memnode.cpp revision 4857:b88209cf98c0
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "compiler/compileLog.hpp"
28#include "memory/allocation.inline.hpp"
29#include "oops/objArrayKlass.hpp"
30#include "opto/addnode.hpp"
31#include "opto/cfgnode.hpp"
32#include "opto/compile.hpp"
33#include "opto/connode.hpp"
34#include "opto/loopnode.hpp"
35#include "opto/machnode.hpp"
36#include "opto/matcher.hpp"
37#include "opto/memnode.hpp"
38#include "opto/mulnode.hpp"
39#include "opto/phaseX.hpp"
40#include "opto/regmask.hpp"
41
42// Portions of code courtesy of Clifford Click
43
44// Optimization - Graph Style
45
46static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
47
48//=============================================================================
49uint MemNode::size_of() const { return sizeof(*this); }
50
51const TypePtr *MemNode::adr_type() const {
52  Node* adr = in(Address);
53  const TypePtr* cross_check = NULL;
54  DEBUG_ONLY(cross_check = _adr_type);
55  return calculate_adr_type(adr->bottom_type(), cross_check);
56}
57
58#ifndef PRODUCT
59void MemNode::dump_spec(outputStream *st) const {
60  if (in(Address) == NULL)  return; // node is dead
61#ifndef ASSERT
62  // fake the missing field
63  const TypePtr* _adr_type = NULL;
64  if (in(Address) != NULL)
65    _adr_type = in(Address)->bottom_type()->isa_ptr();
66#endif
67  dump_adr_type(this, _adr_type, st);
68
69  Compile* C = Compile::current();
70  if( C->alias_type(_adr_type)->is_volatile() )
71    st->print(" Volatile!");
72}
73
74void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
75  st->print(" @");
76  if (adr_type == NULL) {
77    st->print("NULL");
78  } else {
79    adr_type->dump_on(st);
80    Compile* C = Compile::current();
81    Compile::AliasType* atp = NULL;
82    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
83    if (atp == NULL)
84      st->print(", idx=?\?;");
85    else if (atp->index() == Compile::AliasIdxBot)
86      st->print(", idx=Bot;");
87    else if (atp->index() == Compile::AliasIdxTop)
88      st->print(", idx=Top;");
89    else if (atp->index() == Compile::AliasIdxRaw)
90      st->print(", idx=Raw;");
91    else {
92      ciField* field = atp->field();
93      if (field) {
94        st->print(", name=");
95        field->print_name_on(st);
96      }
97      st->print(", idx=%d;", atp->index());
98    }
99  }
100}
101
102extern void print_alias_types();
103
104#endif
105
106Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
107  assert((t_oop != NULL), "sanity");
108  bool is_instance = t_oop->is_known_instance_field();
109  bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
110                             (load != NULL) && load->is_Load() &&
111                             (phase->is_IterGVN() != NULL);
112  if (!(is_instance || is_boxed_value_load))
113    return mchain;  // don't try to optimize non-instance types
114  uint instance_id = t_oop->instance_id();
115  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
116  Node *prev = NULL;
117  Node *result = mchain;
118  while (prev != result) {
119    prev = result;
120    if (result == start_mem)
121      break;  // hit one of our sentinels
122    // skip over a call which does not affect this memory slice
123    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
124      Node *proj_in = result->in(0);
125      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
126        break;  // hit one of our sentinels
127      } else if (proj_in->is_Call()) {
128        CallNode *call = proj_in->as_Call();
129        if (!call->may_modify(t_oop, phase)) { // returns false for instances
130          result = call->in(TypeFunc::Memory);
131        }
132      } else if (proj_in->is_Initialize()) {
133        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
134        // Stop if this is the initialization for the object instance which
135        // which contains this memory slice, otherwise skip over it.
136        if ((alloc == NULL) || (alloc->_idx == instance_id)) {
137          break;
138        }
139        if (is_instance) {
140          result = proj_in->in(TypeFunc::Memory);
141        } else if (is_boxed_value_load) {
142          Node* klass = alloc->in(AllocateNode::KlassNode);
143          const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
144          if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
145            result = proj_in->in(TypeFunc::Memory); // not related allocation
146          }
147        }
148      } else if (proj_in->is_MemBar()) {
149        result = proj_in->in(TypeFunc::Memory);
150      } else {
151        assert(false, "unexpected projection");
152      }
153    } else if (result->is_ClearArray()) {
154      if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
155        // Can not bypass initialization of the instance
156        // we are looking for.
157        break;
158      }
159      // Otherwise skip it (the call updated 'result' value).
160    } else if (result->is_MergeMem()) {
161      result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
162    }
163  }
164  return result;
165}
166
167Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
168  const TypeOopPtr* t_oop = t_adr->isa_oopptr();
169  if (t_oop == NULL)
170    return mchain;  // don't try to optimize non-oop types
171  Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
172  bool is_instance = t_oop->is_known_instance_field();
173  PhaseIterGVN *igvn = phase->is_IterGVN();
174  if (is_instance && igvn != NULL  && result->is_Phi()) {
175    PhiNode *mphi = result->as_Phi();
176    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
177    const TypePtr *t = mphi->adr_type();
178    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
179        t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
180        t->is_oopptr()->cast_to_exactness(true)
181         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
182         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
183      // clone the Phi with our address type
184      result = mphi->split_out_instance(t_adr, igvn);
185    } else {
186      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
187    }
188  }
189  return result;
190}
191
192static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
193  uint alias_idx = phase->C->get_alias_index(tp);
194  Node *mem = mmem;
195#ifdef ASSERT
196  {
197    // Check that current type is consistent with the alias index used during graph construction
198    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
199    bool consistent =  adr_check == NULL || adr_check->empty() ||
200                       phase->C->must_alias(adr_check, alias_idx );
201    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
202    if( !consistent && adr_check != NULL && !adr_check->empty() &&
203               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
204        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
205        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
206          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
207          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
208      // don't assert if it is dead code.
209      consistent = true;
210    }
211    if( !consistent ) {
212      st->print("alias_idx==%d, adr_check==", alias_idx);
213      if( adr_check == NULL ) {
214        st->print("NULL");
215      } else {
216        adr_check->dump();
217      }
218      st->cr();
219      print_alias_types();
220      assert(consistent, "adr_check must match alias idx");
221    }
222  }
223#endif
224  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
225  // means an array I have not precisely typed yet.  Do not do any
226  // alias stuff with it any time soon.
227  const TypeOopPtr *toop = tp->isa_oopptr();
228  if( tp->base() != Type::AnyPtr &&
229      !(toop &&
230        toop->klass() != NULL &&
231        toop->klass()->is_java_lang_Object() &&
232        toop->offset() == Type::OffsetBot) ) {
233    // compress paths and change unreachable cycles to TOP
234    // If not, we can update the input infinitely along a MergeMem cycle
235    // Equivalent code in PhiNode::Ideal
236    Node* m  = phase->transform(mmem);
237    // If transformed to a MergeMem, get the desired slice
238    // Otherwise the returned node represents memory for every slice
239    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
240    // Update input if it is progress over what we have now
241  }
242  return mem;
243}
244
245//--------------------------Ideal_common---------------------------------------
246// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
247// Unhook non-raw memories from complete (macro-expanded) initializations.
248Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
249  // If our control input is a dead region, kill all below the region
250  Node *ctl = in(MemNode::Control);
251  if (ctl && remove_dead_region(phase, can_reshape))
252    return this;
253  ctl = in(MemNode::Control);
254  // Don't bother trying to transform a dead node
255  if (ctl && ctl->is_top())  return NodeSentinel;
256
257  PhaseIterGVN *igvn = phase->is_IterGVN();
258  // Wait if control on the worklist.
259  if (ctl && can_reshape && igvn != NULL) {
260    Node* bol = NULL;
261    Node* cmp = NULL;
262    if (ctl->in(0)->is_If()) {
263      assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
264      bol = ctl->in(0)->in(1);
265      if (bol->is_Bool())
266        cmp = ctl->in(0)->in(1)->in(1);
267    }
268    if (igvn->_worklist.member(ctl) ||
269        (bol != NULL && igvn->_worklist.member(bol)) ||
270        (cmp != NULL && igvn->_worklist.member(cmp)) ) {
271      // This control path may be dead.
272      // Delay this memory node transformation until the control is processed.
273      phase->is_IterGVN()->_worklist.push(this);
274      return NodeSentinel; // caller will return NULL
275    }
276  }
277  // Ignore if memory is dead, or self-loop
278  Node *mem = in(MemNode::Memory);
279  if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
280  assert(mem != this, "dead loop in MemNode::Ideal");
281
282  if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
283    // This memory slice may be dead.
284    // Delay this mem node transformation until the memory is processed.
285    phase->is_IterGVN()->_worklist.push(this);
286    return NodeSentinel; // caller will return NULL
287  }
288
289  Node *address = in(MemNode::Address);
290  const Type *t_adr = phase->type(address);
291  if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
292
293  if (can_reshape && igvn != NULL &&
294      (igvn->_worklist.member(address) ||
295       igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
296    // The address's base and type may change when the address is processed.
297    // Delay this mem node transformation until the address is processed.
298    phase->is_IterGVN()->_worklist.push(this);
299    return NodeSentinel; // caller will return NULL
300  }
301
302  // Do NOT remove or optimize the next lines: ensure a new alias index
303  // is allocated for an oop pointer type before Escape Analysis.
304  // Note: C++ will not remove it since the call has side effect.
305  if (t_adr->isa_oopptr()) {
306    int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
307  }
308
309#ifdef ASSERT
310  Node* base = NULL;
311  if (address->is_AddP())
312    base = address->in(AddPNode::Base);
313  if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
314      !t_adr->isa_rawptr()) {
315    // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
316    Compile* C = phase->C;
317    tty->cr();
318    tty->print_cr("===== NULL+offs not RAW address =====");
319    if (C->is_dead_node(this->_idx))    tty->print_cr("'this' is dead");
320    if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
321    if (C->is_dead_node(mem->_idx))     tty->print_cr("'mem' is dead");
322    if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
323    if (C->is_dead_node(base->_idx))    tty->print_cr("'base' is dead");
324    tty->cr();
325    base->dump(1);
326    tty->cr();
327    this->dump(2);
328    tty->print("this->adr_type():     "); adr_type()->dump(); tty->cr();
329    tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
330    tty->print("phase->type(base):    "); phase->type(address)->dump(); tty->cr();
331    tty->cr();
332  }
333  assert(base == NULL || t_adr->isa_rawptr() ||
334        !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
335#endif
336
337  // Avoid independent memory operations
338  Node* old_mem = mem;
339
340  // The code which unhooks non-raw memories from complete (macro-expanded)
341  // initializations was removed. After macro-expansion all stores catched
342  // by Initialize node became raw stores and there is no information
343  // which memory slices they modify. So it is unsafe to move any memory
344  // operation above these stores. Also in most cases hooked non-raw memories
345  // were already unhooked by using information from detect_ptr_independence()
346  // and find_previous_store().
347
348  if (mem->is_MergeMem()) {
349    MergeMemNode* mmem = mem->as_MergeMem();
350    const TypePtr *tp = t_adr->is_ptr();
351
352    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
353  }
354
355  if (mem != old_mem) {
356    set_req(MemNode::Memory, mem);
357    if (can_reshape && old_mem->outcnt() == 0) {
358        igvn->_worklist.push(old_mem);
359    }
360    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
361    return this;
362  }
363
364  // let the subclass continue analyzing...
365  return NULL;
366}
367
368// Helper function for proving some simple control dominations.
369// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
370// Already assumes that 'dom' is available at 'sub', and that 'sub'
371// is not a constant (dominated by the method's StartNode).
372// Used by MemNode::find_previous_store to prove that the
373// control input of a memory operation predates (dominates)
374// an allocation it wants to look past.
375bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
376  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
377    return false; // Conservative answer for dead code
378
379  // Check 'dom'. Skip Proj and CatchProj nodes.
380  dom = dom->find_exact_control(dom);
381  if (dom == NULL || dom->is_top())
382    return false; // Conservative answer for dead code
383
384  if (dom == sub) {
385    // For the case when, for example, 'sub' is Initialize and the original
386    // 'dom' is Proj node of the 'sub'.
387    return false;
388  }
389
390  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
391    return true;
392
393  // 'dom' dominates 'sub' if its control edge and control edges
394  // of all its inputs dominate or equal to sub's control edge.
395
396  // Currently 'sub' is either Allocate, Initialize or Start nodes.
397  // Or Region for the check in LoadNode::Ideal();
398  // 'sub' should have sub->in(0) != NULL.
399  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
400         sub->is_Region() || sub->is_Call(), "expecting only these nodes");
401
402  // Get control edge of 'sub'.
403  Node* orig_sub = sub;
404  sub = sub->find_exact_control(sub->in(0));
405  if (sub == NULL || sub->is_top())
406    return false; // Conservative answer for dead code
407
408  assert(sub->is_CFG(), "expecting control");
409
410  if (sub == dom)
411    return true;
412
413  if (sub->is_Start() || sub->is_Root())
414    return false;
415
416  {
417    // Check all control edges of 'dom'.
418
419    ResourceMark rm;
420    Arena* arena = Thread::current()->resource_area();
421    Node_List nlist(arena);
422    Unique_Node_List dom_list(arena);
423
424    dom_list.push(dom);
425    bool only_dominating_controls = false;
426
427    for (uint next = 0; next < dom_list.size(); next++) {
428      Node* n = dom_list.at(next);
429      if (n == orig_sub)
430        return false; // One of dom's inputs dominated by sub.
431      if (!n->is_CFG() && n->pinned()) {
432        // Check only own control edge for pinned non-control nodes.
433        n = n->find_exact_control(n->in(0));
434        if (n == NULL || n->is_top())
435          return false; // Conservative answer for dead code
436        assert(n->is_CFG(), "expecting control");
437        dom_list.push(n);
438      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
439        only_dominating_controls = true;
440      } else if (n->is_CFG()) {
441        if (n->dominates(sub, nlist))
442          only_dominating_controls = true;
443        else
444          return false;
445      } else {
446        // First, own control edge.
447        Node* m = n->find_exact_control(n->in(0));
448        if (m != NULL) {
449          if (m->is_top())
450            return false; // Conservative answer for dead code
451          dom_list.push(m);
452        }
453        // Now, the rest of edges.
454        uint cnt = n->req();
455        for (uint i = 1; i < cnt; i++) {
456          m = n->find_exact_control(n->in(i));
457          if (m == NULL || m->is_top())
458            continue;
459          dom_list.push(m);
460        }
461      }
462    }
463    return only_dominating_controls;
464  }
465}
466
467//---------------------detect_ptr_independence---------------------------------
468// Used by MemNode::find_previous_store to prove that two base
469// pointers are never equal.
470// The pointers are accompanied by their associated allocations,
471// if any, which have been previously discovered by the caller.
472bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
473                                      Node* p2, AllocateNode* a2,
474                                      PhaseTransform* phase) {
475  // Attempt to prove that these two pointers cannot be aliased.
476  // They may both manifestly be allocations, and they should differ.
477  // Or, if they are not both allocations, they can be distinct constants.
478  // Otherwise, one is an allocation and the other a pre-existing value.
479  if (a1 == NULL && a2 == NULL) {           // neither an allocation
480    return (p1 != p2) && p1->is_Con() && p2->is_Con();
481  } else if (a1 != NULL && a2 != NULL) {    // both allocations
482    return (a1 != a2);
483  } else if (a1 != NULL) {                  // one allocation a1
484    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
485    return all_controls_dominate(p2, a1);
486  } else { //(a2 != NULL)                   // one allocation a2
487    return all_controls_dominate(p1, a2);
488  }
489  return false;
490}
491
492
493// The logic for reordering loads and stores uses four steps:
494// (a) Walk carefully past stores and initializations which we
495//     can prove are independent of this load.
496// (b) Observe that the next memory state makes an exact match
497//     with self (load or store), and locate the relevant store.
498// (c) Ensure that, if we were to wire self directly to the store,
499//     the optimizer would fold it up somehow.
500// (d) Do the rewiring, and return, depending on some other part of
501//     the optimizer to fold up the load.
502// This routine handles steps (a) and (b).  Steps (c) and (d) are
503// specific to loads and stores, so they are handled by the callers.
504// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
505//
506Node* MemNode::find_previous_store(PhaseTransform* phase) {
507  Node*         ctrl   = in(MemNode::Control);
508  Node*         adr    = in(MemNode::Address);
509  intptr_t      offset = 0;
510  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
511  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
512
513  if (offset == Type::OffsetBot)
514    return NULL;            // cannot unalias unless there are precise offsets
515
516  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
517
518  intptr_t size_in_bytes = memory_size();
519
520  Node* mem = in(MemNode::Memory);   // start searching here...
521
522  int cnt = 50;             // Cycle limiter
523  for (;;) {                // While we can dance past unrelated stores...
524    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
525
526    if (mem->is_Store()) {
527      Node* st_adr = mem->in(MemNode::Address);
528      intptr_t st_offset = 0;
529      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
530      if (st_base == NULL)
531        break;              // inscrutable pointer
532      if (st_offset != offset && st_offset != Type::OffsetBot) {
533        const int MAX_STORE = BytesPerLong;
534        if (st_offset >= offset + size_in_bytes ||
535            st_offset <= offset - MAX_STORE ||
536            st_offset <= offset - mem->as_Store()->memory_size()) {
537          // Success:  The offsets are provably independent.
538          // (You may ask, why not just test st_offset != offset and be done?
539          // The answer is that stores of different sizes can co-exist
540          // in the same sequence of RawMem effects.  We sometimes initialize
541          // a whole 'tile' of array elements with a single jint or jlong.)
