1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_PHASEX_HPP
26#define SHARE_VM_OPTO_PHASEX_HPP
27
28#include "libadt/dict.hpp"
29#include "libadt/vectset.hpp"
30#include "memory/resourceArea.hpp"
31#include "opto/memnode.hpp"
32#include "opto/node.hpp"
33#include "opto/phase.hpp"
34#include "opto/type.hpp"
35
36class Compile;
37class ConINode;
38class ConLNode;
39class Node;
40class Type;
41class PhaseTransform;
42class   PhaseGVN;
43class     PhaseIterGVN;
44class       PhaseCCP;
45class   PhasePeephole;
46class   PhaseRegAlloc;
47
48
49//-----------------------------------------------------------------------------
50// Expandable closed hash-table of nodes, initialized to NULL.
51// Note that the constructor just zeros things
52// Storage is reclaimed when the Arena's lifetime is over.
53class NodeHash : public StackObj {
54protected:
55  Arena *_a;                    // Arena to allocate in
56  uint   _max;                  // Size of table (power of 2)
57  uint   _inserts;              // For grow and debug, count of hash_inserts
58  uint   _insert_limit;         // 'grow' when _inserts reaches _insert_limit
59  Node **_table;                // Hash table of Node pointers
60  Node  *_sentinel;             // Replaces deleted entries in hash table
61
62public:
63  NodeHash(uint est_max_size);
64  NodeHash(Arena *arena, uint est_max_size);
65  NodeHash(NodeHash *use_this_state);
66#ifdef ASSERT
67  ~NodeHash();                  // Unlock all nodes upon destruction of table.
68  void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
69#endif
70  Node  *hash_find(const Node*);// Find an equivalent version in hash table
71  Node  *hash_find_insert(Node*);// If not in table insert else return found node
72  void   hash_insert(Node*);    // Insert into hash table
73  bool   hash_delete(const Node*);// Replace with _sentinel in hash table
74  void   check_grow() {
75    _inserts++;
76    if( _inserts == _insert_limit ) { grow(); }
77    assert( _inserts <= _insert_limit, "hash table overflow");
78    assert( _inserts < _max, "hash table overflow" );
79  }
80  static uint round_up(uint);   // Round up to nearest power of 2
81  void   grow();                // Grow _table to next power of 2 and rehash
82  // Return 75% of _max, rounded up.
83  uint   insert_limit() const { return _max - (_max>>2); }
84
85  void   clear();               // Set all entries to NULL, keep storage.
86  // Size of hash table
87  uint   size()         const { return _max; }
88  // Return Node* at index in table
89  Node  *at(uint table_index) {
90    assert(table_index < _max, "Must be within table");
91    return _table[table_index];
92  }
93
94  void   remove_useless_nodes(VectorSet &useful); // replace with sentinel
95  void   replace_with(NodeHash* nh);
96  void   check_no_speculative_types(); // Check no speculative part for type nodes in table
97
98  Node  *sentinel() { return _sentinel; }
99
100#ifndef PRODUCT
101  Node  *find_index(uint idx);  // For debugging
102  void   dump();                // For debugging, dump statistics
103  uint   _grows;                // For debugging, count of table grow()s
104  uint   _look_probes;          // For debugging, count of hash probes
105  uint   _lookup_hits;          // For debugging, count of hash_finds
106  uint   _lookup_misses;        // For debugging, count of hash_finds
107  uint   _insert_probes;        // For debugging, count of hash probes
108  uint   _delete_probes;        // For debugging, count of hash probes for deletes
109  uint   _delete_hits;          // For debugging, count of hash probes for deletes
110  uint   _delete_misses;        // For debugging, count of hash probes for deletes
111  uint   _total_inserts;        // For debugging, total inserts into hash table
112  uint   _total_insert_probes;  // For debugging, total probes while inserting
113#endif
114};
115
116
117//-----------------------------------------------------------------------------
118// Map dense integer indices to Types.  Uses classic doubling-array trick.
