1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "opto/castnode.hpp"
30#include "opto/cfgnode.hpp"
31#include "opto/connode.hpp"
32#include "opto/loopnode.hpp"
33#include "opto/machnode.hpp"
34#include "opto/matcher.hpp"
35#include "opto/node.hpp"
36#include "opto/opcodes.hpp"
37#include "opto/regmask.hpp"
38#include "opto/type.hpp"
39#include "utilities/copy.hpp"
40
41class RegMask;
42// #include "phase.hpp"
43class PhaseTransform;
44class PhaseGVN;
45
46// Arena we are currently building Nodes in
47const uint Node::NotAMachineReg = 0xffff0000;
48
49#ifndef PRODUCT
50extern int nodes_created;
51#endif
52#ifdef __clang__
53#pragma clang diagnostic push
54#pragma GCC diagnostic ignored "-Wuninitialized"
55#endif
56
57#ifdef ASSERT
58
59//-------------------------- construct_node------------------------------------
60// Set a breakpoint here to identify where a particular node index is built.
61void Node::verify_construction() {
62  _debug_orig = NULL;
63  int old_debug_idx = Compile::debug_idx();
64  int new_debug_idx = old_debug_idx+1;
65  if (new_debug_idx > 0) {
66    // Arrange that the lowest five decimal digits of _debug_idx
67    // will repeat those of _idx. In case this is somehow pathological,
68    // we continue to assign negative numbers (!) consecutively.
69    const int mod = 100000;
70    int bump = (int)(_idx - new_debug_idx) % mod;
71    if (bump < 0)  bump += mod;
72    assert(bump >= 0 && bump < mod, "");
73    new_debug_idx += bump;
74  }
75  Compile::set_debug_idx(new_debug_idx);
76  set_debug_idx( new_debug_idx );
77  assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
78  assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
79  if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
80    tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
81    BREAKPOINT;
82  }
83#if OPTO_DU_ITERATOR_ASSERT
84  _last_del = NULL;
85  _del_tick = 0;
86#endif
87  _hash_lock = 0;
88}
89
90
91// #ifdef ASSERT ...
92
93#if OPTO_DU_ITERATOR_ASSERT
94void DUIterator_Common::sample(const Node* node) {
95  _vdui     = VerifyDUIterators;
96  _node     = node;
97  _outcnt   = node->_outcnt;
98  _del_tick = node->_del_tick;
99  _last     = NULL;
100}
101
102void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
103  assert(_node     == node, "consistent iterator source");
104  assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
105}
106
107void DUIterator_Common::verify_resync() {
108  // Ensure that the loop body has just deleted the last guy produced.
109  const Node* node = _node;
110  // Ensure that at least one copy of the last-seen edge was deleted.
111  // Note:  It is OK to delete multiple copies of the last-seen edge.
112  // Unfortunately, we have no way to verify that all the deletions delete
113  // that same edge.  On this point we must use the Honor System.
114  assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
115  assert(node->_last_del == _last, "must have deleted the edge just produced");
116  // We liked this deletion, so accept the resulting outcnt and tick.
117  _outcnt   = node->_outcnt;
118  _del_tick = node->_del_tick;
119}
120
121void DUIterator_Common::reset(const DUIterator_Common& that) {
122  if (this == &that)  return;  // ignore assignment to self
123  if (!_vdui) {
124    // We need to initialize everything, overwriting garbage values.
125    _last = that._last;
126    _vdui = that._vdui;
127  }
128  // Note:  It is legal (though odd) for an iterator over some node x
129  // to be reassigned to iterate over another node y.  Some doubly-nested
130  // progress loops depend on being able to do this.
131  const Node* node = that._node;
132  // Re-initialize everything, except _last.
133  _node     = node;
134  _outcnt   = node->_outcnt;
135  _del_tick = node->_del_tick;
136}
137
138void DUIterator::sample(const Node* node) {
139  DUIterator_Common::sample(node);      // Initialize the assertion data.
140  _refresh_tick = 0;                    // No refreshes have happened, as yet.
141}
142
143void DUIterator::verify(const Node* node, bool at_end_ok) {
144  DUIterator_Common::verify(node, at_end_ok);
145  assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
146}
147
148void DUIterator::verify_increment() {
149  if (_refresh_tick & 1) {
150    // We have refreshed the index during this loop.
151    // Fix up _idx to meet asserts.
152    if (_idx > _outcnt)  _idx = _outcnt;
153  }
154  verify(_node, true);
155}
156
157void DUIterator::verify_resync() {
158  // Note:  We do not assert on _outcnt, because insertions are OK here.
159  DUIterator_Common::verify_resync();
160  // Make sure we are still in sync, possibly with no more out-edges:
161  verify(_node, true);
162}
163
164void DUIterator::reset(const DUIterator& that) {
165  if (this == &that)  return;  // self assignment is always a no-op
166  assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
167  assert(that._idx          == 0, "assign only the result of Node::outs()");
168  assert(_idx               == that._idx, "already assigned _idx");
169  if (!_vdui) {
170    // We need to initialize everything, overwriting garbage values.
171    sample(that._node);
172  } else {
173    DUIterator_Common::reset(that);
174    if (_refresh_tick & 1) {
175      _refresh_tick++;                  // Clear the "was refreshed" flag.
176    }
177    assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
178  }
179}
180
181void DUIterator::refresh() {
182  DUIterator_Common::sample(_node);     // Re-fetch assertion data.
183  _refresh_tick |= 1;                   // Set the "was refreshed" flag.
184}
185
186void DUIterator::verify_finish() {
187  // If the loop has killed the node, do not require it to re-run.
188  if (_node->_outcnt == 0)  _refresh_tick &= ~1;
189  // If this assert triggers, it means that a loop used refresh_out_pos
190  // to re-synch an iteration index, but the loop did not correctly
191  // re-run itself, using a "while (progress)" construct.
192  // This iterator enforces the rule that you must keep trying the loop
193  // until it "runs clean" without any need for refreshing.
194  assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
195}
196
197
198void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
199  DUIterator_Common::verify(node, at_end_ok);
200  Node** out    = node->_out;
201  uint   cnt    = node->_outcnt;
202  assert(cnt == _outcnt, "no insertions allowed");
203  assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
204  // This last check is carefully designed to work for NO_OUT_ARRAY.
205}
206
207void DUIterator_Fast::verify_limit() {
208  const Node* node = _node;
209  verify(node, true);
210  assert(_outp == node->_out + node->_outcnt, "limit still correct");
211}
212
213void DUIterator_Fast::verify_resync() {
214  const Node* node = _node;
215  if (_outp == node->_out + _outcnt) {
216    // Note that the limit imax, not the pointer i, gets updated with the
217    // exact count of deletions.  (For the pointer it's always "--i".)
218    assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
219    // This is a limit pointer, with a name like "imax".
220    // Fudge the _last field so that the common assert will be happy.
221    _last = (Node*) node->_last_del;
222    DUIterator_Common::verify_resync();
223  } else {
224    assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
225    // A normal internal pointer.
226    DUIterator_Common::verify_resync();
227    // Make sure we are still in sync, possibly with no more out-edges:
228    verify(node, true);
229  }
230}
231
232void DUIterator_Fast::verify_relimit(uint n) {
233  const Node* node = _node;
234  assert((int)n > 0, "use imax -= n only with a positive count");
235  // This must be a limit pointer, with a name like "imax".
236  assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
237  // The reported number of deletions must match what the node saw.
238  assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
239  // Fudge the _last field so that the common assert will be happy.
240  _last = (Node*) node->_last_del;
241  DUIterator_Common::verify_resync();
242}
243
244void DUIterator_Fast::reset(const DUIterator_Fast& that) {
245  assert(_outp              == that._outp, "already assigned _outp");
246  DUIterator_Common::reset(that);
247}
248
249void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
250  // at_end_ok means the _outp is allowed to underflow by 1
251  _outp += at_end_ok;
252  DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
253  _outp -= at_end_ok;
254  assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
255}
256
257void DUIterator_Last::verify_limit() {
258  // Do not require the limit address to be resynched.
259  //verify(node, true);
260  assert(_outp == _node->_out, "limit still correct");
261}
262
263void DUIterator_Last::verify_step(uint num_edges) {
264  assert((int)num_edges > 0, "need non-zero edge count for loop progress");
265  _outcnt   -= num_edges;
266  _del_tick += num_edges;
267  // Make sure we are still in sync, possibly with no more out-edges:
268  const Node* node = _node;
269  verify(node, true);
270  assert(node->_last_del == _last, "must have deleted the edge just produced");
271}
272
273#endif //OPTO_DU_ITERATOR_ASSERT
274
275
276#endif //ASSERT
277
278
279// This constant used to initialize _out may be any non-null value.
280// The value NULL is reserved for the top node only.
281#define NO_OUT_ARRAY ((Node**)-1)
282
283// Out-of-line code from node constructors.
284// Executed only when extra debug info. is being passed around.
285static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
286  C->set_node_notes_at(idx, nn);
287}
288
289// Shared initialization code.
290inline int Node::Init(int req) {
291  Compile* C = Compile::current();
292  int idx = C->next_unique();
293
294  // Allocate memory for the necessary number of edges.
295  if (req > 0) {
296    // Allocate space for _in array to have double alignment.
297    _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
298  }
299  // If there are default notes floating around, capture them:
300  Node_Notes* nn = C->default_node_notes();
301  if (nn != NULL)  init_node_notes(C, idx, nn);
302
303  // Note:  At this point, C is dead,
304  // and we begin to initialize the new Node.
305
306  _cnt = _max = req;
307  _outcnt = _outmax = 0;
308  _class_id = Class_Node;
309  _flags = 0;
310  _out = NO_OUT_ARRAY;
311  return idx;
312}
313
314//------------------------------Node-------------------------------------------
315// Create a Node, with a given number of required edges.