542          mem = mem->in(MemNode::Memory);
543          continue;           // (a) advance through independent store memory
544        }
545      }
546      if (st_base != base &&
547          detect_ptr_independence(base, alloc,
548                                  st_base,
549                                  AllocateNode::Ideal_allocation(st_base, phase),
550                                  phase)) {
551        // Success:  The bases are provably independent.
552        mem = mem->in(MemNode::Memory);
553        continue;           // (a) advance through independent store memory
554      }
555
556      // (b) At this point, if the bases or offsets do not agree, we lose,
557      // since we have not managed to prove 'this' and 'mem' independent.
558      if (st_base == base && st_offset == offset) {
559        return mem;         // let caller handle steps (c), (d)
560      }
561
562    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
563      InitializeNode* st_init = mem->in(0)->as_Initialize();
564      AllocateNode*  st_alloc = st_init->allocation();
565      if (st_alloc == NULL)
566        break;              // something degenerated
567      bool known_identical = false;
568      bool known_independent = false;
569      if (alloc == st_alloc)
570        known_identical = true;
571      else if (alloc != NULL)
572        known_independent = true;
573      else if (all_controls_dominate(this, st_alloc))
574        known_independent = true;
575
576      if (known_independent) {
577        // The bases are provably independent: Either they are
578        // manifestly distinct allocations, or else the control
579        // of this load dominates the store's allocation.
580        int alias_idx = phase->C->get_alias_index(adr_type());
581        if (alias_idx == Compile::AliasIdxRaw) {
582          mem = st_alloc->in(TypeFunc::Memory);
583        } else {
584          mem = st_init->memory(alias_idx);
585        }
586        continue;           // (a) advance through independent store memory
587      }
588
589      // (b) at this point, if we are not looking at a store initializing
590      // the same allocation we are loading from, we lose.
591      if (known_identical) {
592        // From caller, can_see_stored_value will consult find_captured_store.
593        return mem;         // let caller handle steps (c), (d)
594      }
595
596    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
597      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
598      if (mem->is_Proj() && mem->in(0)->is_Call()) {
599        CallNode *call = mem->in(0)->as_Call();
600        if (!call->may_modify(addr_t, phase)) {
601          mem = call->in(TypeFunc::Memory);
602          continue;         // (a) advance through independent call memory
603        }
604      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
605        mem = mem->in(0)->in(TypeFunc::Memory);
606        continue;           // (a) advance through independent MemBar memory
607      } else if (mem->is_ClearArray()) {
608        if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
609          // (the call updated 'mem' value)
610          continue;         // (a) advance through independent allocation memory
611        } else {
612          // Can not bypass initialization of the instance
613          // we are looking for.
614          return mem;
615        }
616      } else if (mem->is_MergeMem()) {
617        int alias_idx = phase->C->get_alias_index(adr_type());
618        mem = mem->as_MergeMem()->memory_at(alias_idx);
619        continue;           // (a) advance through independent MergeMem memory
620      }
621    }
622
623    // Unless there is an explicit 'continue', we must bail out here,
624    // because 'mem' is an inscrutable memory state (e.g., a call).
625    break;
626  }
627
628  return NULL;              // bail out
629}
630
631//----------------------calculate_adr_type-------------------------------------
632// Helper function.  Notices when the given type of address hits top or bottom.
633// Also, asserts a cross-check of the type against the expected address type.
634const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
635  if (t == Type::TOP)  return NULL; // does not touch memory any more?
636  #ifdef PRODUCT
637  cross_check = NULL;
638  #else
639  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
640  #endif
641  const TypePtr* tp = t->isa_ptr();
642  if (tp == NULL) {
643    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
644    return TypePtr::BOTTOM;           // touches lots of memory
645  } else {
646    #ifdef ASSERT
647    // %%%% [phh] We don't check the alias index if cross_check is
648    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
649    if (cross_check != NULL &&
650        cross_check != TypePtr::BOTTOM &&
651        cross_check != TypeRawPtr::BOTTOM) {
652      // Recheck the alias index, to see if it has changed (due to a bug).
653      Compile* C = Compile::current();
654      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
655             "must stay in the original alias category");
656      // The type of the address must be contained in the adr_type,
657      // disregarding "null"-ness.
658      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
659      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
660      assert(cross_check->meet(tp_notnull) == cross_check,
661             "real address must not escape from expected memory type");
662    }
663    #endif
664    return tp;
665  }
666}
667
668//------------------------adr_phi_is_loop_invariant----------------------------
669// A helper function for Ideal_DU_postCCP to check if a Phi in a counted
670// loop is loop invariant. Make a quick traversal of Phi and associated
671// CastPP nodes, looking to see if they are a closed group within the loop.
672bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
673  // The idea is that the phi-nest must boil down to only CastPP nodes
674  // with the same data. This implies that any path into the loop already
675  // includes such a CastPP, and so the original cast, whatever its input,
676  // must be covered by an equivalent cast, with an earlier control input.
677  ResourceMark rm;
678
679  // The loop entry input of the phi should be the unique dominating
680  // node for every Phi/CastPP in the loop.
681  Unique_Node_List closure;
682  closure.push(adr_phi->in(LoopNode::EntryControl));
683
684  // Add the phi node and the cast to the worklist.
685  Unique_Node_List worklist;
686  worklist.push(adr_phi);
687  if( cast != NULL ){
688    if( !cast->is_ConstraintCast() ) return false;
689    worklist.push(cast);
690  }
691
692  // Begin recursive walk of phi nodes.
693  while( worklist.size() ){
694    // Take a node off the worklist
695    Node *n = worklist.pop();
696    if( !closure.member(n) ){
697      // Add it to the closure.
698      closure.push(n);
699      // Make a sanity check to ensure we don't waste too much time here.
700      if( closure.size() > 20) return false;
701      // This node is OK if:
702      //  - it is a cast of an identical value
703      //  - or it is a phi node (then we add its inputs to the worklist)
704      // Otherwise, the node is not OK, and we presume the cast is not invariant
705      if( n->is_ConstraintCast() ){
706        worklist.push(n->in(1));
707      } else if( n->is_Phi() ) {
708        for( uint i = 1; i < n->req(); i++ ) {
709          worklist.push(n->in(i));
710        }
711      } else {
712        return false;
713      }
714    }
715  }
716
717  // Quit when the worklist is empty, and we've found no offending nodes.
718  return true;
719}
720
721//------------------------------Ideal_DU_postCCP-------------------------------
722// Find any cast-away of null-ness and keep its control.  Null cast-aways are
723// going away in this pass and we need to make this memory op depend on the
724// gating null check.
725Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
726  return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
727}
728
729// I tried to leave the CastPP's in.  This makes the graph more accurate in
730// some sense; we get to keep around the knowledge that an oop is not-null
731// after some test.  Alas, the CastPP's interfere with GVN (some values are
732// the regular oop, some are the CastPP of the oop, all merge at Phi's which
733// cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
734// some of the more trivial cases in the optimizer.  Removing more useless
735// Phi's started allowing Loads to illegally float above null checks.  I gave
736// up on this approach.  CNC 10/20/2000
737// This static method may be called not from MemNode (EncodePNode calls it).
738// Only the control edge of the node 'n' might be updated.
739Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
740  Node *skipped_cast = NULL;
741  // Need a null check?  Regular static accesses do not because they are
742  // from constant addresses.  Array ops are gated by the range check (which
743  // always includes a NULL check).  Just check field ops.
744  if( n->in(MemNode::Control) == NULL ) {
745    // Scan upwards for the highest location we can place this memory op.
746    while( true ) {
747      switch( adr->Opcode() ) {
748
749      case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
750        adr = adr->in(AddPNode::Base);
751        continue;
752
753      case Op_DecodeN:         // No change to NULL-ness, so peek thru
754      case Op_DecodeNKlass:
755        adr = adr->in(1);
756        continue;
757
758      case Op_EncodeP:
759      case Op_EncodePKlass:
760        // EncodeP node's control edge could be set by this method
761        // when EncodeP node depends on CastPP node.
762        //
763        // Use its control edge for memory op because EncodeP may go away
764        // later when it is folded with following or preceding DecodeN node.
765        if (adr->in(0) == NULL) {
766          // Keep looking for cast nodes.
767          adr = adr->in(1);
768          continue;
769        }
770        ccp->hash_delete(n);
771        n->set_req(MemNode::Control, adr->in(0));
772        ccp->hash_insert(n);
773        return n;
774
775      case Op_CastPP:
776        // If the CastPP is useless, just peek on through it.
777        if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
778          // Remember the cast that we've peeked though. If we peek
779          // through more than one, then we end up remembering the highest
780          // one, that is, if in a loop, the one closest to the top.
781          skipped_cast = adr;
782          adr = adr->in(1);
783          continue;
784        }
785        // CastPP is going away in this pass!  We need this memory op to be
786        // control-dependent on the test that is guarding the CastPP.
787        ccp->hash_delete(n);
788        n->set_req(MemNode::Control, adr->in(0));
789        ccp->hash_insert(n);
790        return n;
791
792      case Op_Phi:
793        // Attempt to float above a Phi to some dominating point.
794        if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
795          // If we've already peeked through a Cast (which could have set the
796          // control), we can't float above a Phi, because the skipped Cast
797          // may not be loop invariant.
798          if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
799            adr = adr->in(1);
800            continue;
801          }
802        }
803
804        // Intentional fallthrough!
805
806        // No obvious dominating point.  The mem op is pinned below the Phi
807        // by the Phi itself.  If the Phi goes away (no true value is merged)
808        // then the mem op can float, but not indefinitely.  It must be pinned
809        // behind the controls leading to the Phi.
810      case Op_CheckCastPP:
811        // These usually stick around to change address type, however a
812        // useless one can be elided and we still need to pick up a control edge
813        if (adr->in(0) == NULL) {
814          // This CheckCastPP node has NO control and is likely useless. But we
815          // need check further up the ancestor chain for a control input to keep
816          // the node in place. 4959717.
817          skipped_cast = adr;
818          adr = adr->in(1);
819          continue;
820        }
821        ccp->hash_delete(n);
822        n->set_req(MemNode::Control, adr->in(0));
823        ccp->hash_insert(n);
824        return n;
825
826        // List of "safe" opcodes; those that implicitly block the memory
827        // op below any null check.
828      case Op_CastX2P:          // no null checks on native pointers
829      case Op_Parm:             // 'this' pointer is not null
830      case Op_LoadP:            // Loading from within a klass
831      case Op_LoadN:            // Loading from within a klass
832      case Op_LoadKlass:        // Loading from within a klass
833      case Op_LoadNKlass:       // Loading from within a klass
834      case Op_ConP:             // Loading from a klass
835      case Op_ConN:             // Loading from a klass
836      case Op_ConNKlass:        // Loading from a klass
837      case Op_CreateEx:         // Sucking up the guts of an exception oop
838      case Op_Con:              // Reading from TLS
839      case Op_CMoveP:           // CMoveP is pinned
840      case Op_CMoveN:           // CMoveN is pinned
841        break;                  // No progress
842
843      case Op_Proj:             // Direct call to an allocation routine
844      case Op_SCMemProj:        // Memory state from store conditional ops
845#ifdef ASSERT
846        {
847          assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
848          const Node* call = adr->in(0);
849          if (call->is_CallJava()) {
850            const CallJavaNode* call_java = call->as_CallJava();
851            const TypeTuple *r = call_java->tf()->range();
852            assert(r->cnt() > TypeFunc::Parms, "must return value");
853            const Type* ret_type = r->field_at(TypeFunc::Parms);
854            assert(ret_type && ret_type->isa_ptr(), "must return pointer");
855            // We further presume that this is one of
856            // new_instance_Java, new_array_Java, or
857            // the like, but do not assert for this.
858          } else if (call->is_Allocate()) {
859            // similar case to new_instance_Java, etc.
860          } else if (!call->is_CallLeaf()) {
861            // Projections from fetch_oop (OSR) are allowed as well.
862            ShouldNotReachHere();
863          }
864        }
865#endif
866        break;
867      default:
868        ShouldNotReachHere();
869      }
870      break;
871    }
872  }
873
874  return  NULL;               // No progress
875}
876
877
878//=============================================================================
879uint LoadNode::size_of() const { return sizeof(*this); }
880uint LoadNode::cmp( const Node &n ) const
881{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
882const Type *LoadNode::bottom_type() const { return _type; }
883uint LoadNode::ideal_reg() const {
884  return _type->ideal_reg();
885}
886
887#ifndef PRODUCT
888void LoadNode::dump_spec(outputStream *st) const {
889  MemNode::dump_spec(st);
890  if( !Verbose && !WizardMode ) {
891    // standard dump does this in Verbose and WizardMode
892    st->print(" #"); _type->dump_on(st);
893  }
894}
895#endif
896
897#ifdef ASSERT
898//----------------------------is_immutable_value-------------------------------
899// Helper function to allow a raw load without control edge for some cases
900bool LoadNode::is_immutable_value(Node* adr) {
901  return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
902          adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
903          (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
904           in_bytes(JavaThread::osthread_offset())));
905}
906#endif
907
908//----------------------------LoadNode::make-----------------------------------
909// Polymorphic factory method:
910Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
911  Compile* C = gvn.C;
912
913  // sanity check the alias category against the created node type
914  assert(!(adr_type->isa_oopptr() &&
915           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
916         "use LoadKlassNode instead");
917  assert(!(adr_type->isa_aryptr() &&
918           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
919         "use LoadRangeNode instead");
920  // Check control edge of raw loads
921  assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
922          // oop will be recorded in oop map if load crosses safepoint
923          rt->isa_oopptr() || is_immutable_value(adr),
924          "raw memory operations should have control edge");
925  switch (bt) {
926  case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
927  case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
928  case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
929  case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
930  case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
931  case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
932  case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt              );
933  case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt              );
934  case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
935  case T_OBJECT:
936#ifdef _LP64
937    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
938      Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
939      return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
940    } else
941#endif
942    {
943      assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
944      return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
945    }
946  }
947  ShouldNotReachHere();
948  return (LoadNode*)NULL;
949}
950
951LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
952  bool require_atomic = true;
953  return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
954}
955
956
957
958
959//------------------------------hash-------------------------------------------
960uint LoadNode::hash() const {
961  // unroll addition of interesting fields
962  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
963}
964
965//---------------------------can_see_stored_value------------------------------
966// This routine exists to make sure this set of tests is done the same
967// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
968// will change the graph shape in a way which makes memory alive twice at the
969// same time (uses the Oracle model of aliasing), then some
970// LoadXNode::Identity will fold things back to the equivalence-class model
971// of aliasing.
972Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
973  Node* ld_adr = in(MemNode::Address);
974  intptr_t ld_off = 0;
975  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
976  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
977  Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
978  // This is more general than load from boxing objects.
979  if (phase->C->eliminate_boxing() && (atp != NULL) &&
980      (atp->index() >= Compile::AliasIdxRaw) &&
981      (atp->field() != NULL) && !atp->field()->is_volatile()) {
982    uint alias_idx = atp->index();
983    bool final = atp->field()->is_final();
984    Node* result = NULL;
985    Node* current = st;
986    // Skip through chains of MemBarNodes checking the MergeMems for
987    // new states for the slice of this load.  Stop once any other
988    // kind of node is encountered.  Loads from final memory can skip
989    // through any kind of MemBar but normal loads shouldn't skip
990    // through MemBarAcquire since the could allow them to move out of
991    // a synchronized region.
992    while (current->is_Proj()) {
993      int opc = current->in(0)->Opcode();
994      if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
995          opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
996          opc == Op_MemBarReleaseLock) {
997        Node* mem = current->in(0)->in(TypeFunc::Memory);
998        if (mem->is_MergeMem()) {
999          MergeMemNode* merge = mem->as_MergeMem();
1000          Node* new_st = merge->memory_at(alias_idx);
1001          if (new_st == merge->base_memory()) {
1002            // Keep searching
1003            current = new_st;
1004            continue;
1005          }
1006          // Save the new memory state for the slice and fall through
1007          // to exit.
1008          result = new_st;
1009        }
1010      }
1011      break;
1012    }
1013    if (result != NULL) {
1014      st = result;
1015    }
1016  }
1017
1018
1019  // Loop around twice in the case Load -> Initialize -> Store.
1020  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1021  for (int trip = 0; trip <= 1; trip++) {
1022
1023    if (st->is_Store()) {
1024      Node* st_adr = st->in(MemNode::Address);
1025      if (!phase->eqv(st_adr, ld_adr)) {
1026        // Try harder before giving up...  Match raw and non-raw pointers.
1027        intptr_t st_off = 0;
1028        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1029        if (alloc == NULL)       return NULL;
1030        if (alloc != ld_alloc)   return NULL;
1031        if (ld_off != st_off)    return NULL;
1032        // At this point we have proven something like this setup:
1033        //  A = Allocate(...)
1034        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1035        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1036        // (Actually, we haven't yet proven the Q's are the same.)
1037        // In other words, we are loading from a casted version of
1038        // the same pointer-and-offset that we stored to.
1039        // Thus, we are able to replace L by V.
1040      }
1041      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1042      if (store_Opcode() != st->Opcode())
1043        return NULL;
1044      return st->in(MemNode::ValueIn);
1045    }
1046
1047    // A load from a freshly-created object always returns zero.
1048    // (This can happen after LoadNode::Ideal resets the load's memory input
1049    // to find_captured_store, which returned InitializeNode::zero_memory.)
1050    if (st->is_Proj() && st->in(0)->is_Allocate() &&
1051        (st->in(0) == ld_alloc) &&
1052        (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1053      // return a zero value for the load's basic type
1054      // (This is one of the few places where a generic PhaseTransform
1055      // can create new nodes.  Think of it as lazily manifesting
1056      // virtually pre-existing constants.)