119// Abstractly provides an infinite array of Type*'s, initialized to NULL.
120// Note that the constructor just zeros things, and since I use Arena
121// allocation I do not need a destructor to reclaim storage.
122// Despite the general name, this class is customized for use by PhaseTransform.
123class Type_Array : public StackObj {
124  Arena *_a;                    // Arena to allocate in
125  uint   _max;
126  const Type **_types;
127  void grow( uint i );          // Grow array node to fit
128  const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
129  { return (i<_max) ? _types[i] : (Type*)NULL; }
130  friend class PhaseTransform;
131public:
132  Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
133  Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
134  const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
135  // Extend the mapping: index i maps to Type *n.
136  void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
137  uint Size() const { return _max; }
138#ifndef PRODUCT
139  void dump() const;
140#endif
141};
142
143
144//------------------------------PhaseRemoveUseless-----------------------------
145// Remove useless nodes from GVN hash-table, worklist, and graph
146class PhaseRemoveUseless : public Phase {
147protected:
148  Unique_Node_List _useful;   // Nodes reachable from root
149                              // list is allocated from current resource area
150public:
151  PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num = Remove_Useless);
152
153  Unique_Node_List *get_useful() { return &_useful; }
154};
155
156//------------------------------PhaseRenumber----------------------------------
157// Phase that first performs a PhaseRemoveUseless, then it renumbers compiler
158// structures accordingly.
159class PhaseRenumberLive : public PhaseRemoveUseless {
160public:
161  PhaseRenumberLive(PhaseGVN* gvn,
162                    Unique_Node_List* worklist, Unique_Node_List* new_worklist,
163                    PhaseNumber phase_num = Remove_Useless_And_Renumber_Live);
164};
165
166
167//------------------------------PhaseTransform---------------------------------
168// Phases that analyze, then transform.  Constructing the Phase object does any
169// global or slow analysis.  The results are cached later for a fast
170// transformation pass.  When the Phase object is deleted the cached analysis
171// results are deleted.
172class PhaseTransform : public Phase {
173protected:
174  Arena*     _arena;
175  Node_List  _nodes;           // Map old node indices to new nodes.
176  Type_Array _types;           // Map old node indices to Types.
177
178  // ConNode caches:
179  enum { _icon_min = -1 * HeapWordSize,
180         _icon_max = 16 * HeapWordSize,
181         _lcon_min = _icon_min,
182         _lcon_max = _icon_max,
183         _zcon_max = (uint)T_CONFLICT
184  };
185  ConINode* _icons[_icon_max - _icon_min + 1];   // cached jint constant nodes
186  ConLNode* _lcons[_lcon_max - _lcon_min + 1];   // cached jlong constant nodes
187  ConNode*  _zcons[_zcon_max + 1];               // cached is_zero_type nodes
188  void init_con_caches();
189
190  // Support both int and long caches because either might be an intptr_t,
191  // so they show up frequently in address computations.
192
193public:
194  PhaseTransform( PhaseNumber pnum );
195  PhaseTransform( Arena *arena, PhaseNumber pnum );
196  PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
197
198  Arena*      arena()   { return _arena; }
199  Type_Array& types()   { return _types; }
200  void replace_types(Type_Array new_types) {
201    _types = new_types;
202  }
203  // _nodes is used in varying ways by subclasses, which define local accessors
204  uint nodes_size() {
205    return _nodes.size();
206  }
207
208public:
209  // Get a previously recorded type for the node n.
210  // This type must already have been recorded.
211  // If you want the type of a very new (untransformed) node,
212  // you must use type_or_null, and test the result for NULL.
213  const Type* type(const Node* n) const {
214    assert(n != NULL, "must not be null");
215    const Type* t = _types.fast_lookup(n->_idx);
216    assert(t != NULL, "must set before get");
217    return t;
218  }
219  // Get a previously recorded type for the node n,
220  // or else return NULL if there is none.
221  const Type* type_or_null(const Node* n) const {
222    return _types.fast_lookup(n->_idx);
223  }
224  // Record a type for a node.