316Node::Node(uint req)
317  : _idx(Init(req))
318#ifdef ASSERT
319  , _parse_idx(_idx)
320#endif
321{
322  assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
323  debug_only( verify_construction() );
324  NOT_PRODUCT(nodes_created++);
325  if (req == 0) {
326    _in = NULL;
327  } else {
328    Node** to = _in;
329    for(uint i = 0; i < req; i++) {
330      to[i] = NULL;
331    }
332  }
333}
334
335//------------------------------Node-------------------------------------------
336Node::Node(Node *n0)
337  : _idx(Init(1))
338#ifdef ASSERT
339  , _parse_idx(_idx)
340#endif
341{
342  debug_only( verify_construction() );
343  NOT_PRODUCT(nodes_created++);
344  assert( is_not_dead(n0), "can not use dead node");
345  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
346}
347
348//------------------------------Node-------------------------------------------
349Node::Node(Node *n0, Node *n1)
350  : _idx(Init(2))
351#ifdef ASSERT
352  , _parse_idx(_idx)
353#endif
354{
355  debug_only( verify_construction() );
356  NOT_PRODUCT(nodes_created++);
357  assert( is_not_dead(n0), "can not use dead node");
358  assert( is_not_dead(n1), "can not use dead node");
359  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
360  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
361}
362
363//------------------------------Node-------------------------------------------
364Node::Node(Node *n0, Node *n1, Node *n2)
365  : _idx(Init(3))
366#ifdef ASSERT
367  , _parse_idx(_idx)
368#endif
369{
370  debug_only( verify_construction() );
371  NOT_PRODUCT(nodes_created++);
372  assert( is_not_dead(n0), "can not use dead node");
373  assert( is_not_dead(n1), "can not use dead node");
374  assert( is_not_dead(n2), "can not use dead node");
375  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
376  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
377  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
378}
379
380//------------------------------Node-------------------------------------------
381Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
382  : _idx(Init(4))
383#ifdef ASSERT
384  , _parse_idx(_idx)
385#endif
386{
387  debug_only( verify_construction() );
388  NOT_PRODUCT(nodes_created++);
389  assert( is_not_dead(n0), "can not use dead node");
390  assert( is_not_dead(n1), "can not use dead node");
391  assert( is_not_dead(n2), "can not use dead node");
392  assert( is_not_dead(n3), "can not use dead node");
393  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
394  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
395  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
396  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
397}
398
399//------------------------------Node-------------------------------------------
400Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
401  : _idx(Init(5))
402#ifdef ASSERT
403  , _parse_idx(_idx)
404#endif
405{
406  debug_only( verify_construction() );
407  NOT_PRODUCT(nodes_created++);
408  assert( is_not_dead(n0), "can not use dead node");
409  assert( is_not_dead(n1), "can not use dead node");
410  assert( is_not_dead(n2), "can not use dead node");
411  assert( is_not_dead(n3), "can not use dead node");
412  assert( is_not_dead(n4), "can not use dead node");
413  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
414  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
415  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
416  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
417  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
418}
419
420//------------------------------Node-------------------------------------------
421Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
422                     Node *n4, Node *n5)
423  : _idx(Init(6))
424#ifdef ASSERT
425  , _parse_idx(_idx)
426#endif
427{
428  debug_only( verify_construction() );
429  NOT_PRODUCT(nodes_created++);
430  assert( is_not_dead(n0), "can not use dead node");
431  assert( is_not_dead(n1), "can not use dead node");
432  assert( is_not_dead(n2), "can not use dead node");
433  assert( is_not_dead(n3), "can not use dead node");
434  assert( is_not_dead(n4), "can not use dead node");
435  assert( is_not_dead(n5), "can not use dead node");
436  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
437  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
438  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
439  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
440  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
441  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
442}
443
444//------------------------------Node-------------------------------------------
445Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
446                     Node *n4, Node *n5, Node *n6)
447  : _idx(Init(7))
448#ifdef ASSERT
449  , _parse_idx(_idx)
450#endif
451{
452  debug_only( verify_construction() );
453  NOT_PRODUCT(nodes_created++);
454  assert( is_not_dead(n0), "can not use dead node");
455  assert( is_not_dead(n1), "can not use dead node");
456  assert( is_not_dead(n2), "can not use dead node");
457  assert( is_not_dead(n3), "can not use dead node");
458  assert( is_not_dead(n4), "can not use dead node");
459  assert( is_not_dead(n5), "can not use dead node");
460  assert( is_not_dead(n6), "can not use dead node");
461  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
462  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
463  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
464  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
465  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
466  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
467  _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
468}
469
470#ifdef __clang__
471#pragma clang diagnostic pop
472#endif
473
474
475//------------------------------clone------------------------------------------
476// Clone a Node.
477Node *Node::clone() const {
478  Compile* C = Compile::current();
479  uint s = size_of();           // Size of inherited Node
480  Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
481  Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
482  // Set the new input pointer array
483  n->_in = (Node**)(((char*)n)+s);
484  // Cannot share the old output pointer array, so kill it
485  n->_out = NO_OUT_ARRAY;
486  // And reset the counters to 0
487  n->_outcnt = 0;
488  n->_outmax = 0;
489  // Unlock this guy, since he is not in any hash table.
490  debug_only(n->_hash_lock = 0);
491  // Walk the old node's input list to duplicate its edges
492  uint i;
493  for( i = 0; i < len(); i++ ) {
494    Node *x = in(i);
495    n->_in[i] = x;
496    if (x != NULL) x->add_out(n);
497  }
498  if (is_macro())
499    C->add_macro_node(n);
500  if (is_expensive())
501    C->add_expensive_node(n);
502  // If the cloned node is a range check dependent CastII, add it to the list.
503  CastIINode* cast = n->isa_CastII();
504  if (cast != NULL && cast->has_range_check()) {
505    C->add_range_check_cast(cast);
506  }
507
508  n->set_idx(C->next_unique()); // Get new unique index as well
509  debug_only( n->verify_construction() );
510  NOT_PRODUCT(nodes_created++);
511  // Do not patch over the debug_idx of a clone, because it makes it
512  // impossible to break on the clone's moment of creation.
513  //debug_only( n->set_debug_idx( debug_idx() ) );
514
515  C->copy_node_notes_to(n, (Node*) this);
516
517  // MachNode clone
518  uint nopnds;
519  if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
520    MachNode *mach  = n->as_Mach();
521    MachNode *mthis = this->as_Mach();
522    // Get address of _opnd_array.
523    // It should be the same offset since it is the clone of this node.
524    MachOper **from = mthis->_opnds;
525    MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
526                    pointer_delta((const void*)from,
527                                  (const void*)(&mthis->_opnds), 1));
528    mach->_opnds = to;
529    for ( uint i = 0; i < nopnds; ++i ) {
530      to[i] = from[i]->clone();
531    }
532  }
533  // cloning CallNode may need to clone JVMState
534  if (n->is_Call()) {
535    n->as_Call()->clone_jvms(C);
536  }
537  if (n->is_SafePoint()) {
538    n->as_SafePoint()->clone_replaced_nodes();
539  }
540  return n;                     // Return the clone
541}
542
543//---------------------------setup_is_top--------------------------------------
544// Call this when changing the top node, to reassert the invariants
545// required by Node::is_top.  See Compile::set_cached_top_node.
546void Node::setup_is_top() {
547  if (this == (Node*)Compile::current()->top()) {
548    // This node has just become top.  Kill its out array.
549    _outcnt = _outmax = 0;
550    _out = NULL;                           // marker value for top
551    assert(is_top(), "must be top");
552  } else {
553    if (_out == NULL)  _out = NO_OUT_ARRAY;
554    assert(!is_top(), "must not be top");
555  }
556}
557
558
559//------------------------------~Node------------------------------------------
560// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
561void Node::destruct() {
562  // Eagerly reclaim unique Node numberings
563  Compile* compile = Compile::current();
564  if ((uint)_idx+1 == compile->unique()) {
565    compile->set_unique(compile->unique()-1);
566  }
567  // Clear debug info:
568  Node_Notes* nn = compile->node_notes_at(_idx);
569  if (nn != NULL)  nn->clear();
570  // Walk the input array, freeing the corresponding output edges
571  _cnt = _max;  // forget req/prec distinction
572  uint i;
573  for( i = 0; i < _max; i++ ) {
574    set_req(i, NULL);
575    //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
576  }
577  assert(outcnt() == 0, "deleting a node must not leave a dangling use");
578  // See if the input array was allocated just prior to the object
579  int edge_size = _max*sizeof(void*);
580  int out_edge_size = _outmax*sizeof(void*);
581  char *edge_end = ((char*)_in) + edge_size;
582  char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
583  int node_size = size_of();
584
585  // Free the output edge array
586  if (out_edge_size > 0) {
587    compile->node_arena()->Afree(out_array, out_edge_size);
588  }
589
590  // Free the input edge array and the node itself
591  if( edge_end == (char*)this ) {
592    // It was; free the input array and object all in one hit
593#ifndef ASSERT
594    compile->node_arena()->Afree(_in,edge_size+node_size);
595#endif
596  } else {
597    // Free just the input array
598    compile->node_arena()->Afree(_in,edge_size);
599
600    // Free just the object
601#ifndef ASSERT
602    compile->node_arena()->Afree(this,node_size);
603#endif
604  }
605  if (is_macro()) {
606    compile->remove_macro_node(this);
607  }
608  if (is_expensive()) {
609    compile->remove_expensive_node(this);
610  }
611  CastIINode* cast = isa_CastII();
612  if (cast != NULL && cast->has_range_check()) {
613    compile->remove_range_check_cast(cast);
614  }
615
616  if (is_SafePoint()) {
617    as_SafePoint()->delete_replaced_nodes();
618  }
619#ifdef ASSERT
620  // We will not actually delete the storage, but we'll make the node unusable.
621  *(address*)this = badAddress;  // smash the C++ vtbl, probably
622  _in = _out = (Node**) badAddress;
623  _max = _cnt = _outmax = _outcnt = 0;
624  compile->remove_modified_node(this);
625#endif
626}
627
628//------------------------------grow-------------------------------------------
629// Grow the input array, making space for more edges
630void Node::grow( uint len ) {
631  Arena* arena = Compile::current()->node_arena();
632  uint new_max = _max;
633  if( new_max == 0 ) {
634    _max = 4;
635    _in = (Node**)arena->Amalloc(4*sizeof(Node*));
636    Node** to = _in;
637    to[0] = NULL;
638    to[1] = NULL;
639    to[2] = NULL;
640    to[3] = NULL;
641    return;
642  }
643  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
644  // Trimming to limit allows a uint8 to handle up to 255 edges.
