1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/addnode.hpp"
28#include "opto/connode.hpp"
29#include "opto/convertnode.hpp"
30#include "opto/memnode.hpp"
31#include "opto/mulnode.hpp"
32#include "opto/phaseX.hpp"
33#include "opto/subnode.hpp"
34
35// Portions of code courtesy of Clifford Click
36
37
38//=============================================================================
39//------------------------------hash-------------------------------------------
40// Hash function over MulNodes.  Needs to be commutative; i.e., I swap
41// (commute) inputs to MulNodes willy-nilly so the hash function must return
42// the same value in the presence of edge swapping.
43uint MulNode::hash() const {
44  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
45}
46
47//------------------------------Identity---------------------------------------
48// Multiplying a one preserves the other argument
49Node* MulNode::Identity(PhaseGVN* phase) {
50  register const Type *one = mul_id();  // The multiplicative identity
51  if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
52  if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
53
54  return this;
55}
56
57//------------------------------Ideal------------------------------------------
58// We also canonicalize the Node, moving constants to the right input,
59// and flatten expressions (so that 1+x+2 becomes x+3).
60Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
61  const Type *t1 = phase->type( in(1) );
62  const Type *t2 = phase->type( in(2) );
63  Node *progress = NULL;        // Progress flag
64  // We are OK if right is a constant, or right is a load and
65  // left is a non-constant.
66  if( !(t2->singleton() ||
67        (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
68    if( t1->singleton() ||       // Left input is a constant?
69        // Otherwise, sort inputs (commutativity) to help value numbering.
70        (in(1)->_idx > in(2)->_idx) ) {
71      swap_edges(1, 2);
72      const Type *t = t1;
73      t1 = t2;
74      t2 = t;
75      progress = this;            // Made progress
76    }
77  }
78
79  // If the right input is a constant, and the left input is a product of a
80  // constant, flatten the expression tree.
81  uint op = Opcode();
82  if( t2->singleton() &&        // Right input is a constant?
83      op != Op_MulF &&          // Float & double cannot reassociate
84      op != Op_MulD ) {
85    if( t2 == Type::TOP ) return NULL;
86    Node *mul1 = in(1);
87#ifdef ASSERT
88    // Check for dead loop
89    int   op1 = mul1->Opcode();
90    if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
91        ( op1 == mul_opcode() || op1 == add_opcode() ) &&
92        ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
93          phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
94      assert(false, "dead loop in MulNode::Ideal");
95#endif
96
97    if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
98      // Mul of a constant?
99      const Type *t12 = phase->type( mul1->in(2) );
100      if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
101        // Compute new constant; check for overflow
102        const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
103        if( tcon01->singleton() ) {
104          // The Mul of the flattened expression
105          set_req(1, mul1->in(1));
106          set_req(2, phase->makecon( tcon01 ));
107          t2 = tcon01;
108          progress = this;      // Made progress
109        }
110      }
111    }
112    // If the right input is a constant, and the left input is an add of a
113    // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
114    const Node *add1 = in(1);
115    if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
116      // Add of a constant?
117      const Type *t12 = phase->type( add1->in(2) );
118      if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
119        assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
120        // Compute new constant; check for overflow
121        const Type *tcon01 = mul_ring(t2,t12);
122        if( tcon01->singleton() ) {
123
124        // Convert (X+con1)*con0 into X*con0
125          Node *mul = clone();    // mul = ()*con0
126          mul->set_req(1,add1->in(1));  // mul = X*con0
127          mul = phase->transform(mul);
128
129          Node *add2 = add1->clone();
130          add2->set_req(1, mul);        // X*con0 + con0*con1
131          add2->set_req(2, phase->makecon(tcon01) );
132          progress = add2;
133        }
134      }
135    } // End of is left input an add
136  } // End of is right input a Mul
137
138  return progress;
139}
140
141//------------------------------Value-----------------------------------------
142const Type* MulNode::Value(PhaseGVN* phase) const {
143  const Type *t1 = phase->type( in(1) );
144  const Type *t2 = phase->type( in(2) );
145  // Either input is TOP ==> the result is TOP
146  if( t1 == Type::TOP ) return Type::TOP;
147  if( t2 == Type::TOP ) return Type::TOP;
148
149  // Either input is ZERO ==> the result is ZERO.
150  // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
151  int op = Opcode();
152  if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
153    const Type *zero = add_id();        // The multiplicative zero
154    if( t1->higher_equal( zero ) ) return zero;
155    if( t2->higher_equal( zero ) ) return zero;
156  }
157
158  // Either input is BOTTOM ==> the result is the local BOTTOM
159  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
160    return bottom_type();
161
162#if defined(IA32)
163  // Can't trust native compilers to properly fold strict double
164  // multiplication with round-to-zero on this platform.
165  if (op == Op_MulD && phase->C->method()->is_strict()) {
166    return TypeD::DOUBLE;
167  }
168#endif
169
170  return mul_ring(t1,t2);            // Local flavor of type multiplication
171}
172
173
174//=============================================================================
175//------------------------------Ideal------------------------------------------
176// Check for power-of-2 multiply, then try the regular MulNode::Ideal
177Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
178  // Swap constant to right
179  jint con;
180  if ((con = in(1)->find_int_con(0)) != 0) {
181    swap_edges(1, 2);
182    // Finish rest of method to use info in 'con'
183  } else if ((con = in(2)->find_int_con(0)) == 0) {
184    return MulNode::Ideal(phase, can_reshape);
185  }
186
187  // Now we have a constant Node on the right and the constant in con
188  if( con == 0 ) return NULL;   // By zero is handled by Value call
189  if( con == 1 ) return NULL;   // By one  is handled by Identity call
190
191  // Check for negative constant; if so negate the final result
192  bool sign_flip = false;
193  if( con < 0 ) {
194    con = -con;
195    sign_flip = true;
196  }
197
198  // Get low bit; check for being the only bit
199  Node *res = NULL;
200  jint bit1 = con & -con;       // Extract low bit
201  if( bit1 == con ) {           // Found a power of 2?
202    res = new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
203  } else {
204
205    // Check for constant with 2 bits set
206    jint bit2 = con-bit1;
207    bit2 = bit2 & -bit2;          // Extract 2nd bit
208    if( bit2 + bit1 == con ) {    // Found all bits in con?