225  void    set_type(const Node* n, const Type *t) {
226    assert(t != NULL, "type must not be null");
227    _types.map(n->_idx, t);
228  }
229  // Record an initial type for a node, the node's bottom type.
230  void    set_type_bottom(const Node* n) {
231    // Use this for initialization when bottom_type() (or better) is not handy.
232    // Usually the initialization shoudl be to n->Value(this) instead,
233    // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
234    assert(_types[n->_idx] == NULL, "must set the initial type just once");
235    _types.map(n->_idx, n->bottom_type());
236  }
237  // Make sure the types array is big enough to record a size for the node n.
238  // (In product builds, we never want to do range checks on the types array!)
239  void ensure_type_or_null(const Node* n) {
240    if (n->_idx >= _types.Size())
241      _types.map(n->_idx, NULL);   // Grow the types array as needed.
242  }
243
244  // Utility functions:
245  const TypeInt*  find_int_type( Node* n);
246  const TypeLong* find_long_type(Node* n);
247  jint  find_int_con( Node* n, jint  value_if_unknown) {
248    const TypeInt* t = find_int_type(n);
249    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
250  }
251  jlong find_long_con(Node* n, jlong value_if_unknown) {
252    const TypeLong* t = find_long_type(n);
253    return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
254  }
255
256  // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
257  // Same as transform(ConNode::make(t)).
258  ConNode* makecon(const Type* t);
259  virtual ConNode* uncached_makecon(const Type* t)  // override in PhaseValues
260  { ShouldNotCallThis(); return NULL; }
261
262  // Fast int or long constant.  Same as TypeInt::make(i) or TypeLong::make(l).
263  ConINode* intcon(jint i);
264  ConLNode* longcon(jlong l);
265
266  // Fast zero or null constant.  Same as makecon(Type::get_zero_type(bt)).
267  ConNode* zerocon(BasicType bt);
268
269  // Return a node which computes the same function as this node, but
270  // in a faster or cheaper fashion.
271  virtual Node *transform( Node *n ) = 0;
272
273  // Return whether two Nodes are equivalent.
274  // Must not be recursive, since the recursive version is built from this.
275  // For pessimistic optimizations this is simply pointer equivalence.
276  bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
277
278  // For pessimistic passes, the return type must monotonically narrow.
279  // For optimistic  passes, the return type must monotonically widen.
280  // It is possible to get into a "death march" in either type of pass,
281  // where the types are continually moving but it will take 2**31 or
282  // more steps to converge.  This doesn't happen on most normal loops.
283  //
284  // Here is an example of a deadly loop for an optimistic pass, along
285  // with a partial trace of inferred types:
286  //    x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
287  //    0                 1                join([0..max], 1)
288  //    [0..1]            [1..2]           join([0..max], [1..2])
289  //    [0..2]            [1..3]           join([0..max], [1..3])
290  //      ... ... ...
291  //    [0..max]          [min]u[1..max]   join([0..max], [min..max])
292  //    [0..max] ==> fixpoint
293  // We would have proven, the hard way, that the iteration space is all
294  // non-negative ints, with the loop terminating due to 32-bit overflow.
295  //
296  // Here is the corresponding example for a pessimistic pass:
297  //    x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
298  //    int               int              join([0..max], int)
299  //    [0..max]          [-1..max-1]      join([0..max], [-1..max-1])
300  //    [0..max-1]        [-1..max-2]      join([0..max], [-1..max-2])
301  //      ... ... ...
302  //    [0..1]            [-1..0]          join([0..max], [-1..0])
303  //    0                 -1               join([0..max], -1)
304  //    0 == fixpoint
305  // We would have proven, the hard way, that the iteration space is {0}.
306  // (Usually, other optimizations will make the "if (x >= 0)" fold up
307  // before we get into trouble.  But not always.)
