1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_SUBNODE_HPP
26#define SHARE_VM_OPTO_SUBNODE_HPP
27
28#include "opto/node.hpp"
29#include "opto/opcodes.hpp"
30#include "opto/type.hpp"
31
32// Portions of code courtesy of Clifford Click
33
34//------------------------------SUBNode----------------------------------------
35// Class SUBTRACTION functionality.  This covers all the usual 'subtract'
36// behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
37// -float, and -double are all inherited from this class.  The compare
38// functions behave like subtract functions, except that all negative answers
39// are compressed into -1, and all positive answers compressed to 1.
40class SubNode : public Node {
41public:
42  SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
43    init_class_id(Class_Sub);
44  }
45
46  // Handle algebraic identities here.  If we have an identity, return the Node
47  // we are equivalent to.  We look for "add of zero" as an identity.
48  virtual Node* Identity(PhaseGVN* phase);
49
50  // Compute a new Type for this node.  Basically we just do the pre-check,
51  // then call the virtual add() to set the type.
52  virtual const Type* Value(PhaseGVN* phase) const;
53  const Type* Value_common( PhaseTransform *phase ) const;
54
55  // Supplied function returns the subtractend of the inputs.
56  // This also type-checks the inputs for sanity.  Guaranteed never to
57  // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
58  virtual const Type *sub( const Type *, const Type * ) const = 0;
59
60  // Supplied function to return the additive identity type.
61  // This is returned whenever the subtracts inputs are the same.
62  virtual const Type *add_id() const = 0;
63};
64
65
66// NOTE: SubINode should be taken away and replaced by add and negate
67//------------------------------SubINode---------------------------------------
68// Subtract 2 integers
69class SubINode : public SubNode {
70public:
71  SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
72  virtual int Opcode() const;
73  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
74  virtual const Type *sub( const Type *, const Type * ) const;
75  const Type *add_id() const { return TypeInt::ZERO; }
76  const Type *bottom_type() const { return TypeInt::INT; }
77  virtual uint ideal_reg() const { return Op_RegI; }
78};
79
80//------------------------------SubLNode---------------------------------------
81// Subtract 2 integers
82class SubLNode : public SubNode {
83public:
84  SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
85  virtual int Opcode() const;
86  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
87  virtual const Type *sub( const Type *, const Type * ) const;
88  const Type *add_id() const { return TypeLong::ZERO; }
89  const Type *bottom_type() const { return TypeLong::LONG; }
90  virtual uint ideal_reg() const { return Op_RegL; }
91};
92
93// NOTE: SubFPNode should be taken away and replaced by add and negate
94//------------------------------SubFPNode--------------------------------------
95// Subtract 2 floats or doubles
96class SubFPNode : public SubNode {
97protected:
98  SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
99public:
100  const Type* Value(PhaseGVN* phase) const;
101};
102
103// NOTE: SubFNode should be taken away and replaced by add and negate
104//------------------------------SubFNode---------------------------------------
105// Subtract 2 doubles
106class SubFNode : public SubFPNode {
107public:
108  SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
109  virtual int Opcode() const;
110  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
111  virtual const Type *sub( const Type *, const Type * ) const;
112  const Type   *add_id() const { return TypeF::ZERO; }
113  const Type   *bottom_type() const { return Type::FLOAT; }
114  virtual uint  ideal_reg() const { return Op_RegF; }
115};
116
117// NOTE: SubDNode should be taken away and replaced by add and negate
118//------------------------------SubDNode---------------------------------------
119// Subtract 2 doubles
120class SubDNode : public SubFPNode {
121public:
122  SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
123  virtual int Opcode() const;
124  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
125  virtual const Type *sub( const Type *, const Type * ) const;
126  const Type   *add_id() const { return TypeD::ZERO; }
127  const Type   *bottom_type() const { return Type::DOUBLE; }
128  virtual uint  ideal_reg() const { return Op_RegD; }
129};
130
131//------------------------------CmpNode---------------------------------------
132// Compare 2 values, returning condition codes (-1, 0 or 1).