209      Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
210      Node *n2 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
211      res = new AddINode( n2, n1 );
212
213    } else if (is_power_of_2(con+1)) {
214      // Sleezy: power-of-2 -1.  Next time be generic.
215      jint temp = (jint) (con + 1);
216      Node *n1 = phase->transform( new LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
217      res = new SubINode( n1, in(1) );
218    } else {
219      return MulNode::Ideal(phase, can_reshape);
220    }
221  }
222
223  if( sign_flip ) {             // Need to negate result?
224    res = phase->transform(res);// Transform, before making the zero con
225    res = new SubINode(phase->intcon(0),res);
226  }
227
228  return res;                   // Return final result
229}
230
231//------------------------------mul_ring---------------------------------------
232// Compute the product type of two integer ranges into this node.
233const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
234  const TypeInt *r0 = t0->is_int(); // Handy access
235  const TypeInt *r1 = t1->is_int();
236
237  // Fetch endpoints of all ranges
238  int32_t lo0 = r0->_lo;
239  double a = (double)lo0;
240  int32_t hi0 = r0->_hi;
241  double b = (double)hi0;
242  int32_t lo1 = r1->_lo;
243  double c = (double)lo1;
244  int32_t hi1 = r1->_hi;
245  double d = (double)hi1;
246
247  // Compute all endpoints & check for overflow
248  int32_t A = java_multiply(lo0, lo1);
249  if( (double)A != a*c ) return TypeInt::INT; // Overflow?
250  int32_t B = java_multiply(lo0, hi1);
251  if( (double)B != a*d ) return TypeInt::INT; // Overflow?
252  int32_t C = java_multiply(hi0, lo1);
253  if( (double)C != b*c ) return TypeInt::INT; // Overflow?
254  int32_t D = java_multiply(hi0, hi1);
255  if( (double)D != b*d ) return TypeInt::INT; // Overflow?
256
257  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
258  else { lo0 = B; hi0 = A; }
259  if( C < D ) {
260    if( C < lo0 ) lo0 = C;
261    if( D > hi0 ) hi0 = D;
262  } else {
263    if( D < lo0 ) lo0 = D;
264    if( C > hi0 ) hi0 = C;
265  }
266  return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
267}
268
269
270//=============================================================================
271//------------------------------Ideal------------------------------------------
272// Check for power-of-2 multiply, then try the regular MulNode::Ideal
273Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
274  // Swap constant to right
275  jlong con;
276  if ((con = in(1)->find_long_con(0)) != 0) {
277    swap_edges(1, 2);
278    // Finish rest of method to use info in 'con'
279  } else if ((con = in(2)->find_long_con(0)) == 0) {
280    return MulNode::Ideal(phase, can_reshape);
281  }
282
283  // Now we have a constant Node on the right and the constant in con
284  if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
285  if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
286
287  // Check for negative constant; if so negate the final result
288  bool sign_flip = false;
289  if( con < 0 ) {
290    con = -con;
291    sign_flip = true;
292  }
293
294  // Get low bit; check for being the only bit
295  Node *res = NULL;
296  jlong bit1 = con & -con;      // Extract low bit
297  if( bit1 == con ) {           // Found a power of 2?
298    res = new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
299  } else {
300
301    // Check for constant with 2 bits set
302    jlong bit2 = con-bit1;
303    bit2 = bit2 & -bit2;          // Extract 2nd bit
304    if( bit2 + bit1 == con ) {    // Found all bits in con?
305      Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
306      Node *n2 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
307      res = new AddLNode( n2, n1 );
308
309    } else if (is_power_of_2_long(con+1)) {
310      // Sleezy: power-of-2 -1.  Next time be generic.
311      jlong temp = (jlong) (con + 1);
312      Node *n1 = phase->transform( new LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
313      res = new SubLNode( n1, in(1) );
314    } else {
315      return MulNode::Ideal(phase, can_reshape);
316    }
317  }
318
319  if( sign_flip ) {             // Need to negate result?
320    res = phase->transform(res);// Transform, before making the zero con
321    res = new SubLNode(phase->longcon(0),res);
322  }
323
324  return res;                   // Return final result
325}
326
327//------------------------------mul_ring---------------------------------------
328// Compute the product type of two integer ranges into this node.
329const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
330  const TypeLong *r0 = t0->is_long(); // Handy access
331  const TypeLong *r1 = t1->is_long();
332
333  // Fetch endpoints of all ranges
334  jlong lo0 = r0->_lo;
335  double a = (double)lo0;
336  jlong hi0 = r0->_hi;
337  double b = (double)hi0;
338  jlong lo1 = r1->_lo;
339  double c = (double)lo1;
340  jlong hi1 = r1->_hi;
341  double d = (double)hi1;
342
343  // Compute all endpoints & check for overflow
344  jlong A = java_multiply(lo0, lo1);
345  if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
346  jlong B = java_multiply(lo0, hi1);
347  if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
348  jlong C = java_multiply(hi0, lo1);
349  if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
350  jlong D = java_multiply(hi0, hi1);
351  if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
352
353  if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
354  else { lo0 = B; hi0 = A; }
355  if( C < D ) {
356    if( C < lo0 ) lo0 = C;
357    if( D > hi0 ) hi0 = D;
358  } else {
359    if( D < lo0 ) lo0 = D;
360    if( C > hi0 ) hi0 = C;
361  }
362  return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
363}
364
365//=============================================================================
366//------------------------------mul_ring---------------------------------------
367// Compute the product type of two double ranges into this node.
368const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
369  if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
370  return TypeF::make( t0->getf() * t1->getf() );
371}
372
373//=============================================================================
374//------------------------------mul_ring---------------------------------------
375// Compute the product type of two double ranges into this node.
376const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
377  if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
378  // We must be multiplying 2 double constants.
379  return TypeD::make( t0->getd() * t1->getd() );
380}
381
382//=============================================================================
383//------------------------------Value------------------------------------------
384const Type* MulHiLNode::Value(PhaseGVN* phase) const {
385  // Either input is TOP ==> the result is TOP
386  const Type *t1 = phase->type( in(1) );
387  const Type *t2 = phase->type( in(2) );
388  if( t1 == Type::TOP ) return Type::TOP;
389  if( t2 == Type::TOP ) return Type::TOP;
390
391  // Either input is BOTTOM ==> the result is the local BOTTOM
392  const Type *bot = bottom_type();
393  if( (t1 == bot) || (t2 == bot) ||
394      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
395    return bot;
396
397  // It is not worth trying to constant fold this stuff!