645  // Previously I was using only powers-of-2 which peaked at 128 edges.
646  //if( new_max >= limit ) new_max = limit-1;
647  _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
648  Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
649  _max = new_max;               // Record new max length
650  // This assertion makes sure that Node::_max is wide enough to
651  // represent the numerical value of new_max.
652  assert(_max == new_max && _max > len, "int width of _max is too small");
653}
654
655//-----------------------------out_grow----------------------------------------
656// Grow the input array, making space for more edges
657void Node::out_grow( uint len ) {
658  assert(!is_top(), "cannot grow a top node's out array");
659  Arena* arena = Compile::current()->node_arena();
660  uint new_max = _outmax;
661  if( new_max == 0 ) {
662    _outmax = 4;
663    _out = (Node **)arena->Amalloc(4*sizeof(Node*));
664    return;
665  }
666  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
667  // Trimming to limit allows a uint8 to handle up to 255 edges.
668  // Previously I was using only powers-of-2 which peaked at 128 edges.
669  //if( new_max >= limit ) new_max = limit-1;
670  assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
671  _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
672  //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
673  _outmax = new_max;               // Record new max length
674  // This assertion makes sure that Node::_max is wide enough to
675  // represent the numerical value of new_max.
676  assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
677}
678
679#ifdef ASSERT
680//------------------------------is_dead----------------------------------------
681bool Node::is_dead() const {
682  // Mach and pinch point nodes may look like dead.
683  if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
684    return false;
685  for( uint i = 0; i < _max; i++ )
686    if( _in[i] != NULL )
687      return false;
688  dump();
689  return true;
690}
691#endif
692
693
694//------------------------------is_unreachable---------------------------------
695bool Node::is_unreachable(PhaseIterGVN &igvn) const {
696  assert(!is_Mach(), "doesn't work with MachNodes");
697  return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
698}
699
700//------------------------------add_req----------------------------------------
701// Add a new required input at the end
702void Node::add_req( Node *n ) {
703  assert( is_not_dead(n), "can not use dead node");
704
705  // Look to see if I can move precedence down one without reallocating
706  if( (_cnt >= _max) || (in(_max-1) != NULL) )
707    grow( _max+1 );
708
709  // Find a precedence edge to move
710  if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
711    uint i;
712    for( i=_cnt; i<_max; i++ )
713      if( in(i) == NULL )       // Find the NULL at end of prec edge list
714        break;                  // There must be one, since we grew the array
715    _in[i] = in(_cnt);          // Move prec over, making space for req edge
716  }
717  _in[_cnt++] = n;            // Stuff over old prec edge
718  if (n != NULL) n->add_out((Node *)this);
719}
720
721//---------------------------add_req_batch-------------------------------------
722// Add a new required input at the end
723void Node::add_req_batch( Node *n, uint m ) {
724  assert( is_not_dead(n), "can not use dead node");
725  // check various edge cases
726  if ((int)m <= 1) {
727    assert((int)m >= 0, "oob");
728    if (m != 0)  add_req(n);
729    return;
730  }
731
732  // Look to see if I can move precedence down one without reallocating
733  if( (_cnt+m) > _max || _in[_max-m] )
734    grow( _max+m );
735
736  // Find a precedence edge to move
737  if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
738    uint i;
739    for( i=_cnt; i<_max; i++ )
740      if( _in[i] == NULL )      // Find the NULL at end of prec edge list
741        break;                  // There must be one, since we grew the array
742    // Slide all the precs over by m positions (assume #prec << m).
743    Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
744  }
745
746  // Stuff over the old prec edges
747  for(uint i=0; i<m; i++ ) {
748    _in[_cnt++] = n;
749  }
750
751  // Insert multiple out edges on the node.
752  if (n != NULL && !n->is_top()) {
753    for(uint i=0; i<m; i++ ) {
754      n->add_out((Node *)this);
755    }
756  }
757}
758
759//------------------------------del_req----------------------------------------
760// Delete the required edge and compact the edge array
761void Node::del_req( uint idx ) {
762  assert( idx < _cnt, "oob");
763  assert( !VerifyHashTableKeys || _hash_lock == 0,
764          "remove node from hash table before modifying it");
765  // First remove corresponding def-use edge
766  Node *n = in(idx);
767  if (n != NULL) n->del_out((Node *)this);
768  _in[idx] = in(--_cnt); // Compact the array
769  // Avoid spec violation: Gap in prec edges.
770  close_prec_gap_at(_cnt);
771  Compile::current()->record_modified_node(this);
772}
773
774//------------------------------del_req_ordered--------------------------------
775// Delete the required edge and compact the edge array with preserved order
776void Node::del_req_ordered( uint idx ) {
777  assert( idx < _cnt, "oob");
778  assert( !VerifyHashTableKeys || _hash_lock == 0,
779          "remove node from hash table before modifying it");
780  // First remove corresponding def-use edge
781  Node *n = in(idx);
782  if (n != NULL) n->del_out((Node *)this);
783  if (idx < --_cnt) {    // Not last edge ?
784    Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
785  }
786  // Avoid spec violation: Gap in prec edges.
787  close_prec_gap_at(_cnt);
788  Compile::current()->record_modified_node(this);
789}
790
791//------------------------------ins_req----------------------------------------
792// Insert a new required input at the end
793void Node::ins_req( uint idx, Node *n ) {
794  assert( is_not_dead(n), "can not use dead node");
795  add_req(NULL);                // Make space
796  assert( idx < _max, "Must have allocated enough space");
797  // Slide over
798  if(_cnt-idx-1 > 0) {
799    Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
800  }
801  _in[idx] = n;                            // Stuff over old required edge
802  if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
803}
804
805//-----------------------------find_edge---------------------------------------
806int Node::find_edge(Node* n) {
807  for (uint i = 0; i < len(); i++) {
808    if (_in[i] == n)  return i;
809  }
810  return -1;
811}
812
813//----------------------------replace_edge-------------------------------------
814int Node::replace_edge(Node* old, Node* neww) {
815  if (old == neww)  return 0;  // nothing to do
816  uint nrep = 0;
817  for (uint i = 0; i < len(); i++) {
818    if (in(i) == old) {
819      if (i < req()) {
820        set_req(i, neww);
821      } else {
822        assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
823        set_prec(i, neww);
824      }
825      nrep++;
826    }
827  }
828  return nrep;
829}
830
831/**
832 * Replace input edges in the range pointing to 'old' node.
833 */
834int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
835  if (old == neww)  return 0;  // nothing to do
836  uint nrep = 0;
837  for (int i = start; i < end; i++) {
838    if (in(i) == old) {
839      set_req(i, neww);
840      nrep++;
841    }
842  }
843  return nrep;
844}
845
846//-------------------------disconnect_inputs-----------------------------------
847// NULL out all inputs to eliminate incoming Def-Use edges.
848// Return the number of edges between 'n' and 'this'
849int Node::disconnect_inputs(Node *n, Compile* C) {
850  int edges_to_n = 0;
851
852  uint cnt = req();
853  for( uint i = 0; i < cnt; ++i ) {
854    if( in(i) == 0 ) continue;
855    if( in(i) == n ) ++edges_to_n;
856    set_req(i, NULL);
857  }
858  // Remove precedence edges if any exist
859  // Note: Safepoints may have precedence edges, even during parsing
860  if( (req() != len()) && (in(req()) != NULL) ) {
861    uint max = len();
862    for( uint i = 0; i < max; ++i ) {
863      if( in(i) == 0 ) continue;
864      if( in(i) == n ) ++edges_to_n;
865      set_prec(i, NULL);
866    }
867  }
868
869  // Node::destruct requires all out edges be deleted first
870  // debug_only(destruct();)   // no reuse benefit expected
871  if (edges_to_n == 0) {
872    C->record_dead_node(_idx);
873  }
874  return edges_to_n;
875}
876
877//-----------------------------uncast---------------------------------------
878// %%% Temporary, until we sort out CheckCastPP vs. CastPP.
879// Strip away casting.  (It is depth-limited.)
880Node* Node::uncast() const {
881  // Should be inline:
882  //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
883  if (is_ConstraintCast())
884    return uncast_helper(this);
885  else
886    return (Node*) this;
887}
888
889// Find out of current node that matches opcode.
890Node* Node::find_out_with(int opcode) {
891  for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
892    Node* use = fast_out(i);
893    if (use->Opcode() == opcode) {
894      return use;
895    }
896  }
897  return NULL;
898}
899
900// Return true if the current node has an out that matches opcode.
901bool Node::has_out_with(int opcode) {
902  return (find_out_with(opcode) != NULL);
903}
904
905// Return true if the current node has an out that matches any of the opcodes.
906bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
907  for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
908      int opcode = fast_out(i)->Opcode();
909      if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
910        return true;
911      }
912  }
913  return false;
914}
915
916
917//---------------------------uncast_helper-------------------------------------
918Node* Node::uncast_helper(const Node* p) {
919#ifdef ASSERT
920  uint depth_count = 0;
921  const Node* orig_p = p;
922#endif
923
924  while (true) {
925#ifdef ASSERT
926    if (depth_count >= K) {
927      orig_p->dump(4);
928      if (p != orig_p)
929        p->dump(1);
930    }
931    assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
932#endif
933    if (p == NULL || p->req() != 2) {
934      break;
935    } else if (p->is_ConstraintCast()) {
936      p = p->in(1);
937    } else {
938      break;
939    }
940  }
941  return (Node*) p;
942}
943
944//------------------------------add_prec---------------------------------------
945// Add a new precedence input.  Precedence inputs are unordered, with
946// duplicates removed and NULLs packed down at the end.
947void Node::add_prec( Node *n ) {
948  assert( is_not_dead(n), "can not use dead node");
949
950  // Check for NULL at end
951  if( _cnt >= _max || in(_max-1) )
952    grow( _max+1 );
953
954  // Find a precedence edge to move
955  uint i = _cnt;
956  while( in(i) != NULL ) {
957    if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
958    i++;
959  }
960  _in[i] = n;                                // Stuff prec edge over NULL
961  if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
962
963#ifdef ASSERT
964  while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
965#endif
966}
967
968//------------------------------rm_prec----------------------------------------
969// Remove a precedence input.  Precedence inputs are unordered, with
970// duplicates removed and NULLs packed down at the end.