133class CmpNode : public SubNode {
134public:
135  CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
136    init_class_id(Class_Cmp);
137  }
138  virtual Node* Identity(PhaseGVN* phase);
139  const Type *add_id() const { return TypeInt::ZERO; }
140  const Type *bottom_type() const { return TypeInt::CC; }
141  virtual uint ideal_reg() const { return Op_RegFlags; }
142
143#ifndef PRODUCT
144  // CmpNode and subclasses include all data inputs (until hitting a control
145  // boundary) in their related node set, as well as all outputs until and
146  // including eventual control nodes and their projections.
147  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
148#endif
149};
150
151//------------------------------CmpINode---------------------------------------
152// Compare 2 signed values, returning condition codes (-1, 0 or 1).
153class CmpINode : public CmpNode {
154public:
155  CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
156  virtual int Opcode() const;
157  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
158  virtual const Type *sub( const Type *, const Type * ) const;
159};
160
161//------------------------------CmpUNode---------------------------------------
162// Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
163class CmpUNode : public CmpNode {
164public:
165  CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
166  virtual int Opcode() const;
167  virtual const Type *sub( const Type *, const Type * ) const;
168  const Type* Value(PhaseGVN* phase) const;
169  bool is_index_range_check() const;
170};
171
172//------------------------------CmpPNode---------------------------------------
173// Compare 2 pointer values, returning condition codes (-1, 0 or 1).
174class CmpPNode : public CmpNode {
175public:
176  CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
177  virtual int Opcode() const;
178  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
179  virtual const Type *sub( const Type *, const Type * ) const;
180};
181
182//------------------------------CmpNNode--------------------------------------
183// Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
184class CmpNNode : public CmpNode {
185public:
186  CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
187  virtual int Opcode() const;
188  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
189  virtual const Type *sub( const Type *, const Type * ) const;
190};
191
192//------------------------------CmpLNode---------------------------------------
193// Compare 2 long values, returning condition codes (-1, 0 or 1).
194class CmpLNode : public CmpNode {
195public:
196  CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
197  virtual int    Opcode() const;
198  virtual const Type *sub( const Type *, const Type * ) const;
199};
200
201//------------------------------CmpULNode---------------------------------------
202// Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
203class CmpULNode : public CmpNode {
204public:
205  CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
206  virtual int Opcode() const;
207  virtual const Type* sub(const Type*, const Type*) const;
208};
209
210//------------------------------CmpL3Node--------------------------------------
211// Compare 2 long values, returning integer value (-1, 0 or 1).
212class CmpL3Node : public CmpLNode {
213public:
214  CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
215    // Since it is not consumed by Bools, it is not really a Cmp.
216    init_class_id(Class_Sub);
217  }
218  virtual int    Opcode() const;
219  virtual uint ideal_reg() const { return Op_RegI; }
220};
221
222//------------------------------CmpFNode---------------------------------------
223// Compare 2 float values, returning condition codes (-1, 0 or 1).
224// This implements the Java bytecode fcmpl, so unordered returns -1.
225// Operands may not commute.
226class CmpFNode : public CmpNode {
227public:
228  CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
229  virtual int Opcode() const;
230  virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
231  const Type* Value(PhaseGVN* phase) const;
232};
233
234//------------------------------CmpF3Node--------------------------------------
235// Compare 2 float values, returning integer value (-1, 0 or 1).
236// This implements the Java bytecode fcmpl, so unordered returns -1.
237// Operands may not commute.
238class CmpF3Node : public CmpFNode {
239public:
240  CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
241    // Since it is not consumed by Bools, it is not really a Cmp.
242    init_class_id(Class_Sub);
243  }
244  virtual int Opcode() const;
245  // Since it is not consumed by Bools, it is not really a Cmp.
246  virtual uint ideal_reg() const { return Op_RegI; }
247};
248
249
250//------------------------------CmpDNode---------------------------------------
251// Compare 2 double values, returning condition codes (-1, 0 or 1).
252// This implements the Java bytecode dcmpl, so unordered returns -1.
253// Operands may not commute.
254class CmpDNode : public CmpNode {
255public:
256  CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
257  virtual int Opcode() const;
258  virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
259  const Type* Value(PhaseGVN* phase) const;
260  virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
261};
262
263//------------------------------CmpD3Node--------------------------------------
264// Compare 2 double values, returning integer value (-1, 0 or 1).