1057      return phase->zerocon(memory_type());
1058    }
1059
1060    // A load from an initialization barrier can match a captured store.
1061    if (st->is_Proj() && st->in(0)->is_Initialize()) {
1062      InitializeNode* init = st->in(0)->as_Initialize();
1063      AllocateNode* alloc = init->allocation();
1064      if ((alloc != NULL) && (alloc == ld_alloc)) {
1065        // examine a captured store value
1066        st = init->find_captured_store(ld_off, memory_size(), phase);
1067        if (st != NULL)
1068          continue;             // take one more trip around
1069      }
1070    }
1071
1072    // Load boxed value from result of valueOf() call is input parameter.
1073    if (this->is_Load() && ld_adr->is_AddP() &&
1074        (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1075      intptr_t ignore = 0;
1076      Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1077      if (base != NULL && base->is_Proj() &&
1078          base->as_Proj()->_con == TypeFunc::Parms &&
1079          base->in(0)->is_CallStaticJava() &&
1080          base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1081        return base->in(0)->in(TypeFunc::Parms);
1082      }
1083    }
1084
1085    break;
1086  }
1087
1088  return NULL;
1089}
1090
1091//----------------------is_instance_field_load_with_local_phi------------------
1092bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1093  if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1094      in(Address)->is_AddP() ) {
1095    const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1096    // Only instances and boxed values.
1097    if( t_oop != NULL &&
1098        (t_oop->is_ptr_to_boxed_value() ||
1099         t_oop->is_known_instance_field()) &&
1100        t_oop->offset() != Type::OffsetBot &&
1101        t_oop->offset() != Type::OffsetTop) {
1102      return true;
1103    }
1104  }
1105  return false;
1106}
1107
1108//------------------------------Identity---------------------------------------
1109// Loads are identity if previous store is to same address
1110Node *LoadNode::Identity( PhaseTransform *phase ) {
1111  // If the previous store-maker is the right kind of Store, and the store is
1112  // to the same address, then we are equal to the value stored.
1113  Node* mem = in(Memory);
1114  Node* value = can_see_stored_value(mem, phase);
1115  if( value ) {
1116    // byte, short & char stores truncate naturally.
1117    // A load has to load the truncated value which requires
1118    // some sort of masking operation and that requires an
1119    // Ideal call instead of an Identity call.
1120    if (memory_size() < BytesPerInt) {
1121      // If the input to the store does not fit with the load's result type,
1122      // it must be truncated via an Ideal call.
1123      if (!phase->type(value)->higher_equal(phase->type(this)))
1124        return this;
1125    }
1126    // (This works even when value is a Con, but LoadNode::Value
1127    // usually runs first, producing the singleton type of the Con.)
1128    return value;
1129  }
1130
1131  // Search for an existing data phi which was generated before for the same
1132  // instance's field to avoid infinite generation of phis in a loop.
1133  Node *region = mem->in(0);
1134  if (is_instance_field_load_with_local_phi(region)) {
1135    const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1136    int this_index  = phase->C->get_alias_index(addr_t);
1137    int this_offset = addr_t->offset();
1138    int this_iid    = addr_t->instance_id();
1139    if (!addr_t->is_known_instance() &&
1140         addr_t->is_ptr_to_boxed_value()) {
1141      // Use _idx of address base (could be Phi node) for boxed values.
1142      intptr_t   ignore = 0;
1143      Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1144      this_iid = base->_idx;
1145    }
1146    const Type* this_type = bottom_type();
1147    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1148      Node* phi = region->fast_out(i);
1149      if (phi->is_Phi() && phi != mem &&
1150          phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1151        return phi;
1152      }
1153    }
1154  }
1155
1156  return this;
1157}
1158
1159// We're loading from an object which has autobox behaviour.
1160// If this object is result of a valueOf call we'll have a phi
1161// merging a newly allocated object and a load from the cache.
1162// We want to replace this load with the original incoming
1163// argument to the valueOf call.
1164Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1165  assert(phase->C->eliminate_boxing(), "sanity");
1166  intptr_t ignore = 0;
1167  Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1168  if ((base == NULL) || base->is_Phi()) {
1169    // Push the loads from the phi that comes from valueOf up
1170    // through it to allow elimination of the loads and the recovery
1171    // of the original value. It is done in split_through_phi().
1172    return NULL;
1173  } else if (base->is_Load() ||
1174             base->is_DecodeN() && base->in(1)->is_Load()) {
1175    // Eliminate the load of boxed value for integer types from the cache
1176    // array by deriving the value from the index into the array.
1177    // Capture the offset of the load and then reverse the computation.
1178
1179    // Get LoadN node which loads a boxing object from 'cache' array.
1180    if (base->is_DecodeN()) {
1181      base = base->in(1);
1182    }
1183    if (!base->in(Address)->is_AddP()) {
1184      return NULL; // Complex address
1185    }
1186    AddPNode* address = base->in(Address)->as_AddP();
1187    Node* cache_base = address->in(AddPNode::Base);
1188    if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1189      // Get ConP node which is static 'cache' field.
1190      cache_base = cache_base->in(1);
1191    }
1192    if ((cache_base != NULL) && cache_base->is_Con()) {
1193      const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1194      if ((base_type != NULL) && base_type->is_autobox_cache()) {
1195        Node* elements[4];
1196        int shift = exact_log2(type2aelembytes(T_OBJECT));
1197        int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1198        if ((count >  0) && elements[0]->is_Con() &&
1199            ((count == 1) ||
1200             (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1201                             elements[1]->in(2) == phase->intcon(shift))) {
1202          ciObjArray* array = base_type->const_oop()->as_obj_array();
1203          // Fetch the box object cache[0] at the base of the array and get its value
1204          ciInstance* box = array->obj_at(0)->as_instance();
1205          ciInstanceKlass* ik = box->klass()->as_instance_klass();
1206          assert(ik->is_box_klass(), "sanity");
1207          assert(ik->nof_nonstatic_fields() == 1, "change following code");
1208          if (ik->nof_nonstatic_fields() == 1) {
1209            // This should be true nonstatic_field_at requires calling
1210            // nof_nonstatic_fields so check it anyway
1211            ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1212            BasicType bt = c.basic_type();
1213            // Only integer types have boxing cache.
1214            assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1215                   bt == T_BYTE    || bt == T_SHORT ||
1216                   bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1217            jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1218            if (cache_low != (int)cache_low) {
1219              return NULL; // should not happen since cache is array indexed by value
1220            }
1221            jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1222            if (offset != (int)offset) {
1223              return NULL; // should not happen since cache is array indexed by value
1224            }
1225           // Add up all the offsets making of the address of the load
1226            Node* result = elements[0];
1227            for (int i = 1; i < count; i++) {
1228              result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1229            }
1230            // Remove the constant offset from the address and then
1231            result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1232            // remove the scaling of the offset to recover the original index.
1233            if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1234              // Peel the shift off directly but wrap it in a dummy node
1235              // since Ideal can't return existing nodes
1236              result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1237            } else if (result->is_Add() && result->in(2)->is_Con() &&
1238                       result->in(1)->Opcode() == Op_LShiftX &&
1239                       result->in(1)->in(2) == phase->intcon(shift)) {
1240              // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1241              // but for boxing cache access we know that X<<Z will not overflow
1242              // (there is range check) so we do this optimizatrion by hand here.
1243              Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1244              result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1245            } else {
1246              result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1247            }
1248#ifdef _LP64
1249            if (bt != T_LONG) {
1250              result = new (phase->C) ConvL2INode(phase->transform(result));
1251            }
1252#else
1253            if (bt == T_LONG) {
1254              result = new (phase->C) ConvI2LNode(phase->transform(result));
1255            }
1256#endif
1257            return result;
1258          }
1259        }
1260      }
1261    }
1262  }
1263  return NULL;
1264}
1265
1266static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1267  Node* region = phi->in(0);
1268  if (region == NULL) {
1269    return false; // Wait stable graph
1270  }
1271  uint cnt = phi->req();
1272  for (uint i = 1; i < cnt; i++) {
1273    Node* rc = region->in(i);
1274    if (rc == NULL || phase->type(rc) == Type::TOP)
1275      return false; // Wait stable graph
1276    Node* in = phi->in(i);
1277    if (in == NULL || phase->type(in) == Type::TOP)
1278      return false; // Wait stable graph
1279  }
1280  return true;
1281}
1282//------------------------------split_through_phi------------------------------
1283// Split instance or boxed field load through Phi.
1284Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1285  Node* mem     = in(Memory);
1286  Node* address = in(Address);
1287  const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1288
1289  assert((t_oop != NULL) &&
1290         (t_oop->is_known_instance_field() ||
1291          t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1292
1293  Compile* C = phase->C;
1294  intptr_t ignore = 0;
1295  Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1296  bool base_is_phi = (base != NULL) && base->is_Phi();
1297  bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1298                           (base != NULL) && (base == address->in(AddPNode::Base)) &&
1299                           phase->type(base)->higher_equal(TypePtr::NOTNULL);
1300
1301  if (!((mem->is_Phi() || base_is_phi) &&
1302        (load_boxed_values || t_oop->is_known_instance_field()))) {
1303    return NULL; // memory is not Phi
1304  }
1305
1306  if (mem->is_Phi()) {
1307    if (!stable_phi(mem->as_Phi(), phase)) {
1308      return NULL; // Wait stable graph
1309    }
1310    uint cnt = mem->req();
1311    // Check for loop invariant memory.
1312    if (cnt == 3) {
1313      for (uint i = 1; i < cnt; i++) {
1314        Node* in = mem->in(i);
1315        Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1316        if (m == mem) {
1317          set_req(Memory, mem->in(cnt - i));
1318          return this; // made change
1319        }
1320      }
1321    }
1322  }
1323  if (base_is_phi) {
1324    if (!stable_phi(base->as_Phi(), phase)) {
1325      return NULL; // Wait stable graph
1326    }
1327    uint cnt = base->req();
1328    // Check for loop invariant memory.
1329    if (cnt == 3) {
1330      for (uint i = 1; i < cnt; i++) {
1331        if (base->in(i) == base) {
1332          return NULL; // Wait stable graph
1333        }
1334      }
1335    }
1336  }
1337
1338  bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1339
1340  // Split through Phi (see original code in loopopts.cpp).
1341  assert(C->have_alias_type(t_oop), "instance should have alias type");
1342
1343  // Do nothing here if Identity will find a value
1344  // (to avoid infinite chain of value phis generation).
1345  if (!phase->eqv(this, this->Identity(phase)))
1346    return NULL;
1347
1348  // Select Region to split through.
1349  Node* region;
1350  if (!base_is_phi) {
1351    assert(mem->is_Phi(), "sanity");
1352    region = mem->in(0);
1353    // Skip if the region dominates some control edge of the address.
1354    if (!MemNode::all_controls_dominate(address, region))
1355      return NULL;
1356  } else if (!mem->is_Phi()) {
1357    assert(base_is_phi, "sanity");
1358    region = base->in(0);
1359    // Skip if the region dominates some control edge of the memory.
1360    if (!MemNode::all_controls_dominate(mem, region))
1361      return NULL;
1362  } else if (base->in(0) != mem->in(0)) {
1363    assert(base_is_phi && mem->is_Phi(), "sanity");
1364    if (MemNode::all_controls_dominate(mem, base->in(0))) {
1365      region = base->in(0);
1366    } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1367      region = mem->in(0);
1368    } else {
1369      return NULL; // complex graph
1370    }
1371  } else {
1372    assert(base->in(0) == mem->in(0), "sanity");
1373    region = mem->in(0);
1374  }
1375
1376  const Type* this_type = this->bottom_type();
1377  int this_index  = C->get_alias_index(t_oop);
1378  int this_offset = t_oop->offset();
1379  int this_iid    = t_oop->instance_id();
1380  if (!t_oop->is_known_instance() && load_boxed_values) {
1381    // Use _idx of address base for boxed values.
1382    this_iid = base->_idx;
1383  }
1384  PhaseIterGVN* igvn = phase->is_IterGVN();
1385  Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1386  for (uint i = 1; i < region->req(); i++) {
1387    Node* x;
1388    Node* the_clone = NULL;
1389    if (region->in(i) == C->top()) {
1390      x = C->top();      // Dead path?  Use a dead data op
1391    } else {
1392      x = this->clone();        // Else clone up the data op
1393      the_clone = x;            // Remember for possible deletion.
1394      // Alter data node to use pre-phi inputs
1395      if (this->in(0) == region) {
1396        x->set_req(0, region->in(i));
1397      } else {
1398        x->set_req(0, NULL);
1399      }
1400      if (mem->is_Phi() && (mem->in(0) == region)) {
1401        x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1402      }
1403      if (address->is_Phi() && address->in(0) == region) {
1404        x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1405      }
1406      if (base_is_phi && (base->in(0) == region)) {
1407        Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1408        Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1409        x->set_req(Address, adr_x);
1410      }
1411    }
1412    // Check for a 'win' on some paths
1413    const Type *t = x->Value(igvn);
1414
1415    bool singleton = t->singleton();
1416
1417    // See comments in PhaseIdealLoop::split_thru_phi().
1418    if (singleton && t == Type::TOP) {
1419      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1420    }
1421
1422    if (singleton) {
1423      x = igvn->makecon(t);
1424    } else {
1425      // We now call Identity to try to simplify the cloned node.
1426      // Note that some Identity methods call phase->type(this).
1427      // Make sure that the type array is big enough for
1428      // our new node, even though we may throw the node away.
1429      // (This tweaking with igvn only works because x is a new node.)
1430      igvn->set_type(x, t);
1431      // If x is a TypeNode, capture any more-precise type permanently into Node
1432      // otherwise it will be not updated during igvn->transform since
1433      // igvn->type(x) is set to x->Value() already.
1434      x->raise_bottom_type(t);
1435      Node *y = x->Identity(igvn);
1436      if (y != x) {
1437        x = y;
1438      } else {
1439        y = igvn->hash_find_insert(x);
1440        if (y) {
1441          x = y;
1442        } else {
1443          // Else x is a new node we are keeping
1444          // We do not need register_new_node_with_optimizer
1445          // because set_type has already been called.
1446          igvn->_worklist.push(x);
1447        }
1448      }
1449    }
1450    if (x != the_clone && the_clone != NULL) {
1451      igvn->remove_dead_node(the_clone);
1452    }
1453    phi->set_req(i, x);
1454  }
1455  // Record Phi
1456  igvn->register_new_node_with_optimizer(phi);
1457  return phi;
1458}
1459
1460//------------------------------Ideal------------------------------------------
1461// If the load is from Field memory and the pointer is non-null, we can
1462// zero out the control input.
1463// If the offset is constant and the base is an object allocation,
1464// try to hook me up to the exact initializing store.
1465Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1466  Node* p = MemNode::Ideal_common(phase, can_reshape);
1467  if (p)  return (p == NodeSentinel) ? NULL : p;
1468
1469  Node* ctrl    = in(MemNode::Control);
1470  Node* address = in(MemNode::Address);
1471
1472  // Skip up past a SafePoint control.  Cannot do this for Stores because
1473  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1474  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1475      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1476    ctrl = ctrl->in(0);
1477    set_req(MemNode::Control,ctrl);
1478  }
1479
1480  intptr_t ignore = 0;
1481  Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1482  if (base != NULL
1483      && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1484    // Check for useless control edge in some common special cases
1485    if (in(MemNode::Control) != NULL
1486        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1487        && all_controls_dominate(base, phase->C->start())) {
1488      // A method-invariant, non-null address (constant or 'this' argument).
1489      set_req(MemNode::Control, NULL);
1490    }
1491  }
1492
1493  Node* mem = in(MemNode::Memory);
1494  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1495
1496  if (can_reshape && (addr_t != NULL)) {
1497    // try to optimize our memory input
1498    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1499    if (opt_mem != mem) {
1500      set_req(MemNode::Memory, opt_mem);
1501      if (phase->type( opt_mem ) == Type::TOP) return NULL;
1502      return this;
1503    }
1504    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1505    if ((t_oop != NULL) &&
1506        (t_oop->is_known_instance_field() ||
1507         t_oop->is_ptr_to_boxed_value())) {
1508      PhaseIterGVN *igvn = phase->is_IterGVN();
1509      if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1510        // Delay this transformation until memory Phi is processed.
1511        phase->is_IterGVN()->_worklist.push(this);
1512        return NULL;
1513      }
1514      // Split instance field load through Phi.
1515      Node* result = split_through_phi(phase);
1516      if (result != NULL) return result;
1517
1518      if (t_oop->is_ptr_to_boxed_value()) {
1519        Node* result = eliminate_autobox(phase);
1520        if (result != NULL) return result;
1521      }
1522    }
1523  }
1524
1525  // Check for prior store with a different base or offset; make Load
1526  // independent.  Skip through any number of them.  Bail out if the stores
1527  // are in an endless dead cycle and report no progress.  This is a key
1528  // transform for Reflection.  However, if after skipping through the Stores
1529  // we can't then fold up against a prior store do NOT do the transform as
1530  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1531  // array memory alive twice: once for the hoisted Load and again after the
1532  // bypassed Store.  This situation only works if EVERYBODY who does
1533  // anti-dependence work knows how to bypass.  I.e. we need all
1534  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1535  // the alias index stuff.  So instead, peek through Stores and IFF we can
1536  // fold up, do so.
1537  Node* prev_mem = find_previous_store(phase);
1538  // Steps (a), (b):  Walk past independent stores to find an exact match.
1539  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1540    // (c) See if we can fold up on the spot, but don't fold up here.
1541    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1542    // just return a prior value, which is done by Identity calls.