398  return TypeLong::LONG;
399}
400
401//=============================================================================
402//------------------------------mul_ring---------------------------------------
403// Supplied function returns the product of the inputs IN THE CURRENT RING.
404// For the logical operations the ring's MUL is really a logical AND function.
405// This also type-checks the inputs for sanity.  Guaranteed never to
406// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
407const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
408  const TypeInt *r0 = t0->is_int(); // Handy access
409  const TypeInt *r1 = t1->is_int();
410  int widen = MAX2(r0->_widen,r1->_widen);
411
412  // If either input is a constant, might be able to trim cases
413  if( !r0->is_con() && !r1->is_con() )
414    return TypeInt::INT;        // No constants to be had
415
416  // Both constants?  Return bits
417  if( r0->is_con() && r1->is_con() )
418    return TypeInt::make( r0->get_con() & r1->get_con() );
419
420  if( r0->is_con() && r0->get_con() > 0 )
421    return TypeInt::make(0, r0->get_con(), widen);
422
423  if( r1->is_con() && r1->get_con() > 0 )
424    return TypeInt::make(0, r1->get_con(), widen);
425
426  if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
427    return TypeInt::BOOL;
428  }
429
430  return TypeInt::INT;          // No constants to be had
431}
432
433//------------------------------Identity---------------------------------------
434// Masking off the high bits of an unsigned load is not required
435Node* AndINode::Identity(PhaseGVN* phase) {
436
437  // x & x => x
438  if (phase->eqv(in(1), in(2))) return in(1);
439
440  Node* in1 = in(1);
441  uint op = in1->Opcode();
442  const TypeInt* t2 = phase->type(in(2))->isa_int();
443  if (t2 && t2->is_con()) {
444    int con = t2->get_con();
445    // Masking off high bits which are always zero is useless.
446    const TypeInt* t1 = phase->type( in(1) )->isa_int();
447    if (t1 != NULL && t1->_lo >= 0) {
448      jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
449      if ((t1_support & con) == t1_support)
450        return in1;
451    }
452    // Masking off the high bits of a unsigned-shift-right is not
453    // needed either.
454    if (op == Op_URShiftI) {
455      const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
456      if (t12 && t12->is_con()) {  // Shift is by a constant
457        int shift = t12->get_con();
458        shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
459        int mask = max_juint >> shift;
460        if ((mask & con) == mask)  // If AND is useless, skip it
461          return in1;
462      }
463    }
464  }
465  return MulNode::Identity(phase);
466}
467
468//------------------------------Ideal------------------------------------------
469Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
470  // Special case constant AND mask
471  const TypeInt *t2 = phase->type( in(2) )->isa_int();
472  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
473  const int mask = t2->get_con();
474  Node *load = in(1);
475  uint lop = load->Opcode();
476
477  // Masking bits off of a Character?  Hi bits are already zero.
478  if( lop == Op_LoadUS &&
479      (mask & 0xFFFF0000) )     // Can we make a smaller mask?
480    return new AndINode(load,phase->intcon(mask&0xFFFF));
481
482  // Masking bits off of a Short?  Loading a Character does some masking
483  if (can_reshape &&
484      load->outcnt() == 1 && load->unique_out() == this) {
485    if (lop == Op_LoadS && (mask & 0xFFFF0000) == 0 ) {
486      Node* ldus = load->as_Load()->convert_to_unsigned_load(*phase);
487      ldus = phase->transform(ldus);
488      return new AndINode(ldus, phase->intcon(mask & 0xFFFF));
489    }
490
491    // Masking sign bits off of a Byte?  Do an unsigned byte load plus
492    // an and.
493    if (lop == Op_LoadB && (mask & 0xFFFFFF00) == 0) {
494      Node* ldub = load->as_Load()->convert_to_unsigned_load(*phase);
495      ldub = phase->transform(ldub);
496      return new AndINode(ldub, phase->intcon(mask));
497    }
498  }
499
500  // Masking off sign bits?  Dont make them!
501  if( lop == Op_RShiftI ) {
502    const TypeInt *t12 = phase->type(load->in(2))->isa_int();
503    if( t12 && t12->is_con() ) { // Shift is by a constant
504      int shift = t12->get_con();
505      shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
506      const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
507      // If the AND'ing of the 2 masks has no bits, then only original shifted
508      // bits survive.  NO sign-extension bits survive the maskings.
509      if( (sign_bits_mask & mask) == 0 ) {
510        // Use zero-fill shift instead
511        Node *zshift = phase->transform(new URShiftINode(load->in(1),load->in(2)));
512        return new AndINode( zshift, in(2) );
513      }
514    }
515  }
516
517  // Check for 'negate/and-1', a pattern emitted when someone asks for
518  // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
519  // plus 1) and the mask is of the low order bit.  Skip the negate.
520  if( lop == Op_SubI && mask == 1 && load->in(1) &&
521      phase->type(load->in(1)) == TypeInt::ZERO )
522    return new AndINode( load->in(2), in(2) );
523
524  return MulNode::Ideal(phase, can_reshape);
525}
526
527//=============================================================================
528//------------------------------mul_ring---------------------------------------
529// Supplied function returns the product of the inputs IN THE CURRENT RING.
530// For the logical operations the ring's MUL is really a logical AND function.
531// This also type-checks the inputs for sanity.  Guaranteed never to
532// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
533const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
534  const TypeLong *r0 = t0->is_long(); // Handy access
535  const TypeLong *r1 = t1->is_long();
536  int widen = MAX2(r0->_widen,r1->_widen);
537
538  // If either input is a constant, might be able to trim cases
539  if( !r0->is_con() && !r1->is_con() )
540    return TypeLong::LONG;      // No constants to be had
541
542  // Both constants?  Return bits
543  if( r0->is_con() && r1->is_con() )
544    return TypeLong::make( r0->get_con() & r1->get_con() );
545
546  if( r0->is_con() && r0->get_con() > 0 )
547    return TypeLong::make(CONST64(0), r0->get_con(), widen);
548
549  if( r1->is_con() && r1->get_con() > 0 )
550    return TypeLong::make(CONST64(0), r1->get_con(), widen);
551
552  return TypeLong::LONG;        // No constants to be had
553}
554
555//------------------------------Identity---------------------------------------
556// Masking off the high bits of an unsigned load is not required
557Node* AndLNode::Identity(PhaseGVN* phase) {
558
559  // x & x => x
560  if (phase->eqv(in(1), in(2))) return in(1);
561
562  Node *usr = in(1);
563  const TypeLong *t2 = phase->type( in(2) )->isa_long();
564  if( t2 && t2->is_con() ) {
565    jlong con = t2->get_con();
566    // Masking off high bits which are always zero is useless.