265// This implements the Java bytecode dcmpl, so unordered returns -1.
266// Operands may not commute.
267class CmpD3Node : public CmpDNode {
268public:
269  CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
270    // Since it is not consumed by Bools, it is not really a Cmp.
271    init_class_id(Class_Sub);
272  }
273  virtual int Opcode() const;
274  virtual uint ideal_reg() const { return Op_RegI; }
275};
276
277
278//------------------------------BoolTest---------------------------------------
279// Convert condition codes to a boolean test value (0 or -1).
280// We pick the values as 3 bits; the low order 2 bits we compare against the
281// condition codes, the high bit flips the sense of the result.
282struct BoolTest VALUE_OBJ_CLASS_SPEC {
283  enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, illegal = 8 };
284  mask _test;
285  BoolTest( mask btm ) : _test(btm) {}
286  const Type *cc2logical( const Type *CC ) const;
287  // Commute the test.  I use a small table lookup.  The table is created as
288  // a simple char array where each element is the ASCII version of a 'mask'
289  // enum from above.
290  mask commute( ) const { return mask("032147658"[_test]-'0'); }
291  mask negate( ) const { return mask(_test^4); }
292  bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
293  bool is_less( )  const { return _test == BoolTest::lt || _test == BoolTest::le; }
294  bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
295  void dump_on(outputStream *st) const;
296};
297
298//------------------------------BoolNode---------------------------------------
299// A Node to convert a Condition Codes to a Logical result.
300class BoolNode : public Node {
301  virtual uint hash() const;
302  virtual uint cmp( const Node &n ) const;
303  virtual uint size_of() const;
304
305  // Try to optimize signed integer comparison
306  Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
307                  int cmp1_op, const TypeInt* cmp2_type);
308public:
309  const BoolTest _test;
310  BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
311    init_class_id(Class_Bool);
312  }
313  // Convert an arbitrary int value to a Bool or other suitable predicate.
314  static Node* make_predicate(Node* test_value, PhaseGVN* phase);
315  // Convert self back to an integer value.
316  Node* as_int_value(PhaseGVN* phase);
317  // Invert sense of self, returning new Bool.
318  BoolNode* negate(PhaseGVN* phase);
319  virtual int Opcode() const;
320  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
321  virtual const Type* Value(PhaseGVN* phase) const;
322  virtual const Type *bottom_type() const { return TypeInt::BOOL; }
323  uint match_edge(uint idx) const { return 0; }
324  virtual uint ideal_reg() const { return Op_RegI; }
325
326  bool is_counted_loop_exit_test();
327#ifndef PRODUCT
328  virtual void dump_spec(outputStream *st) const;
329  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
330#endif
331};
332
333//------------------------------AbsNode----------------------------------------
334// Abstract class for absolute value.  Mostly used to get a handy wrapper
335// for finding this pattern in the graph.
336class AbsNode : public Node {
337public:
338  AbsNode( Node *value ) : Node(0,value) {}
339};
340
341//------------------------------AbsINode---------------------------------------
342// Absolute value an integer.  Since a naive graph involves control flow, we
343// "match" it in the ideal world (so the control flow can be removed).
344class AbsINode : public AbsNode {
345public:
346  AbsINode( Node *in1 ) : AbsNode(in1) {}
347  virtual int Opcode() const;
348  const Type *bottom_type() const { return TypeInt::INT; }
349  virtual uint ideal_reg() const { return Op_RegI; }
350};
351
352//------------------------------AbsFNode---------------------------------------
353// Absolute value a float, a common float-point idiom with a cheap hardware
354// implemention on most chips.  Since a naive graph involves control flow, we
355// "match" it in the ideal world (so the control flow can be removed).
356class AbsFNode : public AbsNode {
357public:
358  AbsFNode( Node *in1 ) : AbsNode(in1) {}
359  virtual int Opcode() const;
360  const Type *bottom_type() const { return Type::FLOAT; }
361  virtual uint ideal_reg() const { return Op_RegF; }
362};
363
364//------------------------------AbsDNode---------------------------------------
365// Absolute value a double, a common float-point idiom with a cheap hardware
366// implemention on most chips.  Since a naive graph involves control flow, we
367// "match" it in the ideal world (so the control flow can be removed).