1543    if (can_see_stored_value(prev_mem, phase)) {
1544      // Make ready for step (d):
1545      set_req(MemNode::Memory, prev_mem);
1546      return this;
1547    }
1548  }
1549
1550  return NULL;                  // No further progress
1551}
1552
1553// Helper to recognize certain Klass fields which are invariant across
1554// some group of array types (e.g., int[] or all T[] where T < Object).
1555const Type*
1556LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1557                                 ciKlass* klass) const {
1558  if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1559    // The field is Klass::_modifier_flags.  Return its (constant) value.
1560    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1561    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1562    return TypeInt::make(klass->modifier_flags());
1563  }
1564  if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1565    // The field is Klass::_access_flags.  Return its (constant) value.
1566    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1567    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1568    return TypeInt::make(klass->access_flags());
1569  }
1570  if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1571    // The field is Klass::_layout_helper.  Return its constant value if known.
1572    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1573    return TypeInt::make(klass->layout_helper());
1574  }
1575
1576  // No match.
1577  return NULL;
1578}
1579
1580//------------------------------Value-----------------------------------------
1581const Type *LoadNode::Value( PhaseTransform *phase ) const {
1582  // Either input is TOP ==> the result is TOP
1583  Node* mem = in(MemNode::Memory);
1584  const Type *t1 = phase->type(mem);
1585  if (t1 == Type::TOP)  return Type::TOP;
1586  Node* adr = in(MemNode::Address);
1587  const TypePtr* tp = phase->type(adr)->isa_ptr();
1588  if (tp == NULL || tp->empty())  return Type::TOP;
1589  int off = tp->offset();
1590  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1591  Compile* C = phase->C;
1592
1593  // Try to guess loaded type from pointer type
1594  if (tp->base() == Type::AryPtr) {
1595    const Type *t = tp->is_aryptr()->elem();
1596    // Don't do this for integer types. There is only potential profit if
1597    // the element type t is lower than _type; that is, for int types, if _type is
1598    // more restrictive than t.  This only happens here if one is short and the other
1599    // char (both 16 bits), and in those cases we've made an intentional decision
1600    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1601    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1602    //
1603    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1604    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1605    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1606    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1607    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1608    // In fact, that could have been the original type of p1, and p1 could have
1609    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1610    // expression (LShiftL quux 3) independently optimized to the constant 8.
1611    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1612        && (_type->isa_vect() == NULL)
1613        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1614      // t might actually be lower than _type, if _type is a unique
1615      // concrete subclass of abstract class t.
1616      // Make sure the reference is not into the header, by comparing
1617      // the offset against the offset of the start of the array's data.
1618      // Different array types begin at slightly different offsets (12 vs. 16).
1619      // We choose T_BYTE as an example base type that is least restrictive
1620      // as to alignment, which will therefore produce the smallest
1621      // possible base offset.
1622      const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1623      if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1624        const Type* jt = t->join(_type);
1625        // In any case, do not allow the join, per se, to empty out the type.
1626        if (jt->empty() && !t->empty()) {
1627          // This can happen if a interface-typed array narrows to a class type.
1628          jt = _type;
1629        }
1630#ifdef ASSERT
1631        if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1632          // The pointers in the autobox arrays are always non-null
1633          Node* base = adr->in(AddPNode::Base);
1634          if ((base != NULL) && base->is_DecodeN()) {
1635            // Get LoadN node which loads IntegerCache.cache field
1636            base = base->in(1);
1637          }
1638          if ((base != NULL) && base->is_Con()) {
1639            const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1640            if ((base_type != NULL) && base_type->is_autobox_cache()) {
1641              // It could be narrow oop
1642              assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1643            }
1644          }
1645        }
1646#endif
1647        return jt;
1648      }
1649    }
1650  } else if (tp->base() == Type::InstPtr) {
1651    ciEnv* env = C->env();
1652    const TypeInstPtr* tinst = tp->is_instptr();
1653    ciKlass* klass = tinst->klass();
1654    assert( off != Type::OffsetBot ||
1655            // arrays can be cast to Objects
1656            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1657            // unsafe field access may not have a constant offset
1658            C->has_unsafe_access(),
1659            "Field accesses must be precise" );
1660    // For oop loads, we expect the _type to be precise
1661    if (klass == env->String_klass() &&
1662        adr->is_AddP() && off != Type::OffsetBot) {
1663      // For constant Strings treat the final fields as compile time constants.
1664      Node* base = adr->in(AddPNode::Base);
1665      const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1666      if (t != NULL && t->singleton()) {
1667        ciField* field = env->String_klass()->get_field_by_offset(off, false);
1668        if (field != NULL && field->is_final()) {
1669          ciObject* string = t->const_oop();
1670          ciConstant constant = string->as_instance()->field_value(field);
1671          if (constant.basic_type() == T_INT) {
1672            return TypeInt::make(constant.as_int());
1673          } else if (constant.basic_type() == T_ARRAY) {
1674            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1675              return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1676            } else {
1677              return TypeOopPtr::make_from_constant(constant.as_object(), true);
1678            }
1679          }
1680        }
1681      }
1682    }
1683    // Optimizations for constant objects
1684    ciObject* const_oop = tinst->const_oop();
1685    if (const_oop != NULL) {
1686      // For constant Boxed value treat the target field as a compile time constant.
1687      if (tinst->is_ptr_to_boxed_value()) {
1688        return tinst->get_const_boxed_value();
1689      } else
1690      // For constant CallSites treat the target field as a compile time constant.
1691      if (const_oop->is_call_site()) {
1692        ciCallSite* call_site = const_oop->as_call_site();
1693        ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1694        if (field != NULL && field->is_call_site_target()) {
1695          ciMethodHandle* target = call_site->get_target();
1696          if (target != NULL) {  // just in case
1697            ciConstant constant(T_OBJECT, target);
1698            const Type* t;
1699            if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1700              t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1701            } else {
1702              t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1703            }
1704            // Add a dependence for invalidation of the optimization.
1705            if (!call_site->is_constant_call_site()) {
1706              C->dependencies()->assert_call_site_target_value(call_site, target);
1707            }
1708            return t;
1709          }
1710        }
1711      }
1712    }
1713  } else if (tp->base() == Type::KlassPtr) {
1714    assert( off != Type::OffsetBot ||
1715            // arrays can be cast to Objects
1716            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1717            // also allow array-loading from the primary supertype
1718            // array during subtype checks
1719            Opcode() == Op_LoadKlass,
1720            "Field accesses must be precise" );
1721    // For klass/static loads, we expect the _type to be precise
1722  }
1723
1724  const TypeKlassPtr *tkls = tp->isa_klassptr();
1725  if (tkls != NULL && !StressReflectiveCode) {
1726    ciKlass* klass = tkls->klass();
1727    if (klass->is_loaded() && tkls->klass_is_exact()) {
1728      // We are loading a field from a Klass metaobject whose identity
1729      // is known at compile time (the type is "exact" or "precise").
1730      // Check for fields we know are maintained as constants by the VM.
1731      if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1732        // The field is Klass::_super_check_offset.  Return its (constant) value.
1733        // (Folds up type checking code.)
1734        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1735        return TypeInt::make(klass->super_check_offset());
1736      }
1737      // Compute index into primary_supers array
1738      juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1739      // Check for overflowing; use unsigned compare to handle the negative case.
1740      if( depth < ciKlass::primary_super_limit() ) {
1741        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1742        // (Folds up type checking code.)
1743        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1744        ciKlass *ss = klass->super_of_depth(depth);
1745        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1746      }
1747      const Type* aift = load_array_final_field(tkls, klass);
1748      if (aift != NULL)  return aift;
1749      if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1750          && klass->is_array_klass()) {
1751        // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1752        // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1753        assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1754        return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1755      }
1756      if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1757        // The field is Klass::_java_mirror.  Return its (constant) value.
1758        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1759        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1760        return TypeInstPtr::make(klass->java_mirror());
1761      }
1762    }
1763
1764    // We can still check if we are loading from the primary_supers array at a
1765    // shallow enough depth.  Even though the klass is not exact, entries less
1766    // than or equal to its super depth are correct.
1767    if (klass->is_loaded() ) {
1768      ciType *inner = klass;
1769      while( inner->is_obj_array_klass() )
1770        inner = inner->as_obj_array_klass()->base_element_type();
1771      if( inner->is_instance_klass() &&
1772          !inner->as_instance_klass()->flags().is_interface() ) {
1773        // Compute index into primary_supers array
1774        juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1775        // Check for overflowing; use unsigned compare to handle the negative case.
1776        if( depth < ciKlass::primary_super_limit() &&
1777            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1778          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1779          // (Folds up type checking code.)
1780          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1781          ciKlass *ss = klass->super_of_depth(depth);
1782          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1783        }
1784      }
1785    }
1786
1787    // If the type is enough to determine that the thing is not an array,
1788    // we can give the layout_helper a positive interval type.
1789    // This will help short-circuit some reflective code.
1790    if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1791        && !klass->is_array_klass() // not directly typed as an array
1792        && !klass->is_interface()  // specifically not Serializable & Cloneable
1793        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1794        ) {
1795      // Note:  When interfaces are reliable, we can narrow the interface
1796      // test to (klass != Serializable && klass != Cloneable).
1797      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1798      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1799      // The key property of this type is that it folds up tests
1800      // for array-ness, since it proves that the layout_helper is positive.
1801      // Thus, a generic value like the basic object layout helper works fine.
1802      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1803    }
1804  }
1805
1806  // If we are loading from a freshly-allocated object, produce a zero,
1807  // if the load is provably beyond the header of the object.
1808  // (Also allow a variable load from a fresh array to produce zero.)
1809  const TypeOopPtr *tinst = tp->isa_oopptr();
1810  bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1811  bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1812  if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1813    Node* value = can_see_stored_value(mem,phase);
1814    if (value != NULL && value->is_Con()) {
1815      assert(value->bottom_type()->higher_equal(_type),"sanity");
1816      return value->bottom_type();
1817    }
1818  }
1819
1820  if (is_instance) {
1821    // If we have an instance type and our memory input is the
1822    // programs's initial memory state, there is no matching store,
1823    // so just return a zero of the appropriate type
1824    Node *mem = in(MemNode::Memory);
1825    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1826      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1827      return Type::get_zero_type(_type->basic_type());
1828    }
1829  }
1830  return _type;
1831}
1832
1833//------------------------------match_edge-------------------------------------
1834// Do we Match on this edge index or not?  Match only the address.
1835uint LoadNode::match_edge(uint idx) const {
1836  return idx == MemNode::Address;
1837}
1838
1839//--------------------------LoadBNode::Ideal--------------------------------------
1840//
1841//  If the previous store is to the same address as this load,
1842//  and the value stored was larger than a byte, replace this load
1843//  with the value stored truncated to a byte.  If no truncation is
1844//  needed, the replacement is done in LoadNode::Identity().
1845//
1846Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1847  Node* mem = in(MemNode::Memory);
1848  Node* value = can_see_stored_value(mem,phase);
1849  if( value && !phase->type(value)->higher_equal( _type ) ) {
1850    Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1851    return new (phase->C) RShiftINode(result, phase->intcon(24));
1852  }
1853  // Identity call will handle the case where truncation is not needed.
1854  return LoadNode::Ideal(phase, can_reshape);
1855}
1856
1857const Type* LoadBNode::Value(PhaseTransform *phase) const {
1858  Node* mem = in(MemNode::Memory);
1859  Node* value = can_see_stored_value(mem,phase);
1860  if (value != NULL && value->is_Con() &&
1861      !value->bottom_type()->higher_equal(_type)) {
1862    // If the input to the store does not fit with the load's result type,
1863    // it must be truncated. We can't delay until Ideal call since
1864    // a singleton Value is needed for split_thru_phi optimization.
1865    int con = value->get_int();
1866    return TypeInt::make((con << 24) >> 24);
1867  }
1868  return LoadNode::Value(phase);
1869}
1870
1871//--------------------------LoadUBNode::Ideal-------------------------------------
1872//
1873//  If the previous store is to the same address as this load,
1874//  and the value stored was larger than a byte, replace this load
1875//  with the value stored truncated to a byte.  If no truncation is
1876//  needed, the replacement is done in LoadNode::Identity().
1877//
1878Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1879  Node* mem = in(MemNode::Memory);
1880  Node* value = can_see_stored_value(mem, phase);
1881  if (value && !phase->type(value)->higher_equal(_type))
1882    return new (phase->C) AndINode(value, phase->intcon(0xFF));
1883  // Identity call will handle the case where truncation is not needed.
1884  return LoadNode::Ideal(phase, can_reshape);
1885}
1886
1887const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1888  Node* mem = in(MemNode::Memory);
1889  Node* value = can_see_stored_value(mem,phase);
1890  if (value != NULL && value->is_Con() &&
1891      !value->bottom_type()->higher_equal(_type)) {
1892    // If the input to the store does not fit with the load's result type,
1893    // it must be truncated. We can't delay until Ideal call since
1894    // a singleton Value is needed for split_thru_phi optimization.
1895    int con = value->get_int();
1896    return TypeInt::make(con & 0xFF);
1897  }
1898  return LoadNode::Value(phase);
1899}
1900
1901//--------------------------LoadUSNode::Ideal-------------------------------------
1902//
1903//  If the previous store is to the same address as this load,
1904//  and the value stored was larger than a char, replace this load
1905//  with the value stored truncated to a char.  If no truncation is
1906//  needed, the replacement is done in LoadNode::Identity().
1907//
1908Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1909  Node* mem = in(MemNode::Memory);
1910  Node* value = can_see_stored_value(mem,phase);
1911  if( value && !phase->type(value)->higher_equal( _type ) )
1912    return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1913  // Identity call will handle the case where truncation is not needed.
1914  return LoadNode::Ideal(phase, can_reshape);
1915}
1916
1917const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1918  Node* mem = in(MemNode::Memory);
1919  Node* value = can_see_stored_value(mem,phase);
1920  if (value != NULL && value->is_Con() &&
1921      !value->bottom_type()->higher_equal(_type)) {
1922    // If the input to the store does not fit with the load's result type,
1923    // it must be truncated. We can't delay until Ideal call since
1924    // a singleton Value is needed for split_thru_phi optimization.
1925    int con = value->get_int();
1926    return TypeInt::make(con & 0xFFFF);
1927  }
1928  return LoadNode::Value(phase);
1929}
1930
1931//--------------------------LoadSNode::Ideal--------------------------------------
1932//
1933//  If the previous store is to the same address as this load,
1934//  and the value stored was larger than a short, replace this load
1935//  with the value stored truncated to a short.  If no truncation is
1936//  needed, the replacement is done in LoadNode::Identity().
1937//
1938Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1939  Node* mem = in(MemNode::Memory);
1940  Node* value = can_see_stored_value(mem,phase);
1941  if( value && !phase->type(value)->higher_equal( _type ) ) {
1942    Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
1943    return new (phase->C) RShiftINode(result, phase->intcon(16));
1944  }
1945  // Identity call will handle the case where truncation is not needed.
1946  return LoadNode::Ideal(phase, can_reshape);
1947}
1948
1949const Type* LoadSNode::Value(PhaseTransform *phase) const {
1950  Node* mem = in(MemNode::Memory);
1951  Node* value = can_see_stored_value(mem,phase);
1952  if (value != NULL && value->is_Con() &&
1953      !value->bottom_type()->higher_equal(_type)) {
1954    // If the input to the store does not fit with the load's result type,
1955    // it must be truncated. We can't delay until Ideal call since
1956    // a singleton Value is needed for split_thru_phi optimization.
1957    int con = value->get_int();
1958    return TypeInt::make((con << 16) >> 16);
1959  }
1960  return LoadNode::Value(phase);
1961}
1962
1963//=============================================================================
1964//----------------------------LoadKlassNode::make------------------------------
1965// Polymorphic factory method:
1966Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1967  Compile* C = gvn.C;
1968  Node *ctl = NULL;
1969  // sanity check the alias category against the created node type
1970  const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
1971  assert(adr_type != NULL, "expecting TypeKlassPtr");
1972#ifdef _LP64
1973  if (adr_type->is_ptr_to_narrowklass()) {
1974    assert(UseCompressedKlassPointers, "no compressed klasses");
1975    Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
1976    return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
1977  }
1978#endif
1979  assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1980  return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
1981}
1982
1983//------------------------------Value------------------------------------------
1984const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1985  return klass_value_common(phase);
1986}
1987
1988const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1989  // Either input is TOP ==> the result is TOP
1990  const Type *t1 = phase->type( in(MemNode::Memory) );
1991  if (t1 == Type::TOP)  return Type::TOP;
1992  Node *adr = in(MemNode::Address);
1993  const Type *t2 = phase->type( adr );
1994  if (t2 == Type::TOP)  return Type::TOP;
1995  const TypePtr *tp = t2->is_ptr();
1996  if (TypePtr::above_centerline(tp->ptr()) ||
1997      tp->ptr() == TypePtr::Null)  return Type::TOP;
1998
1999  // Return a more precise klass, if possible
2000  const TypeInstPtr *tinst = tp->isa_instptr();
2001  if (tinst != NULL) {
2002    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2003    int offset = tinst->offset();
2004    if (ik == phase->C->env()->Class_klass()
2005        && (offset == java_lang_Class::klass_offset_in_bytes() ||
2006            offset == java_lang_Class::array_klass_offset_in_bytes())) {
2007      // We are loading a special hidden field from a Class mirror object,
2008      // the field which points to the VM's Klass metaobject.
2009      ciType* t = tinst->java_mirror_type();
2010      // java_mirror_type returns non-null for compile-time Class constants.