308  //
309  // It's a pleasant thing to observe that the pessimistic pass
310  // will make short work of the optimistic pass's deadly loop,
311  // and vice versa.  That is a good example of the complementary
312  // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
313  //
314  // In any case, only widen or narrow a few times before going to the
315  // correct flavor of top or bottom.
316  //
317  // This call only needs to be made once as the data flows around any
318  // given cycle.  We do it at Phis, and nowhere else.
319  // The types presented are the new type of a phi (computed by PhiNode::Value)
320  // and the previously computed type, last time the phi was visited.
321  //
322  // The third argument is upper limit for the saturated value,
323  // if the phase wishes to widen the new_type.
324  // If the phase is narrowing, the old type provides a lower limit.
325  // Caller guarantees that old_type and new_type are no higher than limit_type.
326  virtual const Type* saturate(const Type* new_type, const Type* old_type,
327                               const Type* limit_type) const
328  { ShouldNotCallThis(); return NULL; }
329
330  // Delayed node rehash if this is an IGVN phase
331  virtual void igvn_rehash_node_delayed(Node* n) {}
332
333  // true if CFG node d dominates CFG node n
334  virtual bool is_dominator(Node *d, Node *n) { fatal("unimplemented for this pass"); return false; };
335
336#ifndef PRODUCT
337  void dump_old2new_map() const;
338  void dump_new( uint new_lidx ) const;
339  void dump_types() const;
340  void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
341  void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
342
343  uint   _count_progress;       // For profiling, count transforms that make progress
344  void   set_progress()        { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
345  void   clear_progress()      { _count_progress = 0; }
346  uint   made_progress() const { return _count_progress; }
347
348  uint   _count_transforms;     // For profiling, count transforms performed
349  void   set_transforms()      { ++_count_transforms; }
350  void   clear_transforms()    { _count_transforms = 0; }
351  uint   made_transforms() const{ return _count_transforms; }
352
353  bool   _allow_progress;      // progress not allowed during verification pass
354  void   set_allow_progress(bool allow) { _allow_progress = allow; }
355  bool   allow_progress()               { return _allow_progress; }
356#endif
357};
358
359//------------------------------PhaseValues------------------------------------
360// Phase infrastructure to support values
361class PhaseValues : public PhaseTransform {
362protected:
363  NodeHash  _table;             // Hash table for value-numbering
364
365public:
366  PhaseValues( Arena *arena, uint est_max_size );
367  PhaseValues( PhaseValues *pt );
368  PhaseValues( PhaseValues *ptv, const char *dummy );
369  NOT_PRODUCT( ~PhaseValues(); )
370  virtual PhaseIterGVN *is_IterGVN() { return 0; }
371
372  // Some Ideal and other transforms delete --> modify --> insert values
373  bool   hash_delete(Node *n)     { return _table.hash_delete(n); }
374  void   hash_insert(Node *n)     { _table.hash_insert(n); }
375  Node  *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
376  Node  *hash_find(const Node *n) { return _table.hash_find(n); }
377
378  // Used after parsing to eliminate values that are no longer in program
379  void   remove_useless_nodes(VectorSet &useful) {
380    _table.remove_useless_nodes(useful);
381    // this may invalidate cached cons so reset the cache
382    init_con_caches();
383  }
384
385  virtual ConNode* uncached_makecon(const Type* t);  // override from PhaseTransform
386
387  virtual const Type* saturate(const Type* new_type, const Type* old_type,
388                               const Type* limit_type) const
389  { return new_type; }
390
391#ifndef PRODUCT
392  uint   _count_new_values;     // For profiling, count new values produced
393  void    inc_new_values()        { ++_count_new_values; }
394  void    clear_new_values()      { _count_new_values = 0; }
395  uint    made_new_values() const { return _count_new_values; }
396#endif
397};
398
399
400//------------------------------PhaseGVN---------------------------------------
401// Phase for performing local, pessimistic GVN-style optimizations.
402class PhaseGVN : public PhaseValues {
403protected:
404  bool is_dominator_helper(Node *d, Node *n, bool linear_only);
405
406public:
407  PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
408  PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
409  PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
410
411  // Return a node which computes the same function as this node, but
412  // in a faster or cheaper fashion.