971void Node::rm_prec( uint j ) {
972  assert(j < _max, "oob: i=%d, _max=%d", j, _max);
973  assert(j >= _cnt, "not a precedence edge");
974  if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
975  _in[j]->del_out((Node *)this);
976  close_prec_gap_at(j);
977}
978
979//------------------------------size_of----------------------------------------
980uint Node::size_of() const { return sizeof(*this); }
981
982//------------------------------ideal_reg--------------------------------------
983uint Node::ideal_reg() const { return 0; }
984
985//------------------------------jvms-------------------------------------------
986JVMState* Node::jvms() const { return NULL; }
987
988#ifdef ASSERT
989//------------------------------jvms-------------------------------------------
990bool Node::verify_jvms(const JVMState* using_jvms) const {
991  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
992    if (jvms == using_jvms)  return true;
993  }
994  return false;
995}
996
997//------------------------------init_NodeProperty------------------------------
998void Node::init_NodeProperty() {
999  assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1000  assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1001}
1002#endif
1003
1004//------------------------------format-----------------------------------------
1005// Print as assembly
1006void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1007//------------------------------emit-------------------------------------------
1008// Emit bytes starting at parameter 'ptr'.
1009void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1010//------------------------------size-------------------------------------------
1011// Size of instruction in bytes
1012uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1013
1014//------------------------------CFG Construction-------------------------------
1015// Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1016// Goto and Return.
1017const Node *Node::is_block_proj() const { return 0; }
1018
1019// Minimum guaranteed type
1020const Type *Node::bottom_type() const { return Type::BOTTOM; }
1021
1022
1023//------------------------------raise_bottom_type------------------------------
1024// Get the worst-case Type output for this Node.
1025void Node::raise_bottom_type(const Type* new_type) {
1026  if (is_Type()) {
1027    TypeNode *n = this->as_Type();
1028    if (VerifyAliases) {
1029      assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1030    }
1031    n->set_type(new_type);
1032  } else if (is_Load()) {
1033    LoadNode *n = this->as_Load();
1034    if (VerifyAliases) {
1035      assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1036    }
1037    n->set_type(new_type);
1038  }
1039}
1040
1041//------------------------------Identity---------------------------------------
1042// Return a node that the given node is equivalent to.
1043Node* Node::Identity(PhaseGVN* phase) {
1044  return this;                  // Default to no identities
1045}
1046
1047//------------------------------Value------------------------------------------
1048// Compute a new Type for a node using the Type of the inputs.
1049const Type* Node::Value(PhaseGVN* phase) const {
1050  return bottom_type();         // Default to worst-case Type
1051}
1052
1053//------------------------------Ideal------------------------------------------
1054//
1055// 'Idealize' the graph rooted at this Node.
1056//
1057// In order to be efficient and flexible there are some subtle invariants
1058// these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1059// these invariants, although its too slow to have on by default.  If you are
1060// hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1061//
1062// The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1063// pointer.  If ANY change is made, it must return the root of the reshaped
1064// graph - even if the root is the same Node.  Example: swapping the inputs
1065// to an AddINode gives the same answer and same root, but you still have to
1066// return the 'this' pointer instead of NULL.
1067//
1068// You cannot return an OLD Node, except for the 'this' pointer.  Use the
1069// Identity call to return an old Node; basically if Identity can find
1070// another Node have the Ideal call make no change and return NULL.
1071// Example: AddINode::Ideal must check for add of zero; in this case it
1072// returns NULL instead of doing any graph reshaping.
1073//
1074// You cannot modify any old Nodes except for the 'this' pointer.  Due to
1075// sharing there may be other users of the old Nodes relying on their current
1076// semantics.  Modifying them will break the other users.
1077// Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1078// "X+3" unchanged in case it is shared.
1079//
1080// If you modify the 'this' pointer's inputs, you should use
1081// 'set_req'.  If you are making a new Node (either as the new root or
1082// some new internal piece) you may use 'init_req' to set the initial
1083// value.  You can make a new Node with either 'new' or 'clone'.  In
1084// either case, def-use info is correctly maintained.
1085//
1086// Example: reshape "(X+3)+4" into "X+7":
1087//    set_req(1, in(1)->in(1));
1088//    set_req(2, phase->intcon(7));
1089//    return this;
1090// Example: reshape "X*4" into "X<<2"
1091//    return new LShiftINode(in(1), phase->intcon(2));
1092//
1093// You must call 'phase->transform(X)' on any new Nodes X you make, except
1094// for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1095//    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1096//    return new AddINode(shift, in(1));
1097//
1098// When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1099// These forms are faster than 'phase->transform(new ConNode())' and Do
1100// The Right Thing with def-use info.
1101//
1102// You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1103// graph uses the 'this' Node it must be the root.  If you want a Node with
1104// the same Opcode as the 'this' pointer use 'clone'.
1105//
1106Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1107  return NULL;                  // Default to being Ideal already
1108}
1109
1110// Some nodes have specific Ideal subgraph transformations only if they are
1111// unique users of specific nodes. Such nodes should be put on IGVN worklist
1112// for the transformations to happen.
1113bool Node::has_special_unique_user() const {
1114  assert(outcnt() == 1, "match only for unique out");
1115  Node* n = unique_out();
1116  int op  = Opcode();
1117  if (this->is_Store()) {
1118    // Condition for back-to-back stores folding.
1119    return n->Opcode() == op && n->in(MemNode::Memory) == this;
1120  } else if (this->is_Load() || this->is_DecodeN()) {
1121    // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1122    return n->Opcode() == Op_MemBarAcquire;
1123  } else if (op == Op_AddL) {
1124    // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1125    return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1126  } else if (op == Op_SubI || op == Op_SubL) {
1127    // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1128    return n->Opcode() == op && n->in(2) == this;
1129  } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1130    // See IfProjNode::Identity()
1131    return true;
1132  }
1133  return false;
1134};
1135
1136//--------------------------find_exact_control---------------------------------
1137// Skip Proj and CatchProj nodes chains. Check for Null and Top.
1138Node* Node::find_exact_control(Node* ctrl) {
1139  if (ctrl == NULL && this->is_Region())
1140    ctrl = this->as_Region()->is_copy();
1141
1142  if (ctrl != NULL && ctrl->is_CatchProj()) {
1143    if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1144      ctrl = ctrl->in(0);
1145    if (ctrl != NULL && !ctrl->is_top())
1146      ctrl = ctrl->in(0);
1147  }
1148
1149  if (ctrl != NULL && ctrl->is_Proj())
1150    ctrl = ctrl->in(0);
1151
1152  return ctrl;
1153}
1154
1155//--------------------------dominates------------------------------------------
1156// Helper function for MemNode::all_controls_dominate().
1157// Check if 'this' control node dominates or equal to 'sub' control node.
1158// We already know that if any path back to Root or Start reaches 'this',
1159// then all paths so, so this is a simple search for one example,
1160// not an exhaustive search for a counterexample.
1161bool Node::dominates(Node* sub, Node_List &nlist) {
1162  assert(this->is_CFG(), "expecting control");
1163  assert(sub != NULL && sub->is_CFG(), "expecting control");
1164
1165  // detect dead cycle without regions
1166  int iterations_without_region_limit = DominatorSearchLimit;
1167
1168  Node* orig_sub = sub;
1169  Node* dom      = this;
1170  bool  met_dom  = false;
1171  nlist.clear();
1172
1173  // Walk 'sub' backward up the chain to 'dom', watching for regions.
1174  // After seeing 'dom', continue up to Root or Start.
1175  // If we hit a region (backward split point), it may be a loop head.
1176  // Keep going through one of the region's inputs.  If we reach the
1177  // same region again, go through a different input.  Eventually we
1178  // will either exit through the loop head, or give up.
1179  // (If we get confused, break out and return a conservative 'false'.)
1180  while (sub != NULL) {
1181    if (sub->is_top())  break; // Conservative answer for dead code.
1182    if (sub == dom) {
1183      if (nlist.size() == 0) {
1184        // No Region nodes except loops were visited before and the EntryControl
1185        // path was taken for loops: it did not walk in a cycle.
1186        return true;
1187      } else if (met_dom) {
1188        break;          // already met before: walk in a cycle
1189      } else {
1190        // Region nodes were visited. Continue walk up to Start or Root
1191        // to make sure that it did not walk in a cycle.
1192        met_dom = true; // first time meet
1193        iterations_without_region_limit = DominatorSearchLimit; // Reset
1194     }
1195    }
1196    if (sub->is_Start() || sub->is_Root()) {
1197      // Success if we met 'dom' along a path to Start or Root.
1198      // We assume there are no alternative paths that avoid 'dom'.
1199      // (This assumption is up to the caller to ensure!)
1200      return met_dom;
1201    }
1202    Node* up = sub->in(0);
1203    // Normalize simple pass-through regions and projections:
1204    up = sub->find_exact_control(up);
1205    // If sub == up, we found a self-loop.  Try to push past it.
1206    if (sub == up && sub->is_Loop()) {
1207      // Take loop entry path on the way up to 'dom'.
1208      up = sub->in(1); // in(LoopNode::EntryControl);
1209    } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1210      // Always take in(1) path on the way up to 'dom' for clone regions
1211      // (with only one input) or regions which merge > 2 paths
1212      // (usually used to merge fast/slow paths).
1213      up = sub->in(1);
1214    } else if (sub == up && sub->is_Region()) {
1215      // Try both paths for Regions with 2 input paths (it may be a loop head).
1216      // It could give conservative 'false' answer without information
1217      // which region's input is the entry path.
1218      iterations_without_region_limit = DominatorSearchLimit; // Reset
1219
1220      bool region_was_visited_before = false;
1221      // Was this Region node visited before?
1222      // If so, we have reached it because we accidentally took a
1223      // loop-back edge from 'sub' back into the body of the loop,
1224      // and worked our way up again to the loop header 'sub'.
1225      // So, take the first unexplored path on the way up to 'dom'.