2011      if (t != NULL) {
2012        // constant oop => constant klass
2013        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2014          return TypeKlassPtr::make(ciArrayKlass::make(t));
2015        }
2016        if (!t->is_klass()) {
2017          // a primitive Class (e.g., int.class) has NULL for a klass field
2018          return TypePtr::NULL_PTR;
2019        }
2020        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2021        return TypeKlassPtr::make(t->as_klass());
2022      }
2023      // non-constant mirror, so we can't tell what's going on
2024    }
2025    if( !ik->is_loaded() )
2026      return _type;             // Bail out if not loaded
2027    if (offset == oopDesc::klass_offset_in_bytes()) {
2028      if (tinst->klass_is_exact()) {
2029        return TypeKlassPtr::make(ik);
2030      }
2031      // See if we can become precise: no subklasses and no interface
2032      // (Note:  We need to support verified interfaces.)
2033      if (!ik->is_interface() && !ik->has_subklass()) {
2034        //assert(!UseExactTypes, "this code should be useless with exact types");
2035        // Add a dependence; if any subclass added we need to recompile
2036        if (!ik->is_final()) {
2037          // %%% should use stronger assert_unique_concrete_subtype instead
2038          phase->C->dependencies()->assert_leaf_type(ik);
2039        }
2040        // Return precise klass
2041        return TypeKlassPtr::make(ik);
2042      }
2043
2044      // Return root of possible klass
2045      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2046    }
2047  }
2048
2049  // Check for loading klass from an array
2050  const TypeAryPtr *tary = tp->isa_aryptr();
2051  if( tary != NULL ) {
2052    ciKlass *tary_klass = tary->klass();
2053    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2054        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2055      if (tary->klass_is_exact()) {
2056        return TypeKlassPtr::make(tary_klass);
2057      }
2058      ciArrayKlass *ak = tary->klass()->as_array_klass();
2059      // If the klass is an object array, we defer the question to the
2060      // array component klass.
2061      if( ak->is_obj_array_klass() ) {
2062        assert( ak->is_loaded(), "" );
2063        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2064        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2065          ciInstanceKlass* ik = base_k->as_instance_klass();
2066          // See if we can become precise: no subklasses and no interface
2067          if (!ik->is_interface() && !ik->has_subklass()) {
2068            //assert(!UseExactTypes, "this code should be useless with exact types");
2069            // Add a dependence; if any subclass added we need to recompile
2070            if (!ik->is_final()) {
2071              phase->C->dependencies()->assert_leaf_type(ik);
2072            }
2073            // Return precise array klass
2074            return TypeKlassPtr::make(ak);
2075          }
2076        }
2077        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2078      } else {                  // Found a type-array?
2079        //assert(!UseExactTypes, "this code should be useless with exact types");
2080        assert( ak->is_type_array_klass(), "" );
2081        return TypeKlassPtr::make(ak); // These are always precise
2082      }
2083    }
2084  }
2085
2086  // Check for loading klass from an array klass
2087  const TypeKlassPtr *tkls = tp->isa_klassptr();
2088  if (tkls != NULL && !StressReflectiveCode) {
2089    ciKlass* klass = tkls->klass();
2090    if( !klass->is_loaded() )
2091      return _type;             // Bail out if not loaded
2092    if( klass->is_obj_array_klass() &&
2093        tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2094      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2095      // // Always returning precise element type is incorrect,
2096      // // e.g., element type could be object and array may contain strings
2097      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2098
2099      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2100      // according to the element type's subclassing.
2101      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2102    }
2103    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2104        tkls->offset() == in_bytes(Klass::super_offset())) {
2105      ciKlass* sup = klass->as_instance_klass()->super();
2106      // The field is Klass::_super.  Return its (constant) value.
2107      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2108      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2109    }
2110  }
2111
2112  // Bailout case
2113  return LoadNode::Value(phase);
2114}
2115
2116//------------------------------Identity---------------------------------------
2117// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2118// Also feed through the klass in Allocate(...klass...)._klass.
2119Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2120  return klass_identity_common(phase);
2121}
2122
2123Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2124  Node* x = LoadNode::Identity(phase);
2125  if (x != this)  return x;
2126
2127  // Take apart the address into an oop and and offset.
2128  // Return 'this' if we cannot.
2129  Node*    adr    = in(MemNode::Address);
2130  intptr_t offset = 0;
2131  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2132  if (base == NULL)     return this;
2133  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2134  if (toop == NULL)     return this;
2135
2136  // We can fetch the klass directly through an AllocateNode.
2137  // This works even if the klass is not constant (clone or newArray).
2138  if (offset == oopDesc::klass_offset_in_bytes()) {
2139    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2140    if (allocated_klass != NULL) {
2141      return allocated_klass;
2142    }
2143  }
2144
2145  // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2146  // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2147  // See inline_native_Class_query for occurrences of these patterns.
2148  // Java Example:  x.getClass().isAssignableFrom(y)
2149  // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2150  //
2151  // This improves reflective code, often making the Class
2152  // mirror go completely dead.  (Current exception:  Class
2153  // mirrors may appear in debug info, but we could clean them out by
2154  // introducing a new debug info operator for Klass*.java_mirror).
2155  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2156      && (offset == java_lang_Class::klass_offset_in_bytes() ||
2157          offset == java_lang_Class::array_klass_offset_in_bytes())) {
2158    // We are loading a special hidden field from a Class mirror,
2159    // the field which points to its Klass or ArrayKlass metaobject.
2160    if (base->is_Load()) {
2161      Node* adr2 = base->in(MemNode::Address);
2162      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2163      if (tkls != NULL && !tkls->empty()
2164          && (tkls->klass()->is_instance_klass() ||
2165              tkls->klass()->is_array_klass())
2166          && adr2->is_AddP()
2167          ) {
2168        int mirror_field = in_bytes(Klass::java_mirror_offset());
2169        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2170          mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2171        }
2172        if (tkls->offset() == mirror_field) {
2173          return adr2->in(AddPNode::Base);
2174        }
2175      }
2176    }
2177  }
2178
2179  return this;
2180}
2181
2182
2183//------------------------------Value------------------------------------------
2184const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2185  const Type *t = klass_value_common(phase);
2186  if (t == Type::TOP)
2187    return t;
2188
2189  return t->make_narrowklass();
2190}
2191
2192//------------------------------Identity---------------------------------------
2193// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2194// Also feed through the klass in Allocate(...klass...)._klass.
2195Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2196  Node *x = klass_identity_common(phase);
2197
2198  const Type *t = phase->type( x );
2199  if( t == Type::TOP ) return x;
2200  if( t->isa_narrowklass()) return x;
2201  assert (!t->isa_narrowoop(), "no narrow oop here");
2202
2203  return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2204}
2205
2206//------------------------------Value-----------------------------------------
2207const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2208  // Either input is TOP ==> the result is TOP
2209  const Type *t1 = phase->type( in(MemNode::Memory) );
2210  if( t1 == Type::TOP ) return Type::TOP;
2211  Node *adr = in(MemNode::Address);
2212  const Type *t2 = phase->type( adr );
2213  if( t2 == Type::TOP ) return Type::TOP;
2214  const TypePtr *tp = t2->is_ptr();
2215  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2216  const TypeAryPtr *tap = tp->isa_aryptr();
2217  if( !tap ) return _type;
2218  return tap->size();
2219}
2220
2221//-------------------------------Ideal---------------------------------------
2222// Feed through the length in AllocateArray(...length...)._length.
2223Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2224  Node* p = MemNode::Ideal_common(phase, can_reshape);
2225  if (p)  return (p == NodeSentinel) ? NULL : p;
2226
2227  // Take apart the address into an oop and and offset.
2228  // Return 'this' if we cannot.
2229  Node*    adr    = in(MemNode::Address);
2230  intptr_t offset = 0;
2231  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2232  if (base == NULL)     return NULL;
2233  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2234  if (tary == NULL)     return NULL;
2235
2236  // We can fetch the length directly through an AllocateArrayNode.
2237  // This works even if the length is not constant (clone or newArray).
2238  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2239    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2240    if (alloc != NULL) {
2241      Node* allocated_length = alloc->Ideal_length();
2242      Node* len = alloc->make_ideal_length(tary, phase);
2243      if (allocated_length != len) {
2244        // New CastII improves on this.
2245        return len;
2246      }
2247    }
2248  }
2249
2250  return NULL;
2251}
2252
2253//------------------------------Identity---------------------------------------
2254// Feed through the length in AllocateArray(...length...)._length.
2255Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2256  Node* x = LoadINode::Identity(phase);
2257  if (x != this)  return x;
2258
2259  // Take apart the address into an oop and and offset.
2260  // Return 'this' if we cannot.
2261  Node*    adr    = in(MemNode::Address);
2262  intptr_t offset = 0;
2263  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2264  if (base == NULL)     return this;
2265  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2266  if (tary == NULL)     return this;
2267
2268  // We can fetch the length directly through an AllocateArrayNode.
2269  // This works even if the length is not constant (clone or newArray).
2270  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2271    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2272    if (alloc != NULL) {
2273      Node* allocated_length = alloc->Ideal_length();
2274      // Do not allow make_ideal_length to allocate a CastII node.
2275      Node* len = alloc->make_ideal_length(tary, phase, false);
2276      if (allocated_length == len) {
2277        // Return allocated_length only if it would not be improved by a CastII.
2278        return allocated_length;
2279      }
2280    }
2281  }
2282
2283  return this;
2284
2285}
2286
2287//=============================================================================
2288//---------------------------StoreNode::make-----------------------------------
2289// Polymorphic factory method:
2290StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2291  Compile* C = gvn.C;
2292  assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2293          ctl != NULL, "raw memory operations should have control edge");
2294
2295  switch (bt) {
2296  case T_BOOLEAN:
2297  case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
2298  case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val);
2299  case T_CHAR:
2300  case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
2301  case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
2302  case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
2303  case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
2304  case T_METADATA:
2305  case T_ADDRESS:
2306  case T_OBJECT:
2307#ifdef _LP64
2308    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2309      val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2310      return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
2311    } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2312               (UseCompressedKlassPointers && val->bottom_type()->isa_klassptr() &&
2313                adr->bottom_type()->isa_rawptr())) {
2314      val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2315      return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
2316    }
2317#endif
2318    {
2319      return new (C) StorePNode(ctl, mem, adr, adr_type, val);
2320    }
2321  }
2322  ShouldNotReachHere();
2323  return (StoreNode*)NULL;
2324}
2325
2326StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2327  bool require_atomic = true;
2328  return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2329}
2330
2331
2332//--------------------------bottom_type----------------------------------------
2333const Type *StoreNode::bottom_type() const {
2334  return Type::MEMORY;
2335}
2336
2337//------------------------------hash-------------------------------------------
2338uint StoreNode::hash() const {
2339  // unroll addition of interesting fields
2340  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2341
2342  // Since they are not commoned, do not hash them:
2343  return NO_HASH;
2344}
2345
2346//------------------------------Ideal------------------------------------------
2347// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2348// When a store immediately follows a relevant allocation/initialization,
2349// try to capture it into the initialization, or hoist it above.
2350Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2351  Node* p = MemNode::Ideal_common(phase, can_reshape);
2352  if (p)  return (p == NodeSentinel) ? NULL : p;
2353
2354  Node* mem     = in(MemNode::Memory);
2355  Node* address = in(MemNode::Address);
2356
2357  // Back-to-back stores to same address?  Fold em up.  Generally
2358  // unsafe if I have intervening uses...  Also disallowed for StoreCM
2359  // since they must follow each StoreP operation.  Redundant StoreCMs
2360  // are eliminated just before matching in final_graph_reshape.
2361  if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2362      mem->Opcode() != Op_StoreCM) {
2363    // Looking at a dead closed cycle of memory?
2364    assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2365
2366    assert(Opcode() == mem->Opcode() ||
2367           phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2368           "no mismatched stores, except on raw memory");
2369
2370    if (mem->outcnt() == 1 &&           // check for intervening uses
2371        mem->as_Store()->memory_size() <= this->memory_size()) {
2372      // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2373      // For example, 'mem' might be the final state at a conditional return.
2374      // Or, 'mem' might be used by some node which is live at the same time
2375      // 'this' is live, which might be unschedulable.  So, require exactly
2376      // ONE user, the 'this' store, until such time as we clone 'mem' for
2377      // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2378      if (can_reshape) {  // (%%% is this an anachronism?)
2379        set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2380                  phase->is_IterGVN());
2381      } else {
2382        // It's OK to do this in the parser, since DU info is always accurate,
2383        // and the parser always refers to nodes via SafePointNode maps.
2384        set_req(MemNode::Memory, mem->in(MemNode::Memory));
2385      }
2386      return this;
2387    }
2388  }
2389
2390  // Capture an unaliased, unconditional, simple store into an initializer.
2391  // Or, if it is independent of the allocation, hoist it above the allocation.
2392  if (ReduceFieldZeroing && /*can_reshape &&*/
2393      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2394    InitializeNode* init = mem->in(0)->as_Initialize();
2395    intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2396    if (offset > 0) {
2397      Node* moved = init->capture_store(this, offset, phase, can_reshape);
2398      // If the InitializeNode captured me, it made a raw copy of me,
2399      // and I need to disappear.
2400      if (moved != NULL) {
2401        // %%% hack to ensure that Ideal returns a new node:
2402        mem = MergeMemNode::make(phase->C, mem);
2403        return mem;             // fold me away
2404      }
2405    }
2406  }
2407
2408  return NULL;                  // No further progress
2409}
2410
2411//------------------------------Value-----------------------------------------
2412const Type *StoreNode::Value( PhaseTransform *phase ) const {
2413  // Either input is TOP ==> the result is TOP
2414  const Type *t1 = phase->type( in(MemNode::Memory) );
2415  if( t1 == Type::TOP ) return Type::TOP;
2416  const Type *t2 = phase->type( in(MemNode::Address) );
2417  if( t2 == Type::TOP ) return Type::TOP;
2418  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2419  if( t3 == Type::TOP ) return Type::TOP;
2420  return Type::MEMORY;
2421}
2422
2423//------------------------------Identity---------------------------------------
2424// Remove redundant stores:
2425//   Store(m, p, Load(m, p)) changes to m.
2426//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2427Node *StoreNode::Identity( PhaseTransform *phase ) {
2428  Node* mem = in(MemNode::Memory);
2429  Node* adr = in(MemNode::Address);
2430  Node* val = in(MemNode::ValueIn);
2431
2432  // Load then Store?  Then the Store is useless
2433  if (val->is_Load() &&
2434      val->in(MemNode::Address)->eqv_uncast(adr) &&
2435      val->in(MemNode::Memory )->eqv_uncast(mem) &&
2436      val->as_Load()->store_Opcode() == Opcode()) {
2437    return mem;
2438  }
2439
2440  // Two stores in a row of the same value?
2441  if (mem->is_Store() &&
2442      mem->in(MemNode::Address)->eqv_uncast(adr) &&
2443      mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2444      mem->Opcode() == Opcode()) {
2445    return mem;
2446  }
2447
2448  // Store of zero anywhere into a freshly-allocated object?
2449  // Then the store is useless.
2450  // (It must already have been captured by the InitializeNode.)
2451  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2452    // a newly allocated object is already all-zeroes everywhere
2453    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2454      return mem;
2455    }
2456
2457    // the store may also apply to zero-bits in an earlier object
2458    Node* prev_mem = find_previous_store(phase);
2459    // Steps (a), (b):  Walk past independent stores to find an exact match.
2460    if (prev_mem != NULL) {
2461      Node* prev_val = can_see_stored_value(prev_mem, phase);
2462      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2463        // prev_val and val might differ by a cast; it would be good
2464        // to keep the more informative of the two.
2465        return mem;
2466      }
2467    }
2468  }
2469
2470  return this;
2471}
2472
2473//------------------------------match_edge-------------------------------------
2474// Do we Match on this edge index or not?  Match only memory & value
2475uint StoreNode::match_edge(uint idx) const {
2476  return idx == MemNode::Address || idx == MemNode::ValueIn;
2477}
2478
2479//------------------------------cmp--------------------------------------------
2480// Do not common stores up together.  They generally have to be split
2481// back up anyways, so do not bother.
2482uint StoreNode::cmp( const Node &n ) const {
2483  return (&n == this);          // Always fail except on self
2484}
2485
2486//------------------------------Ideal_masked_input-----------------------------
2487// Check for a useless mask before a partial-word store
2488// (StoreB ... (AndI valIn conIa) )
2489// If (conIa & mask == mask) this simplifies to
2490// (StoreB ... (valIn) )
2491Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2492  Node *val = in(MemNode::ValueIn);
2493  if( val->Opcode() == Op_AndI ) {
2494    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2495    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2496      set_req(MemNode::ValueIn, val->in(1));
2497      return this;
2498    }
2499  }
2500  return NULL;
2501}
2502
2503
2504//------------------------------Ideal_sign_extended_input----------------------
2505// Check for useless sign-extension before a partial-word store
2506// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2507// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2508// (StoreB ... (valIn) )
2509Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2510  Node *val = in(MemNode::ValueIn);
2511  if( val->Opcode() == Op_RShiftI ) {
2512    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2513    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2514      Node *shl = val->in(1);
2515      if( shl->Opcode() == Op_LShiftI ) {
2516        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2517        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2518          set_req(MemNode::ValueIn, shl->in(1));
2519          return this;
2520        }
2521      }
2522    }
2523  }
2524  return NULL;
2525}
2526
2527//------------------------------value_never_loaded-----------------------------------
2528// Determine whether there are any possible loads of the value stored.
2529// For simplicity, we actually check if there are any loads from the
2530// address stored to, not just for loads of the value stored by this node.