567    const TypeLong* t1 = phase->type( in(1) )->isa_long();
568    if (t1 != NULL && t1->_lo >= 0) {
569      int bit_count = log2_long(t1->_hi) + 1;
570      jlong t1_support = jlong(max_julong >> (BitsPerJavaLong - bit_count));
571      if ((t1_support & con) == t1_support)
572        return usr;
573    }
574    uint lop = usr->Opcode();
575    // Masking off the high bits of a unsigned-shift-right is not
576    // needed either.
577    if( lop == Op_URShiftL ) {
578      const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
579      if( t12 && t12->is_con() ) {  // Shift is by a constant
580        int shift = t12->get_con();
581        shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
582        jlong mask = max_julong >> shift;
583        if( (mask&con) == mask )  // If AND is useless, skip it
584          return usr;
585      }
586    }
587  }
588  return MulNode::Identity(phase);
589}
590
591//------------------------------Ideal------------------------------------------
592Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
593  // Special case constant AND mask
594  const TypeLong *t2 = phase->type( in(2) )->isa_long();
595  if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
596  const jlong mask = t2->get_con();
597
598  Node* in1 = in(1);
599  uint op = in1->Opcode();
600
601  // Are we masking a long that was converted from an int with a mask
602  // that fits in 32-bits?  Commute them and use an AndINode.  Don't
603  // convert masks which would cause a sign extension of the integer
604  // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
605  // would be optimized away later in Identity.
606  if (op == Op_ConvI2L && (mask & UCONST64(0xFFFFFFFF80000000)) == 0) {
607    Node* andi = new AndINode(in1->in(1), phase->intcon(mask));
608    andi = phase->transform(andi);
609    return new ConvI2LNode(andi);
610  }
611
612  // Masking off sign bits?  Dont make them!
613  if (op == Op_RShiftL) {
614    const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
615    if( t12 && t12->is_con() ) { // Shift is by a constant
616      int shift = t12->get_con();
617      shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
618      const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
619      // If the AND'ing of the 2 masks has no bits, then only original shifted
620      // bits survive.  NO sign-extension bits survive the maskings.
621      if( (sign_bits_mask & mask) == 0 ) {
622        // Use zero-fill shift instead
623        Node *zshift = phase->transform(new URShiftLNode(in1->in(1), in1->in(2)));
624        return new AndLNode(zshift, in(2));
625      }
626    }
627  }
628
629  return MulNode::Ideal(phase, can_reshape);
630}
631
632//=============================================================================
633//------------------------------Identity---------------------------------------
634Node* LShiftINode::Identity(PhaseGVN* phase) {
635  const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
636  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
637}
638
639//------------------------------Ideal------------------------------------------
640// If the right input is a constant, and the left input is an add of a
641// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
642Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
643  const Type *t  = phase->type( in(2) );
644  if( t == Type::TOP ) return NULL;       // Right input is dead
645  const TypeInt *t2 = t->isa_int();
646  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
647  const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
648
649  if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
650
651  // Left input is an add of a constant?
652  Node *add1 = in(1);
653  int add1_op = add1->Opcode();
654  if( add1_op == Op_AddI ) {    // Left input is an add?
655    assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
656    const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
657    if( t12 && t12->is_con() ){ // Left input is an add of a con?
658      // Transform is legal, but check for profit.  Avoid breaking 'i2s'
659      // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
660      if( con < 16 ) {
661        // Compute X << con0
662        Node *lsh = phase->transform( new LShiftINode( add1->in(1), in(2) ) );
663        // Compute X<<con0 + (con1<<con0)
664        return new AddINode( lsh, phase->intcon(t12->get_con() << con));
665      }
666    }
667  }
668
669  // Check for "(x>>c0)<<c0" which just masks off low bits
670  if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
671      add1->in(2) == in(2) )
672    // Convert to "(x & -(1<<c0))"
673    return new AndINode(add1->in(1),phase->intcon( -(1<<con)));
674
675  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
676  if( add1_op == Op_AndI ) {
677    Node *add2 = add1->in(1);
678    int add2_op = add2->Opcode();
679    if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
680        add2->in(2) == in(2) ) {
681      // Convert to "(x & (Y<<c0))"
682      Node *y_sh = phase->transform( new LShiftINode( add1->in(2), in(2) ) );
683      return new AndINode( add2->in(1), y_sh );
684    }
685  }
686
687  // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
688  // before shifting them away.
689  const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
690  if( add1_op == Op_AndI &&
691      phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
692    return new LShiftINode( add1->in(1), in(2) );
693
694  return NULL;
695}
696
697//------------------------------Value------------------------------------------
698// A LShiftINode shifts its input2 left by input1 amount.
699const Type* LShiftINode::Value(PhaseGVN* phase) const {
700  const Type *t1 = phase->type( in(1) );
701  const Type *t2 = phase->type( in(2) );
702  // Either input is TOP ==> the result is TOP
703  if( t1 == Type::TOP ) return Type::TOP;
704  if( t2 == Type::TOP ) return Type::TOP;
705
706  // Left input is ZERO ==> the result is ZERO.
707  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
708  // Shift by zero does nothing
709  if( t2 == TypeInt::ZERO ) return t1;
710
711  // Either input is BOTTOM ==> the result is BOTTOM
712  if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
713      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
714    return TypeInt::INT;
715
716  const TypeInt *r1 = t1->is_int(); // Handy access
717  const TypeInt *r2 = t2->is_int(); // Handy access
718
719  if (!r2->is_con())
720    return TypeInt::INT;
721
722  uint shift = r2->get_con();
723  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
724  // Shift by a multiple of 32 does nothing:
725  if (shift == 0)  return t1;
726
727  // If the shift is a constant, shift the bounds of the type,
728  // unless this could lead to an overflow.
729  if (!r1->is_con()) {
730    jint lo = r1->_lo, hi = r1->_hi;
731    if (((lo << shift) >> shift) == lo &&
732        ((hi << shift) >> shift) == hi) {
733      // No overflow.  The range shifts up cleanly.