1226      for (int j = nlist.size() - 1; j >= 0; j--) {
1227        intptr_t ni = (intptr_t)nlist.at(j);
1228        Node* visited = (Node*)(ni & ~1);
1229        bool  visited_twice_already = ((ni & 1) != 0);
1230        if (visited == sub) {
1231          if (visited_twice_already) {
1232            // Visited 2 paths, but still stuck in loop body.  Give up.
1233            return false;
1234          }
1235          // The Region node was visited before only once.
1236          // (We will repush with the low bit set, below.)
1237          nlist.remove(j);
1238          // We will find a new edge and re-insert.
1239          region_was_visited_before = true;
1240          break;
1241        }
1242      }
1243
1244      // Find an incoming edge which has not been seen yet; walk through it.
1245      assert(up == sub, "");
1246      uint skip = region_was_visited_before ? 1 : 0;
1247      for (uint i = 1; i < sub->req(); i++) {
1248        Node* in = sub->in(i);
1249        if (in != NULL && !in->is_top() && in != sub) {
1250          if (skip == 0) {
1251            up = in;
1252            break;
1253          }
1254          --skip;               // skip this nontrivial input
1255        }
1256      }
1257
1258      // Set 0 bit to indicate that both paths were taken.
1259      nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1260    }
1261
1262    if (up == sub) {
1263      break;    // some kind of tight cycle
1264    }
1265    if (up == orig_sub && met_dom) {
1266      // returned back after visiting 'dom'
1267      break;    // some kind of cycle
1268    }
1269    if (--iterations_without_region_limit < 0) {
1270      break;    // dead cycle
1271    }
1272    sub = up;
1273  }
1274
1275  // Did not meet Root or Start node in pred. chain.
1276  // Conservative answer for dead code.
1277  return false;
1278}
1279
1280//------------------------------remove_dead_region-----------------------------
1281// This control node is dead.  Follow the subgraph below it making everything
1282// using it dead as well.  This will happen normally via the usual IterGVN
1283// worklist but this call is more efficient.  Do not update use-def info
1284// inside the dead region, just at the borders.
1285static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1286  // Con's are a popular node to re-hit in the hash table again.
1287  if( dead->is_Con() ) return;
1288
1289  // Can't put ResourceMark here since igvn->_worklist uses the same arena
1290  // for verify pass with +VerifyOpto and we add/remove elements in it here.
1291  Node_List  nstack(Thread::current()->resource_area());
1292
1293  Node *top = igvn->C->top();
1294  nstack.push(dead);
1295  bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1296
1297  while (nstack.size() > 0) {
1298    dead = nstack.pop();
1299    if (dead->outcnt() > 0) {
1300      // Keep dead node on stack until all uses are processed.
1301      nstack.push(dead);
1302      // For all Users of the Dead...    ;-)
1303      for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1304        Node* use = dead->last_out(k);
1305        igvn->hash_delete(use);       // Yank from hash table prior to mod
1306        if (use->in(0) == dead) {     // Found another dead node
1307          assert (!use->is_Con(), "Control for Con node should be Root node.");
1308          use->set_req(0, top);       // Cut dead edge to prevent processing
1309          nstack.push(use);           // the dead node again.
1310        } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1311                   use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1312                   use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1313          use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1314          use->set_req(0, top);       // Cut self edge
1315          nstack.push(use);
1316        } else {                      // Else found a not-dead user
1317          // Dead if all inputs are top or null
1318          bool dead_use = !use->is_Root(); // Keep empty graph alive
1319          for (uint j = 1; j < use->req(); j++) {
1320            Node* in = use->in(j);
1321            if (in == dead) {         // Turn all dead inputs into TOP
1322              use->set_req(j, top);
1323            } else if (in != NULL && !in->is_top()) {
1324              dead_use = false;
1325            }
1326          }
1327          if (dead_use) {
1328            if (use->is_Region()) {
1329              use->set_req(0, top);   // Cut self edge
1330            }
1331            nstack.push(use);
1332          } else {
1333            igvn->_worklist.push(use);
1334          }
1335        }
1336        // Refresh the iterator, since any number of kills might have happened.
1337        k = dead->last_outs(kmin);
1338      }
1339    } else { // (dead->outcnt() == 0)
1340      // Done with outputs.
1341      igvn->hash_delete(dead);
1342      igvn->_worklist.remove(dead);
1343      igvn->C->remove_modified_node(dead);
1344      igvn->set_type(dead, Type::TOP);
1345      if (dead->is_macro()) {
1346        igvn->C->remove_macro_node(dead);
1347      }
1348      if (dead->is_expensive()) {
1349        igvn->C->remove_expensive_node(dead);
1350      }
1351      CastIINode* cast = dead->isa_CastII();
1352      if (cast != NULL && cast->has_range_check()) {
1353        igvn->C->remove_range_check_cast(cast);
1354      }
1355      igvn->C->record_dead_node(dead->_idx);
1356      // Kill all inputs to the dead guy
1357      for (uint i=0; i < dead->req(); i++) {
1358        Node *n = dead->in(i);      // Get input to dead guy
1359        if (n != NULL && !n->is_top()) { // Input is valid?
1360          dead->set_req(i, top);    // Smash input away
1361          if (n->outcnt() == 0) {   // Input also goes dead?
1362            if (!n->is_Con())
1363              nstack.push(n);       // Clear it out as well
1364          } else if (n->outcnt() == 1 &&
1365                     n->has_special_unique_user()) {
1366            igvn->add_users_to_worklist( n );
1367          } else if (n->outcnt() <= 2 && n->is_Store()) {
1368            // Push store's uses on worklist to enable folding optimization for
1369            // store/store and store/load to the same address.
1370            // The restriction (outcnt() <= 2) is the same as in set_req_X()
1371            // and remove_globally_dead_node().
1372            igvn->add_users_to_worklist( n );
1373          }
1374        }
1375      }
1376    } // (dead->outcnt() == 0)
1377  }   // while (nstack.size() > 0) for outputs
1378  return;
1379}
1380
1381//------------------------------remove_dead_region-----------------------------
1382bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1383  Node *n = in(0);
1384  if( !n ) return false;
1385  // Lost control into this guy?  I.e., it became unreachable?
1386  // Aggressively kill all unreachable code.
1387  if (can_reshape && n->is_top()) {
1388    kill_dead_code(this, phase->is_IterGVN());
1389    return false; // Node is dead.
1390  }
1391
1392  if( n->is_Region() && n->as_Region()->is_copy() ) {
1393    Node *m = n->nonnull_req();
1394    set_req(0, m);
1395    return true;
1396  }
1397  return false;
1398}
1399
1400//------------------------------hash-------------------------------------------
1401// Hash function over Nodes.
1402uint Node::hash() const {
1403  uint sum = 0;
1404  for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1405    sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1406  return (sum>>2) + _cnt + Opcode();
1407}
1408
1409//------------------------------cmp--------------------------------------------
1410// Compare special parts of simple Nodes
1411uint Node::cmp( const Node &n ) const {
1412  return 1;                     // Must be same
1413}
1414
1415//------------------------------rematerialize-----------------------------------
1416// Should we clone rather than spill this instruction?
1417bool Node::rematerialize() const {
1418  if ( is_Mach() )
1419    return this->as_Mach()->rematerialize();
1420  else
1421    return (_flags & Flag_rematerialize) != 0;
1422}
1423
1424//------------------------------needs_anti_dependence_check---------------------
1425// Nodes which use memory without consuming it, hence need antidependences.
1426bool Node::needs_anti_dependence_check() const {
1427  if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1428    return false;
1429  else
1430    return in(1)->bottom_type()->has_memory();
1431}
1432
1433
1434// Get an integer constant from a ConNode (or CastIINode).
1435// Return a default value if there is no apparent constant here.
1436const TypeInt* Node::find_int_type() const {
1437  if (this->is_Type()) {
1438    return this->as_Type()->type()->isa_int();
1439  } else if (this->is_Con()) {
1440    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1441    return this->bottom_type()->isa_int();
1442  }
1443  return NULL;
1444}
1445
1446// Get a pointer constant from a ConstNode.
1447// Returns the constant if it is a pointer ConstNode
1448intptr_t Node::get_ptr() const {
1449  assert( Opcode() == Op_ConP, "" );
1450  return ((ConPNode*)this)->type()->is_ptr()->get_con();
1451}
1452
1453// Get a narrow oop constant from a ConNNode.
1454intptr_t Node::get_narrowcon() const {
1455  assert( Opcode() == Op_ConN, "" );
1456  return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1457}
1458
1459// Get a long constant from a ConNode.
1460// Return a default value if there is no apparent constant here.
1461const TypeLong* Node::find_long_type() const {
1462  if (this->is_Type()) {
1463    return this->as_Type()->type()->isa_long();
1464  } else if (this->is_Con()) {
1465    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1466    return this->bottom_type()->isa_long();
1467  }
1468  return NULL;
1469}
1470
1471
1472/**
1473 * Return a ptr type for nodes which should have it.
1474 */
1475const TypePtr* Node::get_ptr_type() const {
1476  const TypePtr* tp = this->bottom_type()->make_ptr();
1477#ifdef ASSERT
1478  if (tp == NULL) {
1479    this->dump(1);
1480    assert((tp != NULL), "unexpected node type");
1481  }
1482#endif
1483  return tp;
1484}
1485
1486// Get a double constant from a ConstNode.
1487// Returns the constant if it is a double ConstNode
1488jdouble Node::getd() const {
1489  assert( Opcode() == Op_ConD, "" );
1490  return ((ConDNode*)this)->type()->is_double_constant()->getd();
1491}
1492
1493// Get a float constant from a ConstNode.
1494// Returns the constant if it is a float ConstNode
1495jfloat Node::getf() const {
1496  assert( Opcode() == Op_ConF, "" );
1497  return ((ConFNode*)this)->type()->is_float_constant()->getf();
1498}
1499
1500#ifndef PRODUCT
1501
1502//------------------------------find------------------------------------------
1503// Find a neighbor of this Node with the given _idx
1504// If idx is negative, find its absolute value, following both _in and _out.