2531//
2532bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2533  Node *adr = in(Address);
2534  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2535  if (adr_oop == NULL)
2536    return false;
2537  if (!adr_oop->is_known_instance_field())
2538    return false; // if not a distinct instance, there may be aliases of the address
2539  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2540    Node *use = adr->fast_out(i);
2541    int opc = use->Opcode();
2542    if (use->is_Load() || use->is_LoadStore()) {
2543      return false;
2544    }
2545  }
2546  return true;
2547}
2548
2549//=============================================================================
2550//------------------------------Ideal------------------------------------------
2551// If the store is from an AND mask that leaves the low bits untouched, then
2552// we can skip the AND operation.  If the store is from a sign-extension
2553// (a left shift, then right shift) we can skip both.
2554Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2555  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2556  if( progress != NULL ) return progress;
2557
2558  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2559  if( progress != NULL ) return progress;
2560
2561  // Finally check the default case
2562  return StoreNode::Ideal(phase, can_reshape);
2563}
2564
2565//=============================================================================
2566//------------------------------Ideal------------------------------------------
2567// If the store is from an AND mask that leaves the low bits untouched, then
2568// we can skip the AND operation
2569Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2570  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2571  if( progress != NULL ) return progress;
2572
2573  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2574  if( progress != NULL ) return progress;
2575
2576  // Finally check the default case
2577  return StoreNode::Ideal(phase, can_reshape);
2578}
2579
2580//=============================================================================
2581//------------------------------Identity---------------------------------------
2582Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2583  // No need to card mark when storing a null ptr
2584  Node* my_store = in(MemNode::OopStore);
2585  if (my_store->is_Store()) {
2586    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2587    if( t1 == TypePtr::NULL_PTR ) {
2588      return in(MemNode::Memory);
2589    }
2590  }
2591  return this;
2592}
2593
2594//=============================================================================
2595//------------------------------Ideal---------------------------------------
2596Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2597  Node* progress = StoreNode::Ideal(phase, can_reshape);
2598  if (progress != NULL) return progress;
2599
2600  Node* my_store = in(MemNode::OopStore);
2601  if (my_store->is_MergeMem()) {
2602    Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2603    set_req(MemNode::OopStore, mem);
2604    return this;
2605  }
2606
2607  return NULL;
2608}
2609
2610//------------------------------Value-----------------------------------------
2611const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2612  // Either input is TOP ==> the result is TOP
2613  const Type *t = phase->type( in(MemNode::Memory) );
2614  if( t == Type::TOP ) return Type::TOP;
2615  t = phase->type( in(MemNode::Address) );
2616  if( t == Type::TOP ) return Type::TOP;
2617  t = phase->type( in(MemNode::ValueIn) );
2618  if( t == Type::TOP ) return Type::TOP;
2619  // If extra input is TOP ==> the result is TOP
2620  t = phase->type( in(MemNode::OopStore) );
2621  if( t == Type::TOP ) return Type::TOP;
2622
2623  return StoreNode::Value( phase );
2624}
2625
2626
2627//=============================================================================
2628//----------------------------------SCMemProjNode------------------------------
2629const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2630{
2631  return bottom_type();
2632}
2633
2634//=============================================================================
2635//----------------------------------LoadStoreNode------------------------------
2636LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2637  : Node(required),
2638    _type(rt),
2639    _adr_type(at)
2640{
2641  init_req(MemNode::Control, c  );
2642  init_req(MemNode::Memory , mem);
2643  init_req(MemNode::Address, adr);
2644  init_req(MemNode::ValueIn, val);
2645  init_class_id(Class_LoadStore);
2646}
2647
2648uint LoadStoreNode::ideal_reg() const {
2649  return _type->ideal_reg();
2650}
2651
2652bool LoadStoreNode::result_not_used() const {
2653  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2654    Node *x = fast_out(i);
2655    if (x->Opcode() == Op_SCMemProj) continue;
2656    return false;
2657  }
2658  return true;
2659}
2660
2661uint LoadStoreNode::size_of() const { return sizeof(*this); }
2662
2663//=============================================================================
2664//----------------------------------LoadStoreConditionalNode--------------------
2665LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2666  init_req(ExpectedIn, ex );
2667}
2668
2669//=============================================================================
2670//-------------------------------adr_type--------------------------------------
2671// Do we Match on this edge index or not?  Do not match memory
2672const TypePtr* ClearArrayNode::adr_type() const {
2673  Node *adr = in(3);
2674  return MemNode::calculate_adr_type(adr->bottom_type());
2675}
2676
2677//------------------------------match_edge-------------------------------------
2678// Do we Match on this edge index or not?  Do not match memory
2679uint ClearArrayNode::match_edge(uint idx) const {
2680  return idx > 1;
2681}
2682
2683//------------------------------Identity---------------------------------------
2684// Clearing a zero length array does nothing
2685Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2686  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2687}
2688
2689//------------------------------Idealize---------------------------------------
2690// Clearing a short array is faster with stores
2691Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2692  const int unit = BytesPerLong;
2693  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2694  if (!t)  return NULL;
2695  if (!t->is_con())  return NULL;
2696  intptr_t raw_count = t->get_con();
2697  intptr_t size = raw_count;
2698  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2699  // Clearing nothing uses the Identity call.
2700  // Negative clears are possible on dead ClearArrays
2701  // (see jck test stmt114.stmt11402.val).
2702  if (size <= 0 || size % unit != 0)  return NULL;
2703  intptr_t count = size / unit;
2704  // Length too long; use fast hardware clear
2705  if (size > Matcher::init_array_short_size)  return NULL;
2706  Node *mem = in(1);
2707  if( phase->type(mem)==Type::TOP ) return NULL;
2708  Node *adr = in(3);
2709  const Type* at = phase->type(adr);
2710  if( at==Type::TOP ) return NULL;
2711  const TypePtr* atp = at->isa_ptr();
2712  // adjust atp to be the correct array element address type
2713  if (atp == NULL)  atp = TypePtr::BOTTOM;
2714  else              atp = atp->add_offset(Type::OffsetBot);
2715  // Get base for derived pointer purposes
2716  if( adr->Opcode() != Op_AddP ) Unimplemented();
2717  Node *base = adr->in(1);
2718
2719  Node *zero = phase->makecon(TypeLong::ZERO);
2720  Node *off  = phase->MakeConX(BytesPerLong);
2721  mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2722  count--;
2723  while( count-- ) {
2724    mem = phase->transform(mem);
2725    adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2726    mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2727  }
2728  return mem;
2729}
2730
2731//----------------------------step_through----------------------------------
2732// Return allocation input memory edge if it is different instance
2733// or itself if it is the one we are looking for.
2734bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2735  Node* n = *np;
2736  assert(n->is_ClearArray(), "sanity");
2737  intptr_t offset;
2738  AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2739  // This method is called only before Allocate nodes are expanded during
2740  // macro nodes expansion. Before that ClearArray nodes are only generated
2741  // in LibraryCallKit::generate_arraycopy() which follows allocations.
2742  assert(alloc != NULL, "should have allocation");
2743  if (alloc->_idx == instance_id) {
2744    // Can not bypass initialization of the instance we are looking for.
2745    return false;
2746  }
2747  // Otherwise skip it.
2748  InitializeNode* init = alloc->initialization();
2749  if (init != NULL)
2750    *np = init->in(TypeFunc::Memory);
2751  else
2752    *np = alloc->in(TypeFunc::Memory);
2753  return true;
2754}
2755
2756//----------------------------clear_memory-------------------------------------
2757// Generate code to initialize object storage to zero.
2758Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2759                                   intptr_t start_offset,
2760                                   Node* end_offset,
2761                                   PhaseGVN* phase) {
2762  Compile* C = phase->C;
2763  intptr_t offset = start_offset;
2764
2765  int unit = BytesPerLong;
2766  if ((offset % unit) != 0) {
2767    Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2768    adr = phase->transform(adr);
2769    const TypePtr* atp = TypeRawPtr::BOTTOM;
2770    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2771    mem = phase->transform(mem);
2772    offset += BytesPerInt;
2773  }
2774  assert((offset % unit) == 0, "");
2775
2776  // Initialize the remaining stuff, if any, with a ClearArray.
2777  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2778}
2779
2780Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2781                                   Node* start_offset,
2782                                   Node* end_offset,
2783                                   PhaseGVN* phase) {
2784  if (start_offset == end_offset) {
2785    // nothing to do
2786    return mem;
2787  }
2788
2789  Compile* C = phase->C;
2790  int unit = BytesPerLong;
2791  Node* zbase = start_offset;
2792  Node* zend  = end_offset;
2793
2794  // Scale to the unit required by the CPU:
2795  if (!Matcher::init_array_count_is_in_bytes) {
2796    Node* shift = phase->intcon(exact_log2(unit));
2797    zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2798    zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2799  }
2800
2801  // Bulk clear double-words
2802  Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2803  Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2804  mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2805  return phase->transform(mem);
2806}
2807
2808Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2809                                   intptr_t start_offset,
2810                                   intptr_t end_offset,
2811                                   PhaseGVN* phase) {
2812  if (start_offset == end_offset) {
2813    // nothing to do
2814    return mem;
2815  }
2816
2817  Compile* C = phase->C;
2818  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2819  intptr_t done_offset = end_offset;
2820  if ((done_offset % BytesPerLong) != 0) {
2821    done_offset -= BytesPerInt;
2822  }
2823  if (done_offset > start_offset) {
2824    mem = clear_memory(ctl, mem, dest,
2825                       start_offset, phase->MakeConX(done_offset), phase);
2826  }
2827  if (done_offset < end_offset) { // emit the final 32-bit store
2828    Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2829    adr = phase->transform(adr);
2830    const TypePtr* atp = TypeRawPtr::BOTTOM;
2831    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2832    mem = phase->transform(mem);
2833    done_offset += BytesPerInt;
2834  }
2835  assert(done_offset == end_offset, "");
2836  return mem;
2837}
2838
2839//=============================================================================
2840// Do not match memory edge.
2841uint StrIntrinsicNode::match_edge(uint idx) const {
2842  return idx == 2 || idx == 3;
2843}
2844
2845//------------------------------Ideal------------------------------------------
2846// Return a node which is more "ideal" than the current node.  Strip out
2847// control copies
2848Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2849  if (remove_dead_region(phase, can_reshape)) return this;
2850  // Don't bother trying to transform a dead node
2851  if (in(0) && in(0)->is_top())  return NULL;
2852
2853  if (can_reshape) {
2854    Node* mem = phase->transform(in(MemNode::Memory));
2855    // If transformed to a MergeMem, get the desired slice
2856    uint alias_idx = phase->C->get_alias_index(adr_type());
2857    mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2858    if (mem != in(MemNode::Memory)) {
2859      set_req(MemNode::Memory, mem);
2860      return this;
2861    }
2862  }
2863  return NULL;
2864}
2865
2866//------------------------------Value------------------------------------------
2867const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2868  if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2869  return bottom_type();
2870}
2871
2872//=============================================================================
2873//------------------------------match_edge-------------------------------------
2874// Do not match memory edge
2875uint EncodeISOArrayNode::match_edge(uint idx) const {
2876  return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
2877}
2878
2879//------------------------------Ideal------------------------------------------
2880// Return a node which is more "ideal" than the current node.  Strip out
2881// control copies
2882Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2883  return remove_dead_region(phase, can_reshape) ? this : NULL;
2884}
2885
2886//------------------------------Value------------------------------------------
2887const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
2888  if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2889  return bottom_type();
2890}
2891
2892//=============================================================================
2893MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2894  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2895    _adr_type(C->get_adr_type(alias_idx))
2896{
2897  init_class_id(Class_MemBar);
2898  Node* top = C->top();
2899  init_req(TypeFunc::I_O,top);
2900  init_req(TypeFunc::FramePtr,top);
2901  init_req(TypeFunc::ReturnAdr,top);
2902  if (precedent != NULL)
2903    init_req(TypeFunc::Parms, precedent);
2904}
2905
2906//------------------------------cmp--------------------------------------------
2907uint MemBarNode::hash() const { return NO_HASH; }
2908uint MemBarNode::cmp( const Node &n ) const {
2909  return (&n == this);          // Always fail except on self
2910}
2911
2912//------------------------------make-------------------------------------------
2913MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2914  switch (opcode) {
2915  case Op_MemBarAcquire:   return new(C) MemBarAcquireNode(C,  atp, pn);
2916  case Op_MemBarRelease:   return new(C) MemBarReleaseNode(C,  atp, pn);
2917  case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C,  atp, pn);
2918  case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C,  atp, pn);
2919  case Op_MemBarVolatile:  return new(C) MemBarVolatileNode(C, atp, pn);
2920  case Op_MemBarCPUOrder:  return new(C) MemBarCPUOrderNode(C, atp, pn);
2921  case Op_Initialize:      return new(C) InitializeNode(C,     atp, pn);
2922  case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C,  atp, pn);
2923  default:                 ShouldNotReachHere(); return NULL;
2924  }
2925}
2926
2927//------------------------------Ideal------------------------------------------
2928// Return a node which is more "ideal" than the current node.  Strip out
2929// control copies
2930Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2931  if (remove_dead_region(phase, can_reshape)) return this;
2932  // Don't bother trying to transform a dead node
2933  if (in(0) && in(0)->is_top()) {
2934    return NULL;
2935  }
2936
2937  // Eliminate volatile MemBars for scalar replaced objects.
2938  if (can_reshape && req() == (Precedent+1)) {
2939    bool eliminate = false;
2940    int opc = Opcode();
2941    if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2942      // Volatile field loads and stores.
2943      Node* my_mem = in(MemBarNode::Precedent);
2944      // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2945      if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2946        assert(my_mem->unique_out() == this, "sanity");
2947        phase->hash_delete(this);
2948        del_req(Precedent);
2949        phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2950        my_mem = NULL;
2951      }
2952      if (my_mem != NULL && my_mem->is_Mem()) {
2953        const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2954        // Check for scalar replaced object reference.
2955        if( t_oop != NULL && t_oop->is_known_instance_field() &&
2956            t_oop->offset() != Type::OffsetBot &&
2957            t_oop->offset() != Type::OffsetTop) {
2958          eliminate = true;
2959        }
2960      }
2961    } else if (opc == Op_MemBarRelease) {
2962      // Final field stores.
2963      Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2964      if ((alloc != NULL) && alloc->is_Allocate() &&
2965          alloc->as_Allocate()->_is_non_escaping) {
2966        // The allocated object does not escape.
2967        eliminate = true;
2968      }
2969    }
2970    if (eliminate) {
2971      // Replace MemBar projections by its inputs.
2972      PhaseIterGVN* igvn = phase->is_IterGVN();
2973      igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2974      igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2975      // Must return either the original node (now dead) or a new node
2976      // (Do not return a top here, since that would break the uniqueness of top.)
2977      return new (phase->C) ConINode(TypeInt::ZERO);
2978    }
2979  }
2980  return NULL;
2981}
2982
2983//------------------------------Value------------------------------------------
2984const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2985  if( !in(0) ) return Type::TOP;
2986  if( phase->type(in(0)) == Type::TOP )
2987    return Type::TOP;
2988  return TypeTuple::MEMBAR;
2989}
2990
2991//------------------------------match------------------------------------------
2992// Construct projections for memory.
2993Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2994  switch (proj->_con) {
2995  case TypeFunc::Control:
2996  case TypeFunc::Memory:
2997    return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2998  }
2999  ShouldNotReachHere();
3000  return NULL;
3001}
3002
3003//===========================InitializeNode====================================
3004// SUMMARY:
3005// This node acts as a memory barrier on raw memory, after some raw stores.
3006// The 'cooked' oop value feeds from the Initialize, not the Allocation.
3007// The Initialize can 'capture' suitably constrained stores as raw inits.
3008// It can coalesce related raw stores into larger units (called 'tiles').
3009// It can avoid zeroing new storage for memory units which have raw inits.
3010// At macro-expansion, it is marked 'complete', and does not optimize further.
3011//
3012// EXAMPLE:
3013// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3014//   ctl = incoming control; mem* = incoming memory
3015// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3016// First allocate uninitialized memory and fill in the header:
3017//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3018//   ctl := alloc.Control; mem* := alloc.Memory*
3019//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3020// Then initialize to zero the non-header parts of the raw memory block:
3021//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3022//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3023// After the initialize node executes, the object is ready for service:
3024//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3025// Suppose its body is immediately initialized as {1,2}:
3026//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3027//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3028//   mem.SLICE(#short[*]) := store2
3029//
3030// DETAILS:
3031// An InitializeNode collects and isolates object initialization after
3032// an AllocateNode and before the next possible safepoint.  As a
3033// memory barrier (MemBarNode), it keeps critical stores from drifting
3034// down past any safepoint or any publication of the allocation.
3035// Before this barrier, a newly-allocated object may have uninitialized bits.
3036// After this barrier, it may be treated as a real oop, and GC is allowed.
3037//
3038// The semantics of the InitializeNode include an implicit zeroing of
3039// the new object from object header to the end of the object.
3040// (The object header and end are determined by the AllocateNode.)
3041//
3042// Certain stores may be added as direct inputs to the InitializeNode.
3043// These stores must update raw memory, and they must be to addresses
3044// derived from the raw address produced by AllocateNode, and with
3045// a constant offset.  They must be ordered by increasing offset.
3046// The first one is at in(RawStores), the last at in(req()-1).
3047// Unlike most memory operations, they are not linked in a chain,
3048// but are displayed in parallel as users of the rawmem output of
3049// the allocation.
3050//
3051// (See comments in InitializeNode::capture_store, which continue
3052// the example given above.)
3053//
3054// When the associated Allocate is macro-expanded, the InitializeNode
3055// may be rewritten to optimize collected stores.  A ClearArrayNode
3056// may also be created at that point to represent any required zeroing.
3057// The InitializeNode is then marked 'complete', prohibiting further
3058// capturing of nearby memory operations.