413  Node  *transform( Node *n );
414  Node  *transform_no_reclaim( Node *n );
415  virtual void record_for_igvn(Node *n) {
416    C->record_for_igvn(n);
417  }
418
419  void replace_with(PhaseGVN* gvn) {
420    _table.replace_with(&gvn->_table);
421    _types = gvn->_types;
422  }
423
424  bool is_dominator(Node *d, Node *n) { return is_dominator_helper(d, n, true); }
425
426  // Check for a simple dead loop when a data node references itself.
427  DEBUG_ONLY(void dead_loop_check(Node *n);)
428};
429
430//------------------------------PhaseIterGVN-----------------------------------
431// Phase for iteratively performing local, pessimistic GVN-style optimizations.
432// and ideal transformations on the graph.
433class PhaseIterGVN : public PhaseGVN {
434private:
435  bool _delay_transform;  // When true simply register the node when calling transform
436                          // instead of actually optimizing it
437
438  // Idealize old Node 'n' with respect to its inputs and its value
439  virtual Node *transform_old( Node *a_node );
440
441  // Subsume users of node 'old' into node 'nn'
442  void subsume_node( Node *old, Node *nn );
443
444  Node_Stack _stack;      // Stack used to avoid recursion
445
446protected:
447
448  // Warm up hash table, type table and initial worklist
449  void init_worklist( Node *a_root );
450
451  virtual const Type* saturate(const Type* new_type, const Type* old_type,
452                               const Type* limit_type) const;
453  // Usually returns new_type.  Returns old_type if new_type is only a slight
454  // improvement, such that it would take many (>>10) steps to reach 2**32.
455
456public:
457  PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
458  PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
459  PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
460
461  // Idealize new Node 'n' with respect to its inputs and its value
462  virtual Node *transform( Node *a_node );
463  virtual void record_for_igvn(Node *n) { }
464
465  virtual PhaseIterGVN *is_IterGVN() { return this; }
466
467  Unique_Node_List _worklist;       // Iterative worklist
468
469  // Given def-use info and an initial worklist, apply Node::Ideal,
470  // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
471  // and dominator info to a fixed point.
472  void optimize();
473
474#ifndef PRODUCT
475  void trace_PhaseIterGVN(Node* n, Node* nn, const Type* old_type);
476  void init_verifyPhaseIterGVN();
477  void verify_PhaseIterGVN();
478#endif
479
480#ifdef ASSERT
481  void dump_infinite_loop_info(Node* n);
482  void trace_PhaseIterGVN_verbose(Node* n, int num_processed);
483#endif
484
485  // Register a new node with the iter GVN pass without transforming it.
486  // Used when we need to restructure a Region/Phi area and all the Regions
487  // and Phis need to complete this one big transform before any other
488  // transforms can be triggered on the region.
489  // Optional 'orig' is an earlier version of this node.
490  // It is significant only for debugging and profiling.
491  Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
492
493  // Kill a globally dead Node.  All uses are also globally dead and are
494  // aggressively trimmed.
495  void remove_globally_dead_node( Node *dead );
496
497  // Kill all inputs to a dead node, recursively making more dead nodes.
498  // The Node must be dead locally, i.e., have no uses.
499  void remove_dead_node( Node *dead ) {
500    assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
501    remove_globally_dead_node(dead);
502  }
503
504  // Add users of 'n' to worklist
505  void add_users_to_worklist0( Node *n );
506  void add_users_to_worklist ( Node *n );
507
508  // Replace old node with new one.
