classes";
1084    char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1085    if (sysclasspath == NULL) return false;
1086    Arguments::set_sysclasspath(sysclasspath);
1087
1088    return true;
1089}
1090
1091/*
1092 * Splits a path, based on its separator, the number of
1093 * elements is returned back in n.
1094 * It is the callers responsibility to:
1095 *   a> check the value of n, and n may be 0.
1096 *   b> ignore any empty path elements
1097 *   c> free up the data.
1098 */
1099char** os::split_path(const char* path, int* n) {
1100  *n = 0;
1101  if (path == NULL || strlen(path) == 0) {
1102    return NULL;
1103  }
1104  const char psepchar = *os::path_separator();
1105  char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1);
1106  if (inpath == NULL) {
1107    return NULL;
1108  }
1109  strncpy(inpath, path, strlen(path));
1110  int count = 1;
1111  char* p = strchr(inpath, psepchar);
1112  // Get a count of elements to allocate memory
1113  while (p != NULL) {
1114    count++;
1115    p++;
1116    p = strchr(p, psepchar);
1117  }
1118  char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count);
1119  if (opath == NULL) {
1120    return NULL;
1121  }
1122
1123  // do the actual splitting
1124  p = inpath;
1125  for (int i = 0 ; i < count ; i++) {
1126    size_t len = strcspn(p, os::path_separator());
1127    if (len > JVM_MAXPATHLEN) {
1128      return NULL;
1129    }
1130    // allocate the string and add terminator storage
1131    char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1);
1132    if (s == NULL) {
1133      return NULL;
1134    }
1135    strncpy(s, p, len);
1136    s[len] = '\0';
1137    opath[i] = s;
1138    p += len + 1;
1139  }
1140  FREE_C_HEAP_ARRAY(char, inpath);
1141  *n = count;
1142  return opath;
1143}
1144
1145void os::set_memory_serialize_page(address page) {
1146  int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1147  _mem_serialize_page = (volatile int32_t *)page;
1148  // We initialize the serialization page shift count here
1149  // We assume a cache line size of 64 bytes
1150  assert(SerializePageShiftCount == count,
1151         "thread size changed, fix SerializePageShiftCount constant");
1152  set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1153}
1154
1155static volatile intptr_t SerializePageLock = 0;
1156
1157// This method is called from signal handler when SIGSEGV occurs while the current
1158// thread tries to store to the "read-only" memory serialize page during state
1159// transition.
1160void os::block_on_serialize_page_trap() {
1161  if (TraceSafepoint) {
1162    tty->print_cr("Block until the serialize page permission restored");
1163  }
1164  // When VMThread is holding the SerializePageLock during modifying the
1165  // access permission of the memory serialize page, the following call
1166  // will block until the permission of that page is restored to rw.
1167  // Generally, it is unsafe to manipulate locks in signal handlers, but in
1168  // this case, it's OK as the signal is synchronous and we know precisely when
1169  // it can occur.
1170  Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1171  Thread::muxRelease(&SerializePageLock);
1172}
1173
1174// Serialize all thread state variables
1175void os::serialize_thread_states() {
1176  // On some platforms such as Solaris & Linux, the time duration of the page
1177  // permission restoration is observed to be much longer than expected  due to
1178  // scheduler starvation problem etc. To avoid the long synchronization
1179  // time and expensive page trap spinning, 'SerializePageLock' is used to block
1180  // the mutator thread if such case is encountered. See bug 6546278 for details.
1181  Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1182  os::protect_memory((char *)os::get_memory_serialize_page(),
1183                     os::vm_page_size(), MEM_PROT_READ);
1184  os::protect_memory((char *)os::get_memory_serialize_page(),
1185                     os::vm_page_size(), MEM_PROT_RW);
1186  Thread::muxRelease(&SerializePageLock);
1187}
1188
1189// Returns true if the current stack pointer is above the stack shadow
1190// pages, false otherwise.
1191
1192bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1193  assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1194  address sp = current_stack_pointer();
1195  // Check if we have StackShadowPages above the yellow zone.  This parameter
1196  // is dependent on the depth of the maximum VM call stack possible from
1197  // the handler for stack overflow.  'instanceof' in the stack overflow
1198  // handler or a println uses at least 8k stack of VM and native code
1199  // respectively.