3059//
3060// During macro-expansion, all captured initializations which store
3061// constant values of 32 bits or smaller are coalesced (if advantageous)
3062// into larger 'tiles' 32 or 64 bits.  This allows an object to be
3063// initialized in fewer memory operations.  Memory words which are
3064// covered by neither tiles nor non-constant stores are pre-zeroed
3065// by explicit stores of zero.  (The code shape happens to do all
3066// zeroing first, then all other stores, with both sequences occurring
3067// in order of ascending offsets.)
3068//
3069// Alternatively, code may be inserted between an AllocateNode and its
3070// InitializeNode, to perform arbitrary initialization of the new object.
3071// E.g., the object copying intrinsics insert complex data transfers here.
3072// The initialization must then be marked as 'complete' disable the
3073// built-in zeroing semantics and the collection of initializing stores.
3074//
3075// While an InitializeNode is incomplete, reads from the memory state
3076// produced by it are optimizable if they match the control edge and
3077// new oop address associated with the allocation/initialization.
3078// They return a stored value (if the offset matches) or else zero.
3079// A write to the memory state, if it matches control and address,
3080// and if it is to a constant offset, may be 'captured' by the
3081// InitializeNode.  It is cloned as a raw memory operation and rewired
3082// inside the initialization, to the raw oop produced by the allocation.
3083// Operations on addresses which are provably distinct (e.g., to
3084// other AllocateNodes) are allowed to bypass the initialization.
3085//
3086// The effect of all this is to consolidate object initialization
3087// (both arrays and non-arrays, both piecewise and bulk) into a
3088// single location, where it can be optimized as a unit.
3089//
3090// Only stores with an offset less than TrackedInitializationLimit words
3091// will be considered for capture by an InitializeNode.  This puts a
3092// reasonable limit on the complexity of optimized initializations.
3093
3094//---------------------------InitializeNode------------------------------------
3095InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3096  : _is_complete(Incomplete), _does_not_escape(false),
3097    MemBarNode(C, adr_type, rawoop)
3098{
3099  init_class_id(Class_Initialize);
3100
3101  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3102  assert(in(RawAddress) == rawoop, "proper init");
3103  // Note:  allocation() can be NULL, for secondary initialization barriers
3104}
3105
3106// Since this node is not matched, it will be processed by the
3107// register allocator.  Declare that there are no constraints
3108// on the allocation of the RawAddress edge.
3109const RegMask &InitializeNode::in_RegMask(uint idx) const {
3110  // This edge should be set to top, by the set_complete.  But be conservative.
3111  if (idx == InitializeNode::RawAddress)
3112    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3113  return RegMask::Empty;
3114}
3115
3116Node* InitializeNode::memory(uint alias_idx) {
3117  Node* mem = in(Memory);
3118  if (mem->is_MergeMem()) {
3119    return mem->as_MergeMem()->memory_at(alias_idx);
3120  } else {
3121    // incoming raw memory is not split
3122    return mem;
3123  }
3124}
3125
3126bool InitializeNode::is_non_zero() {
3127  if (is_complete())  return false;
3128  remove_extra_zeroes();
3129  return (req() > RawStores);
3130}
3131
3132void InitializeNode::set_complete(PhaseGVN* phase) {
3133  assert(!is_complete(), "caller responsibility");
3134  _is_complete = Complete;
3135
3136  // After this node is complete, it contains a bunch of
3137  // raw-memory initializations.  There is no need for
3138  // it to have anything to do with non-raw memory effects.
3139  // Therefore, tell all non-raw users to re-optimize themselves,
3140  // after skipping the memory effects of this initialization.
3141  PhaseIterGVN* igvn = phase->is_IterGVN();
3142  if (igvn)  igvn->add_users_to_worklist(this);
3143}
3144
3145// convenience function
3146// return false if the init contains any stores already
3147bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3148  InitializeNode* init = initialization();
3149  if (init == NULL || init->is_complete())  return false;
3150  init->remove_extra_zeroes();
3151  // for now, if this allocation has already collected any inits, bail:
3152  if (init->is_non_zero())  return false;
3153  init->set_complete(phase);
3154  return true;
3155}
3156
3157void InitializeNode::remove_extra_zeroes() {
3158  if (req() == RawStores)  return;
3159  Node* zmem = zero_memory();
3160  uint fill = RawStores;
3161  for (uint i = fill; i < req(); i++) {
3162    Node* n = in(i);
3163    if (n->is_top() || n == zmem)  continue;  // skip
3164    if (fill < i)  set_req(fill, n);          // compact
3165    ++fill;
3166  }
3167  // delete any empty spaces created:
3168  while (fill < req()) {
3169    del_req(fill);
3170  }
3171}
3172
3173// Helper for remembering which stores go with which offsets.
3174intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3175  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3176  intptr_t offset = -1;
3177  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3178                                               phase, offset);
3179  if (base == NULL)     return -1;  // something is dead,
3180  if (offset < 0)       return -1;  //        dead, dead
3181  return offset;
3182}
3183
3184// Helper for proving that an initialization expression is
3185// "simple enough" to be folded into an object initialization.
3186// Attempts to prove that a store's initial value 'n' can be captured
3187// within the initialization without creating a vicious cycle, such as:
3188//     { Foo p = new Foo(); p.next = p; }
3189// True for constants and parameters and small combinations thereof.
3190bool InitializeNode::detect_init_independence(Node* n, int& count) {
3191  if (n == NULL)      return true;   // (can this really happen?)
3192  if (n->is_Proj())   n = n->in(0);
3193  if (n == this)      return false;  // found a cycle
3194  if (n->is_Con())    return true;
3195  if (n->is_Start())  return true;   // params, etc., are OK
3196  if (n->is_Root())   return true;   // even better
3197
3198  Node* ctl = n->in(0);
3199  if (ctl != NULL && !ctl->is_top()) {
3200    if (ctl->is_Proj())  ctl = ctl->in(0);
3201    if (ctl == this)  return false;
3202
3203    // If we already know that the enclosing memory op is pinned right after
3204    // the init, then any control flow that the store has picked up
3205    // must have preceded the init, or else be equal to the init.
3206    // Even after loop optimizations (which might change control edges)
3207    // a store is never pinned *before* the availability of its inputs.
3208    if (!MemNode::all_controls_dominate(n, this))
3209      return false;                  // failed to prove a good control
3210  }
3211
3212  // Check data edges for possible dependencies on 'this'.
3213  if ((count += 1) > 20)  return false;  // complexity limit
3214  for (uint i = 1; i < n->req(); i++) {
3215    Node* m = n->in(i);
3216    if (m == NULL || m == n || m->is_top())  continue;
3217    uint first_i = n->find_edge(m);
3218    if (i != first_i)  continue;  // process duplicate edge just once
3219    if (!detect_init_independence(m, count)) {
3220      return false;
3221    }
3222  }
3223
3224  return true;
3225}
3226
3227// Here are all the checks a Store must pass before it can be moved into
3228// an initialization.  Returns zero if a check fails.
3229// On success, returns the (constant) offset to which the store applies,
3230// within the initialized memory.
3231intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3232  const int FAIL = 0;
3233  if (st->req() != MemNode::ValueIn + 1)
3234    return FAIL;                // an inscrutable StoreNode (card mark?)
3235  Node* ctl = st->in(MemNode::Control);
3236  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3237    return FAIL;                // must be unconditional after the initialization
3238  Node* mem = st->in(MemNode::Memory);
3239  if (!(mem->is_Proj() && mem->in(0) == this))
3240    return FAIL;                // must not be preceded by other stores
3241  Node* adr = st->in(MemNode::Address);
3242  intptr_t offset;
3243  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3244  if (alloc == NULL)
3245    return FAIL;                // inscrutable address
3246  if (alloc != allocation())
3247    return FAIL;                // wrong allocation!  (store needs to float up)
3248  Node* val = st->in(MemNode::ValueIn);
3249  int complexity_count = 0;
3250  if (!detect_init_independence(val, complexity_count))
3251    return FAIL;                // stored value must be 'simple enough'
3252
3253  // The Store can be captured only if nothing after the allocation
3254  // and before the Store is using the memory location that the store
3255  // overwrites.
3256  bool failed = false;
3257  // If is_complete_with_arraycopy() is true the shape of the graph is
3258  // well defined and is safe so no need for extra checks.
3259  if (!is_complete_with_arraycopy()) {
3260    // We are going to look at each use of the memory state following
3261    // the allocation to make sure nothing reads the memory that the
3262    // Store writes.
3263    const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3264    int alias_idx = phase->C->get_alias_index(t_adr);
3265    ResourceMark rm;
3266    Unique_Node_List mems;
3267    mems.push(mem);
3268    Node* unique_merge = NULL;
3269    for (uint next = 0; next < mems.size(); ++next) {
3270      Node *m  = mems.at(next);
3271      for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3272        Node *n = m->fast_out(j);
3273        if (n->outcnt() == 0) {
3274          continue;
3275        }
3276        if (n == st) {
3277          continue;
3278        } else if (n->in(0) != NULL && n->in(0) != ctl) {
3279          // If the control of this use is different from the control
3280          // of the Store which is right after the InitializeNode then
3281          // this node cannot be between the InitializeNode and the
3282          // Store.
3283          continue;
3284        } else if (n->is_MergeMem()) {
3285          if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3286            // We can hit a MergeMemNode (that will likely go away
3287            // later) that is a direct use of the memory state
3288            // following the InitializeNode on the same slice as the
3289            // store node that we'd like to capture. We need to check
3290            // the uses of the MergeMemNode.
3291            mems.push(n);
3292          }
3293        } else if (n->is_Mem()) {
3294          Node* other_adr = n->in(MemNode::Address);
3295          if (other_adr == adr) {
3296            failed = true;
3297            break;
3298          } else {
3299            const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3300            if (other_t_adr != NULL) {
3301              int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3302              if (other_alias_idx == alias_idx) {
3303                // A load from the same memory slice as the store right
3304                // after the InitializeNode. We check the control of the
3305                // object/array that is loaded from. If it's the same as
3306                // the store control then we cannot capture the store.
3307                assert(!n->is_Store(), "2 stores to same slice on same control?");
3308                Node* base = other_adr;
3309                assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3310                base = base->in(AddPNode::Base);
3311                if (base != NULL) {
3312                  base = base->uncast();
3313                  if (base->is_Proj() && base->in(0) == alloc) {
3314                    failed = true;
3315                    break;
3316                  }
3317                }
3318              }
3319            }
3320          }
3321        } else {
3322          failed = true;
3323          break;
3324        }
3325      }
3326    }
3327  }
3328  if (failed) {
3329    if (!can_reshape) {
3330      // We decided we couldn't capture the store during parsing. We
3331      // should try again during the next IGVN once the graph is
3332      // cleaner.
3333      phase->C->record_for_igvn(st);
3334    }
3335    return FAIL;
3336  }
3337
3338  return offset;                // success
3339}
3340
3341// Find the captured store in(i) which corresponds to the range
3342// [start..start+size) in the initialized object.
3343// If there is one, return its index i.  If there isn't, return the
3344// negative of the index where it should be inserted.
3345// Return 0 if the queried range overlaps an initialization boundary
3346// or if dead code is encountered.
3347// If size_in_bytes is zero, do not bother with overlap checks.
3348int InitializeNode::captured_store_insertion_point(intptr_t start,
3349                                                   int size_in_bytes,
3350                                                   PhaseTransform* phase) {
3351  const int FAIL = 0, MAX_STORE = BytesPerLong;
3352
3353  if (is_complete())
3354    return FAIL;                // arraycopy got here first; punt
3355
3356  assert(allocation() != NULL, "must be present");
3357
3358  // no negatives, no header fields:
3359  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3360
3361  // after a certain size, we bail out on tracking all the stores:
3362  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3363  if (start >= ti_limit)  return FAIL;
3364
3365  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3366    if (i >= limit)  return -(int)i; // not found; here is where to put it
3367
3368    Node*    st     = in(i);
3369    intptr_t st_off = get_store_offset(st, phase);
3370    if (st_off < 0) {
3371      if (st != zero_memory()) {
3372        return FAIL;            // bail out if there is dead garbage
3373      }
3374    } else if (st_off > start) {
3375      // ...we are done, since stores are ordered
3376      if (st_off < start + size_in_bytes) {
3377        return FAIL;            // the next store overlaps
3378      }
3379      return -(int)i;           // not found; here is where to put it
3380    } else if (st_off < start) {
3381      if (size_in_bytes != 0 &&
3382          start < st_off + MAX_STORE &&
3383          start < st_off + st->as_Store()->memory_size()) {
3384        return FAIL;            // the previous store overlaps
3385      }
3386    } else {
3387      if (size_in_bytes != 0 &&
3388          st->as_Store()->memory_size() != size_in_bytes) {
3389        return FAIL;            // mismatched store size
3390      }
3391      return i;
3392    }
3393
3394    ++i;
3395  }
3396}
3397
3398// Look for a captured store which initializes at the offset 'start'
3399// with the given size.  If there is no such store, and no other
3400// initialization interferes, then return zero_memory (the memory
3401// projection of the AllocateNode).
3402Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3403                                          PhaseTransform* phase) {
3404  assert(stores_are_sane(phase), "");
3405  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3406  if (i == 0) {
3407    return NULL;                // something is dead
3408  } else if (i < 0) {
3409    return zero_memory();       // just primordial zero bits here
3410  } else {
3411    Node* st = in(i);           // here is the store at this position
3412    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3413    return st;
3414  }
3415}
3416
3417// Create, as a raw pointer, an address within my new object at 'offset'.
3418Node* InitializeNode::make_raw_address(intptr_t offset,
3419                                       PhaseTransform* phase) {
3420  Node* addr = in(RawAddress);
3421  if (offset != 0) {
3422    Compile* C = phase->C;
3423    addr = phase->transform( new (C) AddPNode(C->top(), addr,
3424                                                 phase->MakeConX(offset)) );
3425  }
3426  return addr;
3427}
3428
3429// Clone the given store, converting it into a raw store
3430// initializing a field or element of my new object.
3431// Caller is responsible for retiring the original store,
3432// with subsume_node or the like.
3433//
3434// From the example above InitializeNode::InitializeNode,
3435// here are the old stores to be captured:
3436//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3437//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3438//
3439// Here is the changed code; note the extra edges on init:
3440//   alloc = (Allocate ...)
3441//   rawoop = alloc.RawAddress
3442//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3443//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3444//   init = (Initialize alloc.Control alloc.Memory rawoop
3445//                      rawstore1 rawstore2)
3446//
3447Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3448                                    PhaseTransform* phase, bool can_reshape) {
3449  assert(stores_are_sane(phase), "");
3450
3451  if (start < 0)  return NULL;
3452  assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3453
3454  Compile* C = phase->C;
3455  int size_in_bytes = st->memory_size();
3456  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3457  if (i == 0)  return NULL;     // bail out
3458  Node* prev_mem = NULL;        // raw memory for the captured store
3459  if (i > 0) {
3460    prev_mem = in(i);           // there is a pre-existing store under this one
3461    set_req(i, C->top());       // temporarily disconnect it
3462    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3463  } else {
3464    i = -i;                     // no pre-existing store
3465    prev_mem = zero_memory();   // a slice of the newly allocated object
3466    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3467      set_req(--i, C->top());   // reuse this edge; it has been folded away
3468    else
3469      ins_req(i, C->top());     // build a new edge
3470  }
3471  Node* new_st = st->clone();
3472  new_st->set_req(MemNode::Control, in(Control));
3473  new_st->set_req(MemNode::Memory,  prev_mem);
3474  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3475  new_st = phase->transform(new_st);
3476
3477  // At this point, new_st might have swallowed a pre-existing store
3478  // at the same offset, or perhaps new_st might have disappeared,
3479  // if it redundantly stored the same value (or zero to fresh memory).
3480
3481  // In any case, wire it in:
3482  set_req(i, new_st);
3483
3484  // The caller may now kill the old guy.
3485  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3486  assert(check_st == new_st || check_st == NULL, "must be findable");
3487  assert(!is_complete(), "");
3488  return new_st;
3489}
3490
3491static bool store_constant(jlong* tiles, int num_tiles,
3492                           intptr_t st_off, int st_size,
3493                           jlong con) {
3494  if ((st_off & (st_size-1)) != 0)
3495    return false;               // strange store offset (assume size==2**N)
3496  address addr = (address)tiles + st_off;
3497  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3498  switch (st_size) {
3499  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3500  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3501  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3502  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3503  default: return false;        // strange store size (detect size!=2**N here)
3504  }
3505  return true;                  // return success to caller
3506}
3507
3508// Coalesce subword constants into int constants and possibly
3509// into long constants.  The goal, if the CPU permits,
3510// is to initialize the object with a small number of 64-bit tiles.
3511// Also, convert floating-point constants to bit patterns.
3512// Non-constants are not relevant to this pass.
3513//
3514// In terms of the running example on InitializeNode::InitializeNode
3515// and InitializeNode::capture_store, here is the transformation
3516// of rawstore1 and rawstore2 into rawstore12:
3517//   alloc = (Allocate ...)
3518//   rawoop = alloc.RawAddress
3519//   tile12 = 0x00010002
3520//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3521//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3522//
3523void
3524InitializeNode::coalesce_subword_stores(intptr_t header_size,
3525                                        Node* size_in_bytes,
3526                                        PhaseGVN* phase) {
3527  Compile* C = phase->C;
3528
3529  assert(stores_are_sane(phase), "");
3530  // Note:  After this pass, they are not completely sane,
3531  // since there may be some overlaps.