509  void replace_node( Node *old, Node *nn ) {
510    add_users_to_worklist(old);
511    hash_delete(old); // Yank from hash before hacking edges
512    subsume_node(old, nn);
513  }
514
515  // Delayed node rehash: remove a node from the hash table and rehash it during
516  // next optimizing pass
517  void rehash_node_delayed(Node* n) {
518    hash_delete(n);
519    _worklist.push(n);
520  }
521
522  void igvn_rehash_node_delayed(Node* n) {
523    rehash_node_delayed(n);
524  }
525
526  // Replace ith edge of "n" with "in"
527  void replace_input_of(Node* n, int i, Node* in) {
528    rehash_node_delayed(n);
529    n->set_req(i, in);
530  }
531
532  // Delete ith edge of "n"
533  void delete_input_of(Node* n, int i) {
534    rehash_node_delayed(n);
535    n->del_req(i);
536  }
537
538  bool delay_transform() const { return _delay_transform; }
539
540  void set_delay_transform(bool delay) {
541    _delay_transform = delay;
542  }
543
544  // Clone loop predicates. Defined in loopTransform.cpp.
545  Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
546  // Create a new if below new_entry for the predicate to be cloned
547  ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
548                                        Deoptimization::DeoptReason reason,
549                                        int opcode);
550
551  void remove_speculative_types();
552  void check_no_speculative_types() {
553    _table.check_no_speculative_types();
554  }
555
556  bool is_dominator(Node *d, Node *n) { return is_dominator_helper(d, n, false); }
557
558#ifndef PRODUCT
559protected:
560  // Sub-quadratic implementation of VerifyIterativeGVN.
561  julong _verify_counter;
562  julong _verify_full_passes;
563  enum { _verify_window_size = 30 };
564  Node* _verify_window[_verify_window_size];
565  void verify_step(Node* n);
566#endif
567};
568
569//------------------------------PhaseCCP---------------------------------------
570// Phase for performing global Conditional Constant Propagation.
571// Should be replaced with combined CCP & GVN someday.
572class PhaseCCP : public PhaseIterGVN {
573  // Non-recursive.  Use analysis to transform single Node.
574  virtual Node *transform_once( Node *n );
575
576public:
577  PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
578  NOT_PRODUCT( ~PhaseCCP(); )
579
580  // Worklist algorithm identifies constants
581  void analyze();
582  // Recursive traversal of program.  Used analysis to modify program.
583  virtual Node *transform( Node *n );
584  // Do any transformation after analysis
585  void          do_transform();
586
587  virtual const Type* saturate(const Type* new_type, const Type* old_type,
588                               const Type* limit_type) const;
589  // Returns new_type->widen(old_type), which increments the widen bits until
590  // giving up with TypeInt::INT or TypeLong::LONG.
591  // Result is clipped to limit_type if necessary.
592
593#ifndef PRODUCT
594  static uint _total_invokes;    // For profiling, count invocations
595  void    inc_invokes()          { ++PhaseCCP::_total_invokes; }
596
597  static uint _total_constants;  // For profiling, count constants found
598  uint   _count_constants;
599  void    clear_constants()      { _count_constants = 0; }
600  void    inc_constants()        { ++_count_constants; }
601  uint    count_constants() const { return _count_constants; }
602
603  static void print_statistics();
604#endif
605};
606
607
608//------------------------------PhasePeephole----------------------------------
609// Phase for performing peephole optimizations on register allocated basic blocks.
610class PhasePeephole : public PhaseTransform {
611  PhaseRegAlloc *_regalloc;
612  PhaseCFG     &_cfg;
613  // Recursive traversal of program.  Pure function is unused in this phase
614  virtual Node *transform( Node *n );
615
616public:
617  PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
618  NOT_PRODUCT( ~PhasePeephole(); )
619
620  // Do any transformation after analysis
621  void          do_transform();
622
623#ifndef PRODUCT
624  static uint _total_peepholes;  // For profiling, count peephole rules applied
625  uint   _count_peepholes;
626  void    clear_peepholes()      { _count_peepholes = 0; }
627  void    inc_peepholes()        { ++_count_peepholes; }
628  uint    count_peepholes() const { return _count_peepholes; }
629
630  static void print_statistics();
631#endif
632};
633
634#endif // SHARE_VM_OPTO_PHASEX_HPP
635