734      return TypeInt::make((jint)lo << (jint)shift,
735                           (jint)hi << (jint)shift,
736                           MAX2(r1->_widen,r2->_widen));
737    }
738    return TypeInt::INT;
739  }
740
741  return TypeInt::make( (jint)r1->get_con() << (jint)shift );
742}
743
744//=============================================================================
745//------------------------------Identity---------------------------------------
746Node* LShiftLNode::Identity(PhaseGVN* phase) {
747  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
748  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
749}
750
751//------------------------------Ideal------------------------------------------
752// If the right input is a constant, and the left input is an add of a
753// constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
754Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
755  const Type *t  = phase->type( in(2) );
756  if( t == Type::TOP ) return NULL;       // Right input is dead
757  const TypeInt *t2 = t->isa_int();
758  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
759  const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
760
761  if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
762
763  // Left input is an add of a constant?
764  Node *add1 = in(1);
765  int add1_op = add1->Opcode();
766  if( add1_op == Op_AddL ) {    // Left input is an add?
767    // Avoid dead data cycles from dead loops
768    assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
769    const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
770    if( t12 && t12->is_con() ){ // Left input is an add of a con?
771      // Compute X << con0
772      Node *lsh = phase->transform( new LShiftLNode( add1->in(1), in(2) ) );
773      // Compute X<<con0 + (con1<<con0)
774      return new AddLNode( lsh, phase->longcon(t12->get_con() << con));
775    }
776  }
777
778  // Check for "(x>>c0)<<c0" which just masks off low bits
779  if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
780      add1->in(2) == in(2) )
781    // Convert to "(x & -(1<<c0))"
782    return new AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
783
784  // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
785  if( add1_op == Op_AndL ) {
786    Node *add2 = add1->in(1);
787    int add2_op = add2->Opcode();
788    if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
789        add2->in(2) == in(2) ) {
790      // Convert to "(x & (Y<<c0))"
791      Node *y_sh = phase->transform( new LShiftLNode( add1->in(2), in(2) ) );
792      return new AndLNode( add2->in(1), y_sh );
793    }
794  }
795
796  // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
797  // before shifting them away.
798  const jlong bits_mask = jlong(max_julong >> con);
799  if( add1_op == Op_AndL &&
800      phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
801    return new LShiftLNode( add1->in(1), in(2) );
802
803  return NULL;
804}
805
806//------------------------------Value------------------------------------------
807// A LShiftLNode shifts its input2 left by input1 amount.
808const Type* LShiftLNode::Value(PhaseGVN* phase) const {
809  const Type *t1 = phase->type( in(1) );
810  const Type *t2 = phase->type( in(2) );
811  // Either input is TOP ==> the result is TOP
812  if( t1 == Type::TOP ) return Type::TOP;
813  if( t2 == Type::TOP ) return Type::TOP;
814
815  // Left input is ZERO ==> the result is ZERO.
816  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
817  // Shift by zero does nothing
818  if( t2 == TypeInt::ZERO ) return t1;
819
820  // Either input is BOTTOM ==> the result is BOTTOM
821  if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
822      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
823    return TypeLong::LONG;
824
825  const TypeLong *r1 = t1->is_long(); // Handy access
826  const TypeInt  *r2 = t2->is_int();  // Handy access
827
828  if (!r2->is_con())
829    return TypeLong::LONG;
830
831  uint shift = r2->get_con();
832  shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
833  // Shift by a multiple of 64 does nothing:
834  if (shift == 0)  return t1;
835
836  // If the shift is a constant, shift the bounds of the type,
837  // unless this could lead to an overflow.
838  if (!r1->is_con()) {
839    jlong lo = r1->_lo, hi = r1->_hi;
840    if (((lo << shift) >> shift) == lo &&
841        ((hi << shift) >> shift) == hi) {
842      // No overflow.  The range shifts up cleanly.
843      return TypeLong::make((jlong)lo << (jint)shift,
844                            (jlong)hi << (jint)shift,
845                            MAX2(r1->_widen,r2->_widen));
846    }
847    return TypeLong::LONG;
848  }
849
850  return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
851}
852
853//=============================================================================
854//------------------------------Identity---------------------------------------
855Node* RShiftINode::Identity(PhaseGVN* phase) {
856  const TypeInt *t2 = phase->type(in(2))->isa_int();
857  if( !t2 ) return this;
858  if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
859    return in(1);
860
861  // Check for useless sign-masking
862  if( in(1)->Opcode() == Op_LShiftI &&
863      in(1)->req() == 3 &&
864      in(1)->in(2) == in(2) &&
865      t2->is_con() ) {
866    uint shift = t2->get_con();
867    shift &= BitsPerJavaInteger-1; // semantics of Java shifts
868    // Compute masks for which this shifting doesn't change
869    int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
870    int hi = ~lo;               // 00007FFF
871    const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
872    if( !t11 ) return this;
873    // Does actual value fit inside of mask?
874    if( lo <= t11->_lo && t11->_hi <= hi )
875      return in(1)->in(1);      // Then shifting is a nop
876  }
877
878  return this;
879}
880
881//------------------------------Ideal------------------------------------------
882Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
883  // Inputs may be TOP if they are dead.
884  const TypeInt *t1 = phase->type( in(1) )->isa_int();
885  if( !t1 ) return NULL;        // Left input is an integer
886  const TypeInt *t2 = phase->type( in(2) )->isa_int();
887  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
888  const TypeInt *t3;  // type of in(1).in(2)
889  int shift = t2->get_con();
890  shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
891
892  if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
893
894  // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
895  // Such expressions arise normally from shift chains like (byte)(x >> 24).