1505static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1506                        VectorSet* old_space, VectorSet* new_space ) {
1507  int node_idx = (idx >= 0) ? idx : -idx;
1508  if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1509  // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1510  VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1511  if( v->test(n->_idx) ) return;
1512  if( (int)n->_idx == node_idx
1513      debug_only(|| n->debug_idx() == node_idx) ) {
1514    if (result != NULL)
1515      tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1516                 (uintptr_t)result, (uintptr_t)n, node_idx);
1517    result = n;
1518  }
1519  v->set(n->_idx);
1520  for( uint i=0; i<n->len(); i++ ) {
1521    if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1522    find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1523  }
1524  // Search along forward edges also:
1525  if (idx < 0 && !only_ctrl) {
1526    for( uint j=0; j<n->outcnt(); j++ ) {
1527      find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1528    }
1529  }
1530#ifdef ASSERT
1531  // Search along debug_orig edges last, checking for cycles
1532  Node* orig = n->debug_orig();
1533  if (orig != NULL) {
1534    do {
1535      if (NotANode(orig))  break;
1536      find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1537      orig = orig->debug_orig();
1538    } while (orig != NULL && orig != n->debug_orig());
1539  }
1540#endif //ASSERT
1541}
1542
1543// call this from debugger:
1544Node* find_node(Node* n, int idx) {
1545  return n->find(idx);
1546}
1547
1548//------------------------------find-------------------------------------------
1549Node* Node::find(int idx) const {
1550  ResourceArea *area = Thread::current()->resource_area();
1551  VectorSet old_space(area), new_space(area);
1552  Node* result = NULL;
1553  find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1554  return result;
1555}
1556
1557//------------------------------find_ctrl--------------------------------------
1558// Find an ancestor to this node in the control history with given _idx
1559Node* Node::find_ctrl(int idx) const {
1560  ResourceArea *area = Thread::current()->resource_area();
1561  VectorSet old_space(area), new_space(area);
1562  Node* result = NULL;
1563  find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1564  return result;
1565}
1566#endif
1567
1568
1569
1570#ifndef PRODUCT
1571
1572// -----------------------------Name-------------------------------------------
1573extern const char *NodeClassNames[];
1574const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1575
1576static bool is_disconnected(const Node* n) {
1577  for (uint i = 0; i < n->req(); i++) {
1578    if (n->in(i) != NULL)  return false;
1579  }
1580  return true;
1581}
1582
1583#ifdef ASSERT
1584static void dump_orig(Node* orig, outputStream *st) {
1585  Compile* C = Compile::current();
1586  if (NotANode(orig)) orig = NULL;
1587  if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1588  if (orig == NULL) return;
1589  st->print(" !orig=");
1590  Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1591  if (NotANode(fast)) fast = NULL;
1592  while (orig != NULL) {
1593    bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1594    if (discon) st->print("[");
1595    if (!Compile::current()->node_arena()->contains(orig))
1596      st->print("o");
1597    st->print("%d", orig->_idx);
1598    if (discon) st->print("]");
1599    orig = orig->debug_orig();
1600    if (NotANode(orig)) orig = NULL;
1601    if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1602    if (orig != NULL) st->print(",");
1603    if (fast != NULL) {
1604      // Step fast twice for each single step of orig:
1605      fast = fast->debug_orig();
1606      if (NotANode(fast)) fast = NULL;
1607      if (fast != NULL && fast != orig) {
1608        fast = fast->debug_orig();
1609        if (NotANode(fast)) fast = NULL;
1610      }
1611      if (fast == orig) {
1612        st->print("...");
1613        break;
1614      }
1615    }
1616  }
1617}
1618
1619void Node::set_debug_orig(Node* orig) {
1620  _debug_orig = orig;
1621  if (BreakAtNode == 0)  return;
1622  if (NotANode(orig))  orig = NULL;
1623  int trip = 10;
1624  while (orig != NULL) {
1625    if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1626      tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1627                    this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1628      BREAKPOINT;
1629    }
1630    orig = orig->debug_orig();
1631    if (NotANode(orig))  orig = NULL;
1632    if (trip-- <= 0)  break;
1633  }
1634}
1635#endif //ASSERT
1636
1637//------------------------------dump------------------------------------------
1638// Dump a Node
1639void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1640  Compile* C = Compile::current();
1641  bool is_new = C->node_arena()->contains(this);
1642  C->_in_dump_cnt++;
1643  st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1644
1645  // Dump the required and precedence inputs
1646  dump_req(st);
1647  dump_prec(st);
1648  // Dump the outputs
1649  dump_out(st);
1650
1651  if (is_disconnected(this)) {
1652#ifdef ASSERT
1653    st->print("  [%d]",debug_idx());
1654    dump_orig(debug_orig(), st);
1655#endif
1656    st->cr();
1657    C->_in_dump_cnt--;
1658    return;                     // don't process dead nodes
1659  }
1660
1661  if (C->clone_map().value(_idx) != 0) {
1662    C->clone_map().dump(_idx);
1663  }
1664  // Dump node-specific info
1665  dump_spec(st);
1666#ifdef ASSERT
1667  // Dump the non-reset _debug_idx
1668  if (Verbose && WizardMode) {
1669    st->print("  [%d]",debug_idx());
1670  }
1671#endif
1672
1673  const Type *t = bottom_type();
1674
1675  if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1676    const TypeInstPtr  *toop = t->isa_instptr();
1677    const TypeKlassPtr *tkls = t->isa_klassptr();
1678    ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1679    if (klass && klass->is_loaded() && klass->is_interface()) {
1680      st->print("  Interface:");
1681    } else if (toop) {
1682      st->print("  Oop:");
1683    } else if (tkls) {
1684      st->print("  Klass:");
1685    }
1686    t->dump_on(st);
1687  } else if (t == Type::MEMORY) {
1688    st->print("  Memory:");
1689    MemNode::dump_adr_type(this, adr_type(), st);
1690  } else if (Verbose || WizardMode) {
1691    st->print("  Type:");
1692    if (t) {
1693      t->dump_on(st);
1694    } else {
1695      st->print("no type");
1696    }
1697  } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1698    // Dump MachSpillcopy vector type.
1699    t->dump_on(st);
1700  }
1701  if (is_new) {
1702    debug_only(dump_orig(debug_orig(), st));
1703    Node_Notes* nn = C->node_notes_at(_idx);
1704    if (nn != NULL && !nn->is_clear()) {
1705      if (nn->jvms() != NULL) {
1706        st->print(" !jvms:");
1707        nn->jvms()->dump_spec(st);
1708      }
1709    }
1710  }
1711  if (suffix) st->print("%s", suffix);
1712  C->_in_dump_cnt--;
1713}
1714
1715//------------------------------dump_req--------------------------------------
1716void Node::dump_req(outputStream *st) const {
1717  // Dump the required input edges
1718  for (uint i = 0; i < req(); i++) {    // For all required inputs
1719    Node* d = in(i);
1720    if (d == NULL) {
1721      st->print("_ ");
1722    } else if (NotANode(d)) {
1723      st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1724    } else {
1725      st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1726    }
1727  }
1728}
1729
1730
1731//------------------------------dump_prec-------------------------------------
1732void Node::dump_prec(outputStream *st) const {
1733  // Dump the precedence edges
1734  int any_prec = 0;
1735  for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1736    Node* p = in(i);
1737    if (p != NULL) {
1738      if (!any_prec++) st->print(" |");
1739      if (NotANode(p)) { st->print("NotANode "); continue; }
1740      st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1741    }
1742  }
1743}
1744
1745//------------------------------dump_out--------------------------------------
1746void Node::dump_out(outputStream *st) const {
1747  // Delimit the output edges
1748  st->print(" [[");
1749  // Dump the output edges
1750  for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1751    Node* u = _out[i];
1752    if (u == NULL) {
1753      st->print("_ ");
1754    } else if (NotANode(u)) {
1755      st->print("NotANode ");
1756    } else {
1757      st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1758    }
1759  }
1760  st->print("]] ");
1761}
1762
1763//----------------------------collect_nodes_i----------------------------------
1764// Collects nodes from an Ideal graph, starting from a given start node and
1765// moving in a given direction until a certain depth (distance from the start
1766// node) is reached. Duplicates are ignored.
1767// Arguments:
1768//   nstack:        the nodes are collected into this array.
1769//   start:         the node at which to start collecting.
1770//   direction:     if this is a positive number, collect input nodes; if it is
1771//                  a negative number, collect output nodes.
1772//   depth:         collect nodes up to this distance from the start node.
1773//   include_start: whether to include the start node in the result collection.
1774//   only_ctrl:     whether to regard control edges only during traversal.
1775//   only_data:     whether to regard data edges only during traversal.
1776static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1777  Node* s = (Node*) start; // remove const
1778  nstack->append(s);
1779  int begin = 0;
1780  int end = 0;
1781  for(uint i = 0; i < depth; i++) {
1782    end = nstack->length();
1783    for(int j = begin; j < end; j++) {
1784      Node* tp  = nstack->at(j);
1785      uint limit = direction > 0 ? tp->len() : tp->outcnt();
1786      for(uint k = 0; k < limit; k++) {
1787        Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1788
1789        if (NotANode(n))  continue;
1790        // do not recurse through top or the root (would reach unrelated stuff)
1791        if (n->is_Root() || n->is_top()) continue;
1792        if (only_ctrl && !n->is_CFG()) continue;
1793        if (only_data && n->is_CFG()) continue;
1794
1795        bool on_stack = nstack->contains(n);
1796        if (!on_stack) {
1797          nstack->append(n);
1798        }
1799      }
1800    }
1801    begin = end;
1802  }
1803  if (!include_start) {
1804    nstack->remove(s);
1805  }
1806}
1807
1808//------------------------------dump_nodes-------------------------------------
1809static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1810  if (NotANode(start)) return;
1811
1812  GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1813  collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1814
1815  int end = nstack.length();
1816  if (d > 0) {
1817    for(int j = end-1; j >= 0; j--) {
1818      nstack.at(j)->dump();
1819    }
1820  } else {
1821    for(int j = 0; j < end; j++) {
1822      nstack.at(j)->dump();
1823    }
1824  }
1825}
1826
1827//------------------------------dump-------------------------------------------
1828void Node::dump(int d) const {
1829  dump_nodes(this, d, false);
1830}
1831
1832//------------------------------dump_ctrl--------------------------------------
1833// Dump a Node's control history to depth
1834void Node::dump_ctrl(int d) const {
1835  dump_nodes(this, d, true);
1836}
1837
1838//-----------------------------dump_compact------------------------------------
1839void Node::dump_comp() const {
1840  this->dump_comp("\n");
1841}
1842
1843//-----------------------------dump_compact------------------------------------
1844// Dump a Node in compact representation, i.e., just print its name and index.