368class AbsDNode : public AbsNode {
369public:
370  AbsDNode( Node *in1 ) : AbsNode(in1) {}
371  virtual int Opcode() const;
372  const Type *bottom_type() const { return Type::DOUBLE; }
373  virtual uint ideal_reg() const { return Op_RegD; }
374};
375
376
377//------------------------------CmpLTMaskNode----------------------------------
378// If p < q, return -1 else return 0.  Nice for flow-free idioms.
379class CmpLTMaskNode : public Node {
380public:
381  CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
382  virtual int Opcode() const;
383  const Type *bottom_type() const { return TypeInt::INT; }
384  virtual uint ideal_reg() const { return Op_RegI; }
385};
386
387
388//------------------------------NegNode----------------------------------------
389class NegNode : public Node {
390public:
391  NegNode( Node *in1 ) : Node(0,in1) {}
392};
393
394//------------------------------NegFNode---------------------------------------
395// Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
396// zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
397// cannot be used to replace negation we have to implement negation as ideal
398// node; note that negation and addition can replace subtraction.
399class NegFNode : public NegNode {
400public:
401  NegFNode( Node *in1 ) : NegNode(in1) {}
402  virtual int Opcode() const;
403  const Type *bottom_type() const { return Type::FLOAT; }
404  virtual uint ideal_reg() const { return Op_RegF; }
405};
406
407//------------------------------NegDNode---------------------------------------
408// Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
409// zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
410// cannot be used to replace negation we have to implement negation as ideal
411// node; note that negation and addition can replace subtraction.
412class NegDNode : public NegNode {
413public:
414  NegDNode( Node *in1 ) : NegNode(in1) {}
415  virtual int Opcode() const;
416  const Type *bottom_type() const { return Type::DOUBLE; }
417  virtual uint ideal_reg() const { return Op_RegD; }
418};
419
420//------------------------------AtanDNode--------------------------------------
421// arcus tangens of a double
422class AtanDNode : public Node {
423public:
424  AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
425  virtual int Opcode() const;
426  const Type *bottom_type() const { return Type::DOUBLE; }
427  virtual uint ideal_reg() const { return Op_RegD; }
428};
429
430
431//------------------------------SqrtDNode--------------------------------------
432// square root a double
433class SqrtDNode : public Node {
434public:
435  SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
436    init_flags(Flag_is_expensive);
437    C->add_expensive_node(this);
438  }
439  virtual int Opcode() const;
440  const Type *bottom_type() const { return Type::DOUBLE; }
441  virtual uint ideal_reg() const { return Op_RegD; }
442  virtual const Type* Value(PhaseGVN* phase) const;
443};
444
445//-------------------------------ReverseBytesINode--------------------------------
446// reverse bytes of an integer
447class ReverseBytesINode : public Node {
448public:
449  ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
450  virtual int Opcode() const;
451  const Type *bottom_type() const { return TypeInt::INT; }
452  virtual uint ideal_reg() const { return Op_RegI; }
453};
454
455//-------------------------------ReverseBytesLNode--------------------------------
456// reverse bytes of a long
457class ReverseBytesLNode : public Node {
458public:
459  ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
460  virtual int Opcode() const;
461  const Type *bottom_type() const { return TypeLong::LONG; }
462  virtual uint ideal_reg() const { return Op_RegL; }
463};
464
465//-------------------------------ReverseBytesUSNode--------------------------------
466// reverse bytes of an unsigned short / char
467class ReverseBytesUSNode : public Node {
468public:
469  ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
470  virtual int Opcode() const;
471  const Type *bottom_type() const { return TypeInt::CHAR; }
472  virtual uint ideal_reg() const { return Op_RegI; }
473};
474
475//-------------------------------ReverseBytesSNode--------------------------------
476// reverse bytes of a short
477class ReverseBytesSNode : public Node {
478public:
479  ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
480  virtual int Opcode() const;
481  const Type *bottom_type() const { return TypeInt::SHORT; }
482  virtual uint ideal_reg() const { return Op_RegI; }
483};
484
485#endif // SHARE_VM_OPTO_SUBNODE_HPP
486