1200  const int framesize_in_bytes =
1201    Interpreter::size_top_interpreter_activation(method()) * wordSize;
1202  int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1203                      * vm_page_size()) + framesize_in_bytes;
1204  // The very lower end of the stack
1205  address stack_limit = thread->stack_base() - thread->stack_size();
1206  return (sp > (stack_limit + reserved_area));
1207}
1208
1209size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1210                                uint min_pages)
1211{
1212  assert(min_pages > 0, "sanity");
1213  if (UseLargePages) {
1214    const size_t max_page_size = region_max_size / min_pages;
1215
1216    for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1217      const size_t sz = _page_sizes[i];
1218      const size_t mask = sz - 1;
1219      if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1220        // The largest page size with no fragmentation.
1221        return sz;
1222      }
1223
1224      if (sz <= max_page_size) {
1225        // The largest page size that satisfies the min_pages requirement.
1226        return sz;
1227      }
1228    }
1229  }
1230
1231  return vm_page_size();
1232}
1233
1234#ifndef PRODUCT
1235void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1236{
1237  if (TracePageSizes) {
1238    tty->print("%s: ", str);
1239    for (int i = 0; i < count; ++i) {
1240      tty->print(" " SIZE_FORMAT, page_sizes[i]);
1241    }
1242    tty->cr();
1243  }
1244}
1245
1246void os::trace_page_sizes(const char* str, const size_t region_min_size,
1247                          const size_t region_max_size, const size_t page_size,
1248                          const char* base, const size_t size)
1249{
1250  if (TracePageSizes) {
1251    tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1252                  " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1253                  " size=" SIZE_FORMAT,
1254                  str, region_min_size, region_max_size,
1255                  page_size, base, size);
1256  }
1257}
1258#endif  // #ifndef PRODUCT
1259
1260// This is the working definition of a server class machine:
1261// >= 2 physical CPU's and >=2GB of memory, with some fuzz
1262// because the graphics memory (?) sometimes masks physical memory.
1263// If you want to change the definition of a server class machine
1264// on some OS or platform, e.g., >=4GB on Windohs platforms,
1265// then you'll have to parameterize this method based on that state,
1266// as was done for logical processors here, or replicate and
1267// specialize this method for each platform.  (Or fix os to have
1268// some inheritance structure and use subclassing.  Sigh.)
1269// If you want some platform to always or never behave as a server
1270// class machine, change the setting of AlwaysActAsServerClassMachine
1271// and NeverActAsServerClassMachine in globals*.hpp.
1272bool os::is_server_class_machine() {
1273  // First check for the early returns
1274  if (NeverActAsServerClassMachine) {
1275    return false;
1276  }
1277  if (AlwaysActAsServerClassMachine) {
1278    return true;
1279  }
1280  // Then actually look at the machine
1281  bool         result            = false;
1282  const unsigned int    server_processors = 2;
1283  const julong server_memory     = 2UL * G;
1284  // We seem not to get our full complement of memory.
1285  //     We allow some part (1/8?) of the memory to be "missing",
1286  //     based on the sizes of DIMMs, and maybe graphics cards.
1287  const julong missing_memory   = 256UL * M;
1288
1289  /* Is this a server class machine? */
1290  if ((os::active_processor_count() >= (int)server_processors) &&
1291      (os::physical_memory() >= (server_memory - missing_memory))) {
1292    const unsigned int logical_processors =
1293      VM_Version::logical_processors_per_package();
1294    if (logical_processors > 1) {
1295      const unsigned int physical_packages =
1296        os::active_processor_count() / logical_processors;
1297      if (physical_packages > server_processors) {
1298        result = true;
1299      }
1300    } else {
1301      result = true;
1302    }
1303  }
1304  return result;
1305}
1306
1307// Read file line by line, if line is longer than bsize,
1308// skip rest of line.
1309int os::get_line_chars(int fd, char* buf, const size_t bsize){
1310  size_t sz, i = 0;
1311
1312  // read until EOF, EOL or buf is full
1313  while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-1) && buf[i] != '\n') {
1314     ++i;
1315  }
1316
1317  if (buf[i] == '\n') {
1318    // EOL reached so ignore EOL character and return
1319
1320    buf[i] = 0;
1321    return (int) i;
1322  }
1323
1324  buf[i+1] = 0;
1325
1326  if (sz != 1) {
1327    // EOF reached. if we read chars before EOF return them and
1328    // return EOF on next call otherwise return EOF
1329
1330    return (i == 0) ? -1 : (int) i;
1331  }
1332
1333  // line is longer than size of buf, skip to EOL
1334  int ch;
1335  while (read(fd, &ch, 1) == 1 && ch != '\n') {
1336    // Do nothing
1337  }
1338
1339  // return initial part of line that fits in buf.
1340  // If we reached EOF, it will be returned on next call.
1341
1342  return (int) i;
1343}
1344