1845// Nodes can specify additional specifics to print in compact representation by
1846// implementing dump_compact_spec.
1847void Node::dump_comp(const char* suffix, outputStream *st) const {
1848  Compile* C = Compile::current();
1849  C->_in_dump_cnt++;
1850  st->print("%s(%d)", Name(), _idx);
1851  this->dump_compact_spec(st);
1852  if (suffix) {
1853    st->print("%s", suffix);
1854  }
1855  C->_in_dump_cnt--;
1856}
1857
1858//----------------------------dump_related-------------------------------------
1859// Dump a Node's related nodes - the notion of "related" depends on the Node at
1860// hand and is determined by the implementation of the virtual method rel.
1861void Node::dump_related() const {
1862  Compile* C = Compile::current();
1863  GrowableArray <Node *> in_rel(C->unique());
1864  GrowableArray <Node *> out_rel(C->unique());
1865  this->related(&in_rel, &out_rel, false);
1866  for (int i = in_rel.length() - 1; i >= 0; i--) {
1867    in_rel.at(i)->dump();
1868  }
1869  this->dump("\n", true);
1870  for (int i = 0; i < out_rel.length(); i++) {
1871    out_rel.at(i)->dump();
1872  }
1873}
1874
1875//----------------------------dump_related-------------------------------------
1876// Dump a Node's related nodes up to a given depth (distance from the start
1877// node).
1878// Arguments:
1879//   d_in:  depth for input nodes.
1880//   d_out: depth for output nodes (note: this also is a positive number).
1881void Node::dump_related(uint d_in, uint d_out) const {
1882  Compile* C = Compile::current();
1883  GrowableArray <Node *> in_rel(C->unique());
1884  GrowableArray <Node *> out_rel(C->unique());
1885
1886  // call collect_nodes_i directly
1887  collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1888  collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1889
1890  for (int i = in_rel.length() - 1; i >= 0; i--) {
1891    in_rel.at(i)->dump();
1892  }
1893  this->dump("\n", true);
1894  for (int i = 0; i < out_rel.length(); i++) {
1895    out_rel.at(i)->dump();
1896  }
1897}
1898
1899//------------------------dump_related_compact---------------------------------
1900// Dump a Node's related nodes in compact representation. The notion of
1901// "related" depends on the Node at hand and is determined by the implementation
1902// of the virtual method rel.
1903void Node::dump_related_compact() const {
1904  Compile* C = Compile::current();
1905  GrowableArray <Node *> in_rel(C->unique());
1906  GrowableArray <Node *> out_rel(C->unique());
1907  this->related(&in_rel, &out_rel, true);
1908  int n_in = in_rel.length();
1909  int n_out = out_rel.length();
1910
1911  this->dump_comp(n_in == 0 ? "\n" : "  ");
1912  for (int i = 0; i < n_in; i++) {
1913    in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1914  }
1915  for (int i = 0; i < n_out; i++) {
1916    out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1917  }
1918}
1919
1920//------------------------------related----------------------------------------
1921// Collect a Node's related nodes. The default behaviour just collects the
1922// inputs and outputs at depth 1, including both control and data flow edges,
1923// regardless of whether the presentation is compact or not. For data nodes,
1924// the default is to collect all data inputs (till level 1 if compact), and
1925// outputs till level 1.
1926void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1927  if (this->is_CFG()) {
1928    collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1929    collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1930  } else {
1931    if (compact) {
1932      this->collect_nodes(in_rel, 1, false, true);
1933    } else {
1934      this->collect_nodes_in_all_data(in_rel, false);
1935    }
1936    this->collect_nodes(out_rel, -1, false, false);
1937  }
1938}
1939
1940//---------------------------collect_nodes-------------------------------------
1941// An entry point to the low-level node collection facility, to start from a
1942// given node in the graph. The start node is by default not included in the
1943// result.
1944// Arguments:
1945//   ns:   collect the nodes into this data structure.
1946//   d:    the depth (distance from start node) to which nodes should be
1947//         collected. A value >0 indicates input nodes, a value <0, output
1948//         nodes.
1949//   ctrl: include only control nodes.
1950//   data: include only data nodes.
1951void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1952  if (ctrl && data) {
1953    // ignore nonsensical combination
1954    return;
1955  }
1956  collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1957}
1958
1959//--------------------------collect_nodes_in-----------------------------------
1960static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
1961  // The maximum depth is determined using a BFS that visits all primary (data
1962  // or control) inputs and increments the depth at each level.
1963  uint d_in = 0;
1964  GrowableArray<Node*> nodes(Compile::current()->unique());
1965  nodes.push(start);
1966  int nodes_at_current_level = 1;
1967  int n_idx = 0;
1968  while (nodes_at_current_level > 0) {
1969    // Add all primary inputs reachable from the current level to the list, and
1970    // increase the depth if there were any.
1971    int nodes_at_next_level = 0;
1972    bool nodes_added = false;
1973    while (nodes_at_current_level > 0) {
1974      nodes_at_current_level--;
1975      Node* current = nodes.at(n_idx++);
1976      for (uint i = 0; i < current->len(); i++) {
1977        Node* n = current->in(i);
1978        if (NotANode(n)) {
1979          continue;
1980        }
1981        if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
1982          continue;
1983        }
1984        if (!nodes.contains(n)) {
1985          nodes.push(n);
1986          nodes_added = true;
1987          nodes_at_next_level++;
1988        }
1989      }
1990    }
1991    if (nodes_added) {
1992      d_in++;
1993    }
1994    nodes_at_current_level = nodes_at_next_level;
1995  }
1996  start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
1997  if (collect_secondary) {
1998    // Now, iterate over the secondary nodes in ns and add the respective
1999    // boundary reachable from them.
2000    GrowableArray<Node*> sns(Compile::current()->unique());
2001    for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2002      Node* n = *it;
2003      n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2004      for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2005        ns->append_if_missing(*d);
2006      }
2007      sns.clear();
2008    }
2009  }
2010}
2011
2012//---------------------collect_nodes_in_all_data-------------------------------
2013// Collect the entire data input graph. Include the control boundary if
2014// requested.
2015// Arguments:
2016//   ns:   collect the nodes into this data structure.
2017//   ctrl: if true, include the control boundary.
2018void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2019  collect_nodes_in((Node*) this, ns, true, ctrl);
2020}
2021
2022//--------------------------collect_nodes_in_all_ctrl--------------------------
2023// Collect the entire control input graph. Include the data boundary if
2024// requested.
2025//   ns:   collect the nodes into this data structure.
2026//   data: if true, include the control boundary.
2027void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2028  collect_nodes_in((Node*) this, ns, false, data);
2029}
2030
2031//------------------collect_nodes_out_all_ctrl_boundary------------------------
2032// Collect the entire output graph until hitting control node boundaries, and
2033// include those.
2034void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2035  // Perform a BFS and stop at control nodes.
2036  GrowableArray<Node*> nodes(Compile::current()->unique());
2037  nodes.push((Node*) this);
2038  while (nodes.length() > 0) {
2039    Node* current = nodes.pop();
2040    if (NotANode(current)) {
2041      continue;
2042    }
2043    ns->append_if_missing(current);
2044    if (!current->is_CFG()) {
2045      for (DUIterator i = current->outs(); current->has_out(i); i++) {
2046        nodes.push(current->out(i));
2047      }
2048    }
2049  }
2050  ns->remove((Node*) this);
2051}
2052
2053// VERIFICATION CODE
2054// For each input edge to a node (ie - for each Use-Def edge), verify that
2055// there is a corresponding Def-Use edge.
2056//------------------------------verify_edges-----------------------------------
2057void Node::verify_edges(Unique_Node_List &visited) {
2058  uint i, j, idx;
2059  int  cnt;
2060  Node *n;
2061
2062  // Recursive termination test
2063  if (visited.member(this))  return;
2064  visited.push(this);
2065
2066  // Walk over all input edges, checking for correspondence
2067  for( i = 0; i < len(); i++ ) {
2068    n = in(i);
2069    if (n != NULL && !n->is_top()) {
2070      // Count instances of (Node *)this
2071      cnt = 0;
2072      for (idx = 0; idx < n->_outcnt; idx++ ) {
2073        if (n->_out[idx] == (Node *)this)  cnt++;
2074      }
2075      assert( cnt > 0,"Failed to find Def-Use edge." );
2076      // Check for duplicate edges
2077      // walk the input array downcounting the input edges to n
2078      for( j = 0; j < len(); j++ ) {
2079        if( in(j) == n ) cnt--;
2080      }
2081      assert( cnt == 0,"Mismatched edge count.");
2082    } else if (n == NULL) {
2083      assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2084    } else {
2085      assert(n->is_top(), "sanity");
2086      // Nothing to check.
2087    }
2088  }
2089  // Recursive walk over all input edges
2090  for( i = 0; i < len(); i++ ) {
2091    n = in(i);
2092    if( n != NULL )
2093      in(i)->verify_edges(visited);
2094  }
2095}
2096
2097//------------------------------verify_recur-----------------------------------
2098static const Node *unique_top = NULL;
2099
2100void Node::verify_recur(const Node *n, int verify_depth,
2101                        VectorSet &old_space, VectorSet &new_space) {
2102  if ( verify_depth == 0 )  return;
2103  if (verify_depth > 0)  --verify_depth;
2104
2105  Compile* C = Compile::current();
2106
2107  // Contained in new_space or old_space?
2108  VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2109  // Check for visited in the proper space.  Numberings are not unique
2110  // across spaces so we need a separate VectorSet for each space.