896  const Node *mask = in(1);
897  if( mask->Opcode() == Op_AndI &&
898      (t3 = phase->type(mask->in(2))->isa_int()) &&
899      t3->is_con() ) {
900    Node *x = mask->in(1);
901    jint maskbits = t3->get_con();
902    // Convert to "(x >> shift) & (mask >> shift)"
903    Node *shr_nomask = phase->transform( new RShiftINode(mask->in(1), in(2)) );
904    return new AndINode(shr_nomask, phase->intcon( maskbits >> shift));
905  }
906
907  // Check for "(short[i] <<16)>>16" which simply sign-extends
908  const Node *shl = in(1);
909  if( shl->Opcode() != Op_LShiftI ) return NULL;
910
911  if( shift == 16 &&
912      (t3 = phase->type(shl->in(2))->isa_int()) &&
913      t3->is_con(16) ) {
914    Node *ld = shl->in(1);
915    if( ld->Opcode() == Op_LoadS ) {
916      // Sign extension is just useless here.  Return a RShiftI of zero instead
917      // returning 'ld' directly.  We cannot return an old Node directly as
918      // that is the job of 'Identity' calls and Identity calls only work on
919      // direct inputs ('ld' is an extra Node removed from 'this').  The
920      // combined optimization requires Identity only return direct inputs.
921      set_req(1, ld);
922      set_req(2, phase->intcon(0));
923      return this;
924    }
925    else if( can_reshape &&
926             ld->Opcode() == Op_LoadUS &&
927             ld->outcnt() == 1 && ld->unique_out() == shl)
928      // Replace zero-extension-load with sign-extension-load
929      return ld->as_Load()->convert_to_signed_load(*phase);
930  }
931
932  // Check for "(byte[i] <<24)>>24" which simply sign-extends
933  if( shift == 24 &&
934      (t3 = phase->type(shl->in(2))->isa_int()) &&
935      t3->is_con(24) ) {
936    Node *ld = shl->in(1);
937    if( ld->Opcode() == Op_LoadB ) {
938      // Sign extension is just useless here
939      set_req(1, ld);
940      set_req(2, phase->intcon(0));
941      return this;
942    }
943  }
944
945  return NULL;
946}
947
948//------------------------------Value------------------------------------------
949// A RShiftINode shifts its input2 right by input1 amount.
950const Type* RShiftINode::Value(PhaseGVN* phase) const {
951  const Type *t1 = phase->type( in(1) );
952  const Type *t2 = phase->type( in(2) );
953  // Either input is TOP ==> the result is TOP
954  if( t1 == Type::TOP ) return Type::TOP;
955  if( t2 == Type::TOP ) return Type::TOP;
956
957  // Left input is ZERO ==> the result is ZERO.
958  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
959  // Shift by zero does nothing
960  if( t2 == TypeInt::ZERO ) return t1;
961
962  // Either input is BOTTOM ==> the result is BOTTOM
963  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
964    return TypeInt::INT;
965
966  if (t2 == TypeInt::INT)
967    return TypeInt::INT;
968
969  const TypeInt *r1 = t1->is_int(); // Handy access
970  const TypeInt *r2 = t2->is_int(); // Handy access
971
972  // If the shift is a constant, just shift the bounds of the type.
973  // For example, if the shift is 31, we just propagate sign bits.
974  if (r2->is_con()) {
975    uint shift = r2->get_con();
976    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
977    // Shift by a multiple of 32 does nothing:
978    if (shift == 0)  return t1;
979    // Calculate reasonably aggressive bounds for the result.
980    // This is necessary if we are to correctly type things
981    // like (x<<24>>24) == ((byte)x).
982    jint lo = (jint)r1->_lo >> (jint)shift;
983    jint hi = (jint)r1->_hi >> (jint)shift;
984    assert(lo <= hi, "must have valid bounds");
985    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
986#ifdef ASSERT
987    // Make sure we get the sign-capture idiom correct.
988    if (shift == BitsPerJavaInteger-1) {
989      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
990      if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
991    }
992#endif
993    return ti;
994  }
995
996  if( !r1->is_con() || !r2->is_con() )
997    return TypeInt::INT;
998
999  // Signed shift right
1000  return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
1001}
1002
1003//=============================================================================
1004//------------------------------Identity---------------------------------------
1005Node* RShiftLNode::Identity(PhaseGVN* phase) {
1006  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1007  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1008}
1009
1010//------------------------------Value------------------------------------------
1011// A RShiftLNode shifts its input2 right by input1 amount.
1012const Type* RShiftLNode::Value(PhaseGVN* phase) const {
1013  const Type *t1 = phase->type( in(1) );
1014  const Type *t2 = phase->type( in(2) );
1015  // Either input is TOP ==> the result is TOP
1016  if( t1 == Type::TOP ) return Type::TOP;
1017  if( t2 == Type::TOP ) return Type::TOP;
1018
1019  // Left input is ZERO ==> the result is ZERO.
1020  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1021  // Shift by zero does nothing
1022  if( t2 == TypeInt::ZERO ) return t1;
1023
1024  // Either input is BOTTOM ==> the result is BOTTOM
1025  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1026    return TypeLong::LONG;
1027
1028  if (t2 == TypeInt::INT)
1029    return TypeLong::LONG;
1030
1031  const TypeLong *r1 = t1->is_long(); // Handy access
1032  const TypeInt  *r2 = t2->is_int (); // Handy access
1033
1034  // If the shift is a constant, just shift the bounds of the type.
1035  // For example, if the shift is 63, we just propagate sign bits.
1036  if (r2->is_con()) {
1037    uint shift = r2->get_con();
1038    shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1039    // Shift by a multiple of 64 does nothing:
1040    if (shift == 0)  return t1;
1041    // Calculate reasonably aggressive bounds for the result.
1042    // This is necessary if we are to correctly type things
1043    // like (x<<24>>24) == ((byte)x).
1044    jlong lo = (jlong)r1->_lo >> (jlong)shift;
1045    jlong hi = (jlong)r1->_hi >> (jlong)shift;
1046    assert(lo <= hi, "must have valid bounds");
1047    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1048    #ifdef ASSERT
1049    // Make sure we get the sign-capture idiom correct.
1050    if (shift == (2*BitsPerJavaInteger)-1) {
1051      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1052      if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1053    }
1054    #endif
1055    return tl;
1056  }
1057
1058  return TypeLong::LONG;                // Give up
1059}
1060
1061//=============================================================================
1062//------------------------------Identity---------------------------------------
1063Node* URShiftINode::Identity(PhaseGVN* phase) {
1064  const TypeInt *ti = phase->type( in(2) )->isa_int();
1065  if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
1066
1067  // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1068  // Happens during new-array length computation.
1069  // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1070  Node *add = in(1);
1071  if( add->Opcode() == Op_AddI ) {
1072    const TypeInt *t2  = phase->type(add->in(2))->isa_int();
1073    if( t2 && t2->is_con(wordSize - 1) &&
1074        add->in(1)->Opcode() == Op_LShiftI ) {
1075      // Check that shift_counts are LogBytesPerWord
1076      Node          *lshift_count   = add->in(1)->in(2);
1077      const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1078      if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1079          t_lshift_count == phase->type(in(2)) ) {
1080        Node          *x   = add->in(1)->in(1);
1081        const TypeInt *t_x = phase->type(x)->isa_int();
1082        if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
1083          return x;
1084        }
1085      }
1086    }
1087  }
1088
1089  return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1090}
1091
1092//------------------------------Ideal------------------------------------------
1093Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1094  const TypeInt *t2 = phase->type( in(2) )->isa_int();
1095  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1096  const int con = t2->get_con() & 31; // Shift count is always masked
1097  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1098  // We'll be wanting the right-shift amount as a mask of that many bits
1099  const int mask = right_n_bits(BitsPerJavaInteger - con);
1100
1101  int in1_op = in(1)->Opcode();
1102
1103  // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1104  if( in1_op == Op_URShiftI ) {
1105    const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1106    if( t12 && t12->is_con() ) { // Right input is a constant
1107      assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1108      const int con2 = t12->get_con() & 31; // Shift count is always masked
1109      const int con3 = con+con2;
1110      if( con3 < 32 )           // Only merge shifts if total is < 32
1111        return new URShiftINode( in(1)->in(1), phase->intcon(con3) );
1112    }
1113  }
1114
1115  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1116  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1117  // If Q is "X << z" the rounding is useless.  Look for patterns like
1118  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1119  Node *add = in(1);
1120  if( in1_op == Op_AddI ) {
1121    Node *lshl = add->in(1);
1122    if( lshl->Opcode() == Op_LShiftI &&
1123        phase->type(lshl->in(2)) == t2 ) {
1124      Node *y_z = phase->transform( new URShiftINode(add->in(2),in(2)) );
1125      Node *sum = phase->transform( new AddINode( lshl->in(1), y_z ) );
1126      return new AndINode( sum, phase->intcon(mask) );
1127    }
1128  }
1129
1130  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1131  // This shortens the mask.  Also, if we are extracting a high byte and
1132  // storing it to a buffer, the mask will be removed completely.
1133  Node *andi = in(1);
1134  if( in1_op == Op_AndI ) {
1135    const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1136    if( t3 && t3->is_con() ) { // Right input is a constant
1137      jint mask2 = t3->get_con();
1138      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1139      Node *newshr = phase->transform( new URShiftINode(andi->in(1), in(2)) );
1140      return new AndINode(newshr, phase->intcon(mask2));
1141      // The negative values are easier to materialize than positive ones.
1142      // A typical case from address arithmetic is ((x & ~15) >> 4).
1143      // It's better to change that to ((x >> 4) & ~0) versus
1144      // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1145    }
1146  }
1147
1148  // Check for "(X << z ) >>> z" which simply zero-extends
1149  Node *shl = in(1);
1150  if( in1_op == Op_LShiftI &&
1151      phase->type(shl->in(2)) == t2 )
1152    return new AndINode( shl->in(1), phase->intcon(mask) );
1153
1154  return NULL;
1155}
1156
1157//------------------------------Value------------------------------------------
1158// A URShiftINode shifts its input2 right by input1 amount.
1159const Type* URShiftINode::Value(PhaseGVN* phase) const {
1160  // (This is a near clone of RShiftINode::Value.)
1161  const Type *t1 = phase->type( in(1) );
1162  const Type *t2 = phase->type( in(2) );
1163  // Either input is TOP ==> the result is TOP
1164  if( t1 == Type::TOP ) return Type::TOP;
1165  if( t2 == Type::TOP ) return Type::TOP;
1166
1167  // Left input is ZERO ==> the result is ZERO.
1168  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1169  // Shift by zero does nothing
1170  if( t2 == TypeInt::ZERO ) return t1;
1171
1172  // Either input is BOTTOM ==> the result is BOTTOM
1173  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1174    return TypeInt::INT;
1175
1176  if (t2 == TypeInt::INT)
1177    return TypeInt::INT;
1178
1179  const TypeInt *r1 = t1->is_int();     // Handy access
1180  const TypeInt *r2 = t2->is_int();     // Handy access
1181
1182  if (r2->is_con()) {
1183    uint shift = r2->get_con();
1184    shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1185    // Shift by a multiple of 32 does nothing:
1186    if (shift == 0)  return t1;
1187    // Calculate reasonably aggressive bounds for the result.
1188    jint lo = (juint)r1->_lo >> (juint)shift;
1189    jint hi = (juint)r1->_hi >> (juint)shift;
1190    if (r1->_hi >= 0 && r1->_lo < 0) {
1191      // If the type has both negative and positive values,
1192      // there are two separate sub-domains to worry about:
1193      // The positive half and the negative half.
1194      jint neg_lo = lo;
1195      jint neg_hi = (juint)-1 >> (juint)shift;
1196      jint pos_lo = (juint) 0 >> (juint)shift;
1197      jint pos_hi = hi;
1198      lo = MIN2(neg_lo, pos_lo);  // == 0
1199      hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1200    }
1201    assert(lo <= hi, "must have valid bounds");
1202    const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1203    #ifdef ASSERT
1204    // Make sure we get the sign-capture idiom correct.