2111  if( v->test_set(n->_idx) ) return;
2112
2113  if (n->is_Con() && n->bottom_type() == Type::TOP) {
2114    if (C->cached_top_node() == NULL)
2115      C->set_cached_top_node((Node*)n);
2116    assert(C->cached_top_node() == n, "TOP node must be unique");
2117  }
2118
2119  for( uint i = 0; i < n->len(); i++ ) {
2120    Node *x = n->in(i);
2121    if (!x || x->is_top()) continue;
2122
2123    // Verify my input has a def-use edge to me
2124    if (true /*VerifyDefUse*/) {
2125      // Count use-def edges from n to x
2126      int cnt = 0;
2127      for( uint j = 0; j < n->len(); j++ )
2128        if( n->in(j) == x )
2129          cnt++;
2130      // Count def-use edges from x to n
2131      uint max = x->_outcnt;
2132      for( uint k = 0; k < max; k++ )
2133        if (x->_out[k] == n)
2134          cnt--;
2135      assert( cnt == 0, "mismatched def-use edge counts" );
2136    }
2137
2138    verify_recur(x, verify_depth, old_space, new_space);
2139  }
2140
2141}
2142
2143//------------------------------verify-----------------------------------------
2144// Check Def-Use info for my subgraph
2145void Node::verify() const {
2146  Compile* C = Compile::current();
2147  Node* old_top = C->cached_top_node();
2148  ResourceMark rm;
2149  ResourceArea *area = Thread::current()->resource_area();
2150  VectorSet old_space(area), new_space(area);
2151  verify_recur(this, -1, old_space, new_space);
2152  C->set_cached_top_node(old_top);
2153}
2154#endif
2155
2156
2157//------------------------------walk-------------------------------------------
2158// Graph walk, with both pre-order and post-order functions
2159void Node::walk(NFunc pre, NFunc post, void *env) {
2160  VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2161  walk_(pre, post, env, visited);
2162}
2163
2164void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2165  if( visited.test_set(_idx) ) return;
2166  pre(*this,env);               // Call the pre-order walk function
2167  for( uint i=0; i<_max; i++ )
2168    if( in(i) )                 // Input exists and is not walked?
2169      in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2170  post(*this,env);              // Call the post-order walk function
2171}
2172
2173void Node::nop(Node &, void*) {}
2174
2175//------------------------------Registers--------------------------------------
2176// Do we Match on this edge index or not?  Generally false for Control
2177// and true for everything else.  Weird for calls & returns.
2178uint Node::match_edge(uint idx) const {
2179  return idx;                   // True for other than index 0 (control)
2180}
2181
2182static RegMask _not_used_at_all;
2183// Register classes are defined for specific machines
2184const RegMask &Node::out_RegMask() const {
2185  ShouldNotCallThis();
2186  return _not_used_at_all;
2187}
2188
2189const RegMask &Node::in_RegMask(uint) const {
2190  ShouldNotCallThis();
2191  return _not_used_at_all;
2192}
2193
2194//=============================================================================
2195//-----------------------------------------------------------------------------
2196void Node_Array::reset( Arena *new_arena ) {
2197  _a->Afree(_nodes,_max*sizeof(Node*));
2198  _max   = 0;
2199  _nodes = NULL;
2200  _a     = new_arena;
2201}
2202
2203//------------------------------clear------------------------------------------
2204// Clear all entries in _nodes to NULL but keep storage
2205void Node_Array::clear() {
2206  Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2207}
2208
2209//-----------------------------------------------------------------------------
2210void Node_Array::grow( uint i ) {
2211  if( !_max ) {
2212    _max = 1;
2213    _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2214    _nodes[0] = NULL;
2215  }
2216  uint old = _max;
2217  while( i >= _max ) _max <<= 1;        // Double to fit
2218  _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2219  Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2220}
2221
2222//-----------------------------------------------------------------------------
2223void Node_Array::insert( uint i, Node *n ) {
2224  if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2225  Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2226  _nodes[i] = n;
2227}
2228
2229//-----------------------------------------------------------------------------
2230void Node_Array::remove( uint i ) {
2231  Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2232  _nodes[_max-1] = NULL;
2233}
2234
2235//-----------------------------------------------------------------------------
2236void Node_Array::sort( C_sort_func_t func) {
2237  qsort( _nodes, _max, sizeof( Node* ), func );
2238}
2239
2240//-----------------------------------------------------------------------------
2241void Node_Array::dump() const {
2242#ifndef PRODUCT
2243  for( uint i = 0; i < _max; i++ ) {
2244    Node *nn = _nodes[i];
2245    if( nn != NULL ) {
2246      tty->print("%5d--> ",i); nn->dump();
2247    }
2248  }
2249#endif
2250}
2251
2252//--------------------------is_iteratively_computed------------------------------
2253// Operation appears to be iteratively computed (such as an induction variable)
2254// It is possible for this operation to return false for a loop-varying
2255// value, if it appears (by local graph inspection) to be computed by a simple conditional.
2256bool Node::is_iteratively_computed() {
2257  if (ideal_reg()) { // does operation have a result register?
2258    for (uint i = 1; i < req(); i++) {
2259      Node* n = in(i);
2260      if (n != NULL && n->is_Phi()) {
2261        for (uint j = 1; j < n->req(); j++) {
2262          if (n->in(j) == this) {
2263            return true;
2264          }
2265        }
2266      }
2267    }
2268  }
2269  return false;
2270}
2271
2272//--------------------------find_similar------------------------------
2273// Return a node with opcode "opc" and same inputs as "this" if one can
2274// be found; Otherwise return NULL;
2275Node* Node::find_similar(int opc) {
2276  if (req() >= 2) {
2277    Node* def = in(1);
2278    if (def && def->outcnt() >= 2) {
2279      for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2280        Node* use = def->fast_out(i);
2281        if (use != this &&
2282            use->Opcode() == opc &&
2283            use->req() == req()) {
2284          uint j;
2285          for (j = 0; j < use->req(); j++) {
2286            if (use->in(j) != in(j)) {
2287              break;
2288            }
2289          }
2290          if (j == use->req()) {
2291            return use;
2292          }
2293        }
2294      }
2295    }
2296  }
2297  return NULL;
2298}
2299
2300
2301//--------------------------unique_ctrl_out------------------------------
2302// Return the unique control out if only one. Null if none or more than one.
2303Node* Node::unique_ctrl_out() const {
2304  Node* found = NULL;
2305  for (uint i = 0; i < outcnt(); i++) {
2306    Node* use = raw_out(i);
2307    if (use->is_CFG() && use != this) {
2308      if (found != NULL) return NULL;
2309      found = use;
2310    }
2311  }
2312  return found;
2313}
2314
2315void Node::ensure_control_or_add_prec(Node* c) {
2316  if (in(0) == NULL) {
2317    set_req(0, c);
2318  } else if (in(0) != c) {
2319    add_prec(c);
2320  }
2321}
2322
2323//=============================================================================
2324//------------------------------yank-------------------------------------------
2325// Find and remove
2326void Node_List::yank( Node *n ) {
2327  uint i;
2328  for( i = 0; i < _cnt; i++ )
2329    if( _nodes[i] == n )
2330      break;
2331
2332  if( i < _cnt )
2333    _nodes[i] = _nodes[--_cnt];
2334}
2335
2336//------------------------------dump-------------------------------------------
2337void Node_List::dump() const {
2338#ifndef PRODUCT
2339  for( uint i = 0; i < _cnt; i++ )
2340    if( _nodes[i] ) {
2341      tty->print("%5d--> ",i);
2342      _nodes[i]->dump();
2343    }
2344#endif
2345}
2346
2347void Node_List::dump_simple() const {
2348#ifndef PRODUCT
2349  for( uint i = 0; i < _cnt; i++ )
2350    if( _nodes[i] ) {
2351      tty->print(" %d", _nodes[i]->_idx);
2352    } else {
2353      tty->print(" NULL");
2354    }
2355#endif
2356}
2357
2358//=============================================================================
2359//------------------------------remove-----------------------------------------
2360void Unique_Node_List::remove( Node *n ) {
2361  if( _in_worklist[n->_idx] ) {
2362    for( uint i = 0; i < size(); i++ )
2363      if( _nodes[i] == n ) {
2364        map(i,Node_List::pop());
2365        _in_worklist >>= n->_idx;
2366        return;
2367      }
2368    ShouldNotReachHere();
2369  }
2370}
2371
2372//-----------------------remove_useless_nodes----------------------------------
2373// Remove useless nodes from worklist
2374void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2375
2376  for( uint i = 0; i < size(); ++i ) {
2377    Node *n = at(i);
2378    assert( n != NULL, "Did not expect null entries in worklist");
2379    if( ! useful.test(n->_idx) ) {
2380      _in_worklist >>= n->_idx;
2381      map(i,Node_List::pop());
2382      // Node *replacement = Node_List::pop();
2383      // if( i != size() ) { // Check if removing last entry
2384      //   _nodes[i] = replacement;
2385      // }
2386      --i;  // Visit popped node
2387      // If it was last entry, loop terminates since size() was also reduced
2388    }
2389  }
2390}
2391
2392//=============================================================================
2393void Node_Stack::grow() {
2394  size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2395  size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2396  size_t max = old_max << 1;             // max * 2
2397  _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2398  _inode_max = _inodes + max;
2399  _inode_top = _inodes + old_top;        // restore _top
2400}
2401
2402// Node_Stack is used to map nodes.
2403Node* Node_Stack::find(uint idx) const {
2404  uint sz = size();
2405  for (uint i=0; i < sz; i++) {
2406    if (idx == index_at(i) )
2407      return node_at(i);
2408  }
2409  return NULL;
2410}
2411
2412//=============================================================================
2413uint TypeNode::size_of() const { return sizeof(*this); }
2414#ifndef PRODUCT
2415void TypeNode::dump_spec(outputStream *st) const {
2416  if( !Verbose && !WizardMode ) {
2417    // standard dump does this in Verbose and WizardMode
2418    st->print(" #"); _type->dump_on(st);
2419  }
2420}
2421
2422void TypeNode::dump_compact_spec(outputStream *st) const {
2423  st->print("#");
2424  _type->dump_on(st);
2425}
2426#endif
2427uint TypeNode::hash() const {
2428  return Node::hash() + _type->hash();
2429}
2430uint TypeNode::cmp( const Node &n ) const
2431{ return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2432const Type *TypeNode::bottom_type() const { return _type; }
2433const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2434
2435//------------------------------ideal_reg--------------------------------------
2436uint TypeNode::ideal_reg() const {
2437  return _type->ideal_reg();
2438}
2439