1205    if (shift == BitsPerJavaInteger-1) {
1206      if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1207      if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1208    }
1209    #endif
1210    return ti;
1211  }
1212
1213  //
1214  // Do not support shifted oops in info for GC
1215  //
1216  // else if( t1->base() == Type::InstPtr ) {
1217  //
1218  //   const TypeInstPtr *o = t1->is_instptr();
1219  //   if( t1->singleton() )
1220  //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1221  // }
1222  // else if( t1->base() == Type::KlassPtr ) {
1223  //   const TypeKlassPtr *o = t1->is_klassptr();
1224  //   if( t1->singleton() )
1225  //     return TypeInt::make( ((uint32_t)o->const_oop() + o->_offset) >> shift );
1226  // }
1227
1228  return TypeInt::INT;
1229}
1230
1231//=============================================================================
1232//------------------------------Identity---------------------------------------
1233Node* URShiftLNode::Identity(PhaseGVN* phase) {
1234  const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1235  return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1236}
1237
1238//------------------------------Ideal------------------------------------------
1239Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1240  const TypeInt *t2 = phase->type( in(2) )->isa_int();
1241  if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1242  const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
1243  if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1244                              // note: mask computation below does not work for 0 shift count
1245  // We'll be wanting the right-shift amount as a mask of that many bits
1246  const jlong mask = jlong(max_julong >> con);
1247
1248  // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1249  // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1250  // If Q is "X << z" the rounding is useless.  Look for patterns like
1251  // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1252  Node *add = in(1);
1253  if( add->Opcode() == Op_AddL ) {
1254    Node *lshl = add->in(1);
1255    if( lshl->Opcode() == Op_LShiftL &&
1256        phase->type(lshl->in(2)) == t2 ) {
1257      Node *y_z = phase->transform( new URShiftLNode(add->in(2),in(2)) );
1258      Node *sum = phase->transform( new AddLNode( lshl->in(1), y_z ) );
1259      return new AndLNode( sum, phase->longcon(mask) );
1260    }
1261  }
1262
1263  // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1264  // This shortens the mask.  Also, if we are extracting a high byte and
1265  // storing it to a buffer, the mask will be removed completely.
1266  Node *andi = in(1);
1267  if( andi->Opcode() == Op_AndL ) {
1268    const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1269    if( t3 && t3->is_con() ) { // Right input is a constant
1270      jlong mask2 = t3->get_con();
1271      mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1272      Node *newshr = phase->transform( new URShiftLNode(andi->in(1), in(2)) );
1273      return new AndLNode(newshr, phase->longcon(mask2));
1274    }
1275  }
1276
1277  // Check for "(X << z ) >>> z" which simply zero-extends
1278  Node *shl = in(1);
1279  if( shl->Opcode() == Op_LShiftL &&
1280      phase->type(shl->in(2)) == t2 )
1281    return new AndLNode( shl->in(1), phase->longcon(mask) );
1282
1283  return NULL;
1284}
1285
1286//------------------------------Value------------------------------------------
1287// A URShiftINode shifts its input2 right by input1 amount.
1288const Type* URShiftLNode::Value(PhaseGVN* phase) const {
1289  // (This is a near clone of RShiftLNode::Value.)
1290  const Type *t1 = phase->type( in(1) );
1291  const Type *t2 = phase->type( in(2) );
1292  // Either input is TOP ==> the result is TOP
1293  if( t1 == Type::TOP ) return Type::TOP;
1294  if( t2 == Type::TOP ) return Type::TOP;
1295
1296  // Left input is ZERO ==> the result is ZERO.
1297  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1298  // Shift by zero does nothing
1299  if( t2 == TypeInt::ZERO ) return t1;
1300
1301  // Either input is BOTTOM ==> the result is BOTTOM
1302  if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1303    return TypeLong::LONG;
1304
1305  if (t2 == TypeInt::INT)
1306    return TypeLong::LONG;
1307
1308  const TypeLong *r1 = t1->is_long(); // Handy access
1309  const TypeInt  *r2 = t2->is_int (); // Handy access
1310
1311  if (r2->is_con()) {
1312    uint shift = r2->get_con();
1313    shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1314    // Shift by a multiple of 64 does nothing:
1315    if (shift == 0)  return t1;
1316    // Calculate reasonably aggressive bounds for the result.
1317    jlong lo = (julong)r1->_lo >> (juint)shift;
1318    jlong hi = (julong)r1->_hi >> (juint)shift;
1319    if (r1->_hi >= 0 && r1->_lo < 0) {
1320      // If the type has both negative and positive values,
1321      // there are two separate sub-domains to worry about:
1322      // The positive half and the negative half.
1323      jlong neg_lo = lo;
1324      jlong neg_hi = (julong)-1 >> (juint)shift;
1325      jlong pos_lo = (julong) 0 >> (juint)shift;
1326      jlong pos_hi = hi;
1327      //lo = MIN2(neg_lo, pos_lo);  // == 0
1328      lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1329      //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1330      hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1331    }
1332    assert(lo <= hi, "must have valid bounds");
1333    const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1334    #ifdef ASSERT
1335    // Make sure we get the sign-capture idiom correct.
1336    if (shift == BitsPerJavaLong - 1) {
1337      if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1338      if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1339    }
1340    #endif
1341    return tl;
1342  }
1343
1344  return TypeLong::LONG;                // Give up
1345}
1346
1347//=============================================================================
1348//------------------------------Value------------------------------------------
1349const Type* FmaDNode::Value(PhaseGVN* phase) const {
1350  const Type *t1 = phase->type(in(1));
1351  if (t1 == Type::TOP) return Type::TOP;
1352  if (t1->base() != Type::DoubleCon) return Type::DOUBLE;
1353  const Type *t2 = phase->type(in(2));
1354  if (t2 == Type::TOP) return Type::TOP;
1355  if (t2->base() != Type::DoubleCon) return Type::DOUBLE;
1356  const Type *t3 = phase->type(in(3));
1357  if (t3 == Type::TOP) return Type::TOP;
1358  if (t3->base() != Type::DoubleCon) return Type::DOUBLE;
1359#ifndef __STDC_IEC_559__
1360  return Type::DOUBLE;
1361#else
1362  double d1 = t1->getd();
1363  double d2 = t2->getd();
1364  double d3 = t3->getd();
1365  return TypeD::make(fma(d1, d2, d3));
1366#endif
1367}
1368
1369//=============================================================================
1370//------------------------------Value------------------------------------------
1371const Type* FmaFNode::Value(PhaseGVN* phase) const {
1372  const Type *t1 = phase->type(in(1));
1373  if (t1 == Type::TOP) return Type::TOP;
1374  if (t1->base() != Type::FloatCon) return Type::FLOAT;
1375  const Type *t2 = phase->type(in(2));
1376  if (t2 == Type::TOP) return Type::TOP;
1377  if (t2->base() != Type::FloatCon) return Type::FLOAT;
1378  const Type *t3 = phase->type(in(3));
1379  if (t3 == Type::TOP) return Type::TOP;
1380  if (t3->base() != Type::FloatCon) return Type::FLOAT;
1381#ifndef __STDC_IEC_559__
1382  return Type::FLOAT;
1383#else
1384  float f1 = t1->getf();
1385  float f2 = t2->getf();
1386  float f3 = t3->getf();
1387  return TypeF::make(fma(f1, f2, f3));
1388#endif
1389}
1390