3532
3533  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3534
3535  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3536  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3537  size_limit = MIN2(size_limit, ti_limit);
3538  size_limit = align_size_up(size_limit, BytesPerLong);
3539  int num_tiles = size_limit / BytesPerLong;
3540
3541  // allocate space for the tile map:
3542  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3543  jlong  tiles_buf[small_len];
3544  Node*  nodes_buf[small_len];
3545  jlong  inits_buf[small_len];
3546  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3547                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3548  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3549                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3550  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3551                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3552  // tiles: exact bitwise model of all primitive constants
3553  // nodes: last constant-storing node subsumed into the tiles model
3554  // inits: which bytes (in each tile) are touched by any initializations
3555
3556  //// Pass A: Fill in the tile model with any relevant stores.
3557
3558  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3559  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3560  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3561  Node* zmem = zero_memory(); // initially zero memory state
3562  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3563    Node* st = in(i);
3564    intptr_t st_off = get_store_offset(st, phase);
3565
3566    // Figure out the store's offset and constant value:
3567    if (st_off < header_size)             continue; //skip (ignore header)
3568    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3569    int st_size = st->as_Store()->memory_size();
3570    if (st_off + st_size > size_limit)    break;
3571
3572    // Record which bytes are touched, whether by constant or not.
3573    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3574      continue;                 // skip (strange store size)
3575
3576    const Type* val = phase->type(st->in(MemNode::ValueIn));
3577    if (!val->singleton())                continue; //skip (non-con store)
3578    BasicType type = val->basic_type();
3579
3580    jlong con = 0;
3581    switch (type) {
3582    case T_INT:    con = val->is_int()->get_con();  break;
3583    case T_LONG:   con = val->is_long()->get_con(); break;
3584    case T_FLOAT:  con = jint_cast(val->getf());    break;
3585    case T_DOUBLE: con = jlong_cast(val->getd());   break;
3586    default:                              continue; //skip (odd store type)
3587    }
3588
3589    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3590        st->Opcode() == Op_StoreL) {
3591      continue;                 // This StoreL is already optimal.
3592    }
3593
3594    // Store down the constant.
3595    store_constant(tiles, num_tiles, st_off, st_size, con);
3596
3597    intptr_t j = st_off >> LogBytesPerLong;
3598
3599    if (type == T_INT && st_size == BytesPerInt
3600        && (st_off & BytesPerInt) == BytesPerInt) {
3601      jlong lcon = tiles[j];
3602      if (!Matcher::isSimpleConstant64(lcon) &&
3603          st->Opcode() == Op_StoreI) {
3604        // This StoreI is already optimal by itself.
3605        jint* intcon = (jint*) &tiles[j];
3606        intcon[1] = 0;  // undo the store_constant()
3607
3608        // If the previous store is also optimal by itself, back up and
3609        // undo the action of the previous loop iteration... if we can.
3610        // But if we can't, just let the previous half take care of itself.
3611        st = nodes[j];
3612        st_off -= BytesPerInt;
3613        con = intcon[0];
3614        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3615          assert(st_off >= header_size, "still ignoring header");
3616          assert(get_store_offset(st, phase) == st_off, "must be");
3617          assert(in(i-1) == zmem, "must be");
3618          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3619          assert(con == tcon->is_int()->get_con(), "must be");
3620          // Undo the effects of the previous loop trip, which swallowed st:
3621          intcon[0] = 0;        // undo store_constant()
3622          set_req(i-1, st);     // undo set_req(i, zmem)
3623          nodes[j] = NULL;      // undo nodes[j] = st
3624          --old_subword;        // undo ++old_subword
3625        }
3626        continue;               // This StoreI is already optimal.
3627      }
3628    }
3629
3630    // This store is not needed.
3631    set_req(i, zmem);
3632    nodes[j] = st;              // record for the moment
3633    if (st_size < BytesPerLong) // something has changed
3634          ++old_subword;        // includes int/float, but who's counting...
3635    else  ++old_long;
3636  }
3637
3638  if ((old_subword + old_long) == 0)
3639    return;                     // nothing more to do
3640
3641  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3642  // Be sure to insert them before overlapping non-constant stores.
3643  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3644  for (int j = 0; j < num_tiles; j++) {
3645    jlong con  = tiles[j];
3646    jlong init = inits[j];
3647    if (con == 0)  continue;
3648    jint con0,  con1;           // split the constant, address-wise
3649    jint init0, init1;          // split the init map, address-wise
3650    { union { jlong con; jint intcon[2]; } u;
3651      u.con = con;
3652      con0  = u.intcon[0];
3653      con1  = u.intcon[1];
3654      u.con = init;
3655      init0 = u.intcon[0];
3656      init1 = u.intcon[1];
3657    }
3658
3659    Node* old = nodes[j];
3660    assert(old != NULL, "need the prior store");
3661    intptr_t offset = (j * BytesPerLong);
3662
3663    bool split = !Matcher::isSimpleConstant64(con);
3664
3665    if (offset < header_size) {
3666      assert(offset + BytesPerInt >= header_size, "second int counts");
3667      assert(*(jint*)&tiles[j] == 0, "junk in header");
3668      split = true;             // only the second word counts
3669      // Example:  int a[] = { 42 ... }
3670    } else if (con0 == 0 && init0 == -1) {
3671      split = true;             // first word is covered by full inits
3672      // Example:  int a[] = { ... foo(), 42 ... }
3673    } else if (con1 == 0 && init1 == -1) {
3674      split = true;             // second word is covered by full inits
3675      // Example:  int a[] = { ... 42, foo() ... }
3676    }
3677
3678    // Here's a case where init0 is neither 0 nor -1:
3679    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3680    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3681    // In this case the tile is not split; it is (jlong)42.
3682    // The big tile is stored down, and then the foo() value is inserted.
3683    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3684
3685    Node* ctl = old->in(MemNode::Control);
3686    Node* adr = make_raw_address(offset, phase);
3687    const TypePtr* atp = TypeRawPtr::BOTTOM;
3688
3689    // One or two coalesced stores to plop down.
3690    Node*    st[2];
3691    intptr_t off[2];
3692    int  nst = 0;
3693    if (!split) {
3694      ++new_long;
3695      off[nst] = offset;
3696      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3697                                  phase->longcon(con), T_LONG);
3698    } else {
3699      // Omit either if it is a zero.
3700      if (con0 != 0) {
3701        ++new_int;
3702        off[nst]  = offset;
3703        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3704                                    phase->intcon(con0), T_INT);
3705      }
3706      if (con1 != 0) {
3707        ++new_int;
3708        offset += BytesPerInt;
3709        adr = make_raw_address(offset, phase);
3710        off[nst]  = offset;
3711        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3712                                    phase->intcon(con1), T_INT);
3713      }
3714    }
3715
3716    // Insert second store first, then the first before the second.
3717    // Insert each one just before any overlapping non-constant stores.
3718    while (nst > 0) {
3719      Node* st1 = st[--nst];
3720      C->copy_node_notes_to(st1, old);
3721      st1 = phase->transform(st1);
3722      offset = off[nst];
3723      assert(offset >= header_size, "do not smash header");
3724      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3725      guarantee(ins_idx != 0, "must re-insert constant store");
3726      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3727      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3728        set_req(--ins_idx, st1);
3729      else
3730        ins_req(ins_idx, st1);
3731    }
3732  }
3733
3734  if (PrintCompilation && WizardMode)
3735    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3736                  old_subword, old_long, new_int, new_long);
3737  if (C->log() != NULL)
3738    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3739                   old_subword, old_long, new_int, new_long);
3740
3741  // Clean up any remaining occurrences of zmem:
3742  remove_extra_zeroes();
3743}
3744
3745// Explore forward from in(start) to find the first fully initialized
3746// word, and return its offset.  Skip groups of subword stores which
3747// together initialize full words.  If in(start) is itself part of a
3748// fully initialized word, return the offset of in(start).  If there
3749// are no following full-word stores, or if something is fishy, return
3750// a negative value.
3751intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3752  int       int_map = 0;
3753  intptr_t  int_map_off = 0;
3754  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3755
3756  for (uint i = start, limit = req(); i < limit; i++) {
3757    Node* st = in(i);
3758
3759    intptr_t st_off = get_store_offset(st, phase);
3760    if (st_off < 0)  break;  // return conservative answer
3761
3762    int st_size = st->as_Store()->memory_size();
3763    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3764      return st_off;            // we found a complete word init
3765    }
3766
3767    // update the map:
3768
3769    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3770    if (this_int_off != int_map_off) {
3771      // reset the map:
3772      int_map = 0;
3773      int_map_off = this_int_off;
3774    }
3775
3776    int subword_off = st_off - this_int_off;
3777    int_map |= right_n_bits(st_size) << subword_off;
3778    if ((int_map & FULL_MAP) == FULL_MAP) {
3779      return this_int_off;      // we found a complete word init
3780    }
3781
3782    // Did this store hit or cross the word boundary?
3783    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3784    if (next_int_off == this_int_off + BytesPerInt) {
3785      // We passed the current int, without fully initializing it.
3786      int_map_off = next_int_off;
3787      int_map >>= BytesPerInt;
3788    } else if (next_int_off > this_int_off + BytesPerInt) {
3789      // We passed the current and next int.
3790      return this_int_off + BytesPerInt;
3791    }
3792  }
3793
3794  return -1;
3795}
3796
3797
3798// Called when the associated AllocateNode is expanded into CFG.
3799// At this point, we may perform additional optimizations.
3800// Linearize the stores by ascending offset, to make memory
3801// activity as coherent as possible.
3802Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3803                                      intptr_t header_size,
3804                                      Node* size_in_bytes,
3805                                      PhaseGVN* phase) {
3806  assert(!is_complete(), "not already complete");
3807  assert(stores_are_sane(phase), "");
3808  assert(allocation() != NULL, "must be present");
3809
3810  remove_extra_zeroes();
3811
3812  if (ReduceFieldZeroing || ReduceBulkZeroing)
3813    // reduce instruction count for common initialization patterns
3814    coalesce_subword_stores(header_size, size_in_bytes, phase);
3815
3816  Node* zmem = zero_memory();   // initially zero memory state
3817  Node* inits = zmem;           // accumulating a linearized chain of inits
3818  #ifdef ASSERT
3819  intptr_t first_offset = allocation()->minimum_header_size();
3820  intptr_t last_init_off = first_offset;  // previous init offset
3821  intptr_t last_init_end = first_offset;  // previous init offset+size
3822  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3823  #endif
3824  intptr_t zeroes_done = header_size;
3825
3826  bool do_zeroing = true;       // we might give up if inits are very sparse
3827  int  big_init_gaps = 0;       // how many large gaps have we seen?
3828
3829  if (ZeroTLAB)  do_zeroing = false;
3830  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3831
3832  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3833    Node* st = in(i);
3834    intptr_t st_off = get_store_offset(st, phase);
3835    if (st_off < 0)
3836      break;                    // unknown junk in the inits
3837    if (st->in(MemNode::Memory) != zmem)
3838      break;                    // complicated store chains somehow in list
3839
3840    int st_size = st->as_Store()->memory_size();
3841    intptr_t next_init_off = st_off + st_size;
3842
3843    if (do_zeroing && zeroes_done < next_init_off) {
3844      // See if this store needs a zero before it or under it.
3845      intptr_t zeroes_needed = st_off;
3846
3847      if (st_size < BytesPerInt) {
3848        // Look for subword stores which only partially initialize words.
3849        // If we find some, we must lay down some word-level zeroes first,
3850        // underneath the subword stores.
3851        //
3852        // Examples:
3853        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3854        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3855        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3856        //
3857        // Note:  coalesce_subword_stores may have already done this,
3858        // if it was prompted by constant non-zero subword initializers.
3859        // But this case can still arise with non-constant stores.
3860
3861        intptr_t next_full_store = find_next_fullword_store(i, phase);
3862
3863        // In the examples above:
3864        //   in(i)          p   q   r   s     x   y     z
3865        //   st_off        12  13  14  15    12  13    14
3866        //   st_size        1   1   1   1     1   1     1
3867        //   next_full_s.  12  16  16  16    16  16    16
3868        //   z's_done      12  16  16  16    12  16    12
3869        //   z's_needed    12  16  16  16    16  16    16
3870        //   zsize          0   0   0   0     4   0     4
3871        if (next_full_store < 0) {
3872          // Conservative tack:  Zero to end of current word.
3873          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3874        } else {
3875          // Zero to beginning of next fully initialized word.
3876          // Or, don't zero at all, if we are already in that word.
3877          assert(next_full_store >= zeroes_needed, "must go forward");
3878          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3879          zeroes_needed = next_full_store;
3880        }
3881      }
3882
3883      if (zeroes_needed > zeroes_done) {
3884        intptr_t zsize = zeroes_needed - zeroes_done;
3885        // Do some incremental zeroing on rawmem, in parallel with inits.
3886        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3887        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3888                                              zeroes_done, zeroes_needed,
3889                                              phase);
3890        zeroes_done = zeroes_needed;
3891        if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3892          do_zeroing = false;   // leave the hole, next time
3893      }
3894    }
3895
3896    // Collect the store and move on:
3897    st->set_req(MemNode::Memory, inits);
3898    inits = st;                 // put it on the linearized chain
3899    set_req(i, zmem);           // unhook from previous position
3900
3901    if (zeroes_done == st_off)
3902      zeroes_done = next_init_off;
3903
3904    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3905
3906    #ifdef ASSERT
3907    // Various order invariants.  Weaker than stores_are_sane because
3908    // a large constant tile can be filled in by smaller non-constant stores.
3909    assert(st_off >= last_init_off, "inits do not reverse");
3910    last_init_off = st_off;
3911    const Type* val = NULL;
3912    if (st_size >= BytesPerInt &&
3913        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3914        (int)val->basic_type() < (int)T_OBJECT) {
3915      assert(st_off >= last_tile_end, "tiles do not overlap");
3916      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3917      last_tile_end = MAX2(last_tile_end, next_init_off);
3918    } else {
3919      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3920      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3921      assert(st_off      >= last_init_end, "inits do not overlap");
3922      last_init_end = next_init_off;  // it's a non-tile
3923    }
3924    #endif //ASSERT
3925  }
3926
3927  remove_extra_zeroes();        // clear out all the zmems left over
3928  add_req(inits);
3929
3930  if (!ZeroTLAB) {
3931    // If anything remains to be zeroed, zero it all now.
3932    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3933    // if it is the last unused 4 bytes of an instance, forget about it
3934    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3935    if (zeroes_done + BytesPerLong >= size_limit) {
3936      assert(allocation() != NULL, "");
3937      if (allocation()->Opcode() == Op_Allocate) {
3938        Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3939        ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3940        if (zeroes_done == k->layout_helper())
3941          zeroes_done = size_limit;
3942      }
3943    }
3944    if (zeroes_done < size_limit) {
3945      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3946                                            zeroes_done, size_in_bytes, phase);
3947    }
3948  }
3949
3950  set_complete(phase);
3951  return rawmem;
3952}
3953
3954
3955#ifdef ASSERT
3956bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3957  if (is_complete())
3958    return true;                // stores could be anything at this point
3959  assert(allocation() != NULL, "must be present");
3960  intptr_t last_off = allocation()->minimum_header_size();
3961  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3962    Node* st = in(i);
3963    intptr_t st_off = get_store_offset(st, phase);
3964    if (st_off < 0)  continue;  // ignore dead garbage
3965    if (last_off > st_off) {
3966      tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3967      this->dump(2);
3968      assert(false, "ascending store offsets");
3969      return false;
3970    }
3971    last_off = st_off + st->as_Store()->memory_size();
3972  }
3973  return true;
3974}
3975#endif //ASSERT
3976
3977
3978
3979
3980//============================MergeMemNode=====================================
3981//
3982// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3983// contributing store or call operations.  Each contributor provides the memory
3984// state for a particular "alias type" (see Compile::alias_type).  For example,
3985// if a MergeMem has an input X for alias category #6, then any memory reference
3986// to alias category #6 may use X as its memory state input, as an exact equivalent
3987// to using the MergeMem as a whole.
3988//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3989//
3990// (Here, the <N> notation gives the index of the relevant adr_type.)
3991//
3992// In one special case (and more cases in the future), alias categories overlap.
3993// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3994// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3995// it is exactly equivalent to that state W:
3996//   MergeMem(<Bot>: W) <==> W
3997//
3998// Usually, the merge has more than one input.  In that case, where inputs
3999// overlap (i.e., one is Bot), the narrower alias type determines the memory
4000// state for that type, and the wider alias type (Bot) fills in everywhere else:
4001//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4002//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4003//
4004// A merge can take a "wide" memory state as one of its narrow inputs.
4005// This simply means that the merge observes out only the relevant parts of
4006// the wide input.  That is, wide memory states arriving at narrow merge inputs
4007// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4008//
4009// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4010// and that memory slices "leak through":
4011//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4012//
4013// But, in such a cascade, repeated memory slices can "block the leak":
4014//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4015//
4016// In the last example, Y is not part of the combined memory state of the
4017// outermost MergeMem.  The system must, of course, prevent unschedulable
4018// memory states from arising, so you can be sure that the state Y is somehow
4019// a precursor to state Y'.
4020//
4021//
4022// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4023// of each MergeMemNode array are exactly the numerical alias indexes, including
4024// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4025// Compile::alias_type (and kin) produce and manage these indexes.
4026//
4027// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4028// (Note that this provides quick access to the top node inside MergeMem methods,
4029// without the need to reach out via TLS to Compile::current.)
4030//
4031// As a consequence of what was just described, a MergeMem that represents a full
4032// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4033// containing all alias categories.
4034//
4035// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4036//
4037// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4038// a memory state for the alias type <N>, or else the top node, meaning that
4039// there is no particular input for that alias type.  Note that the length of
4040// a MergeMem is variable, and may be extended at any time to accommodate new
4041// memory states at larger alias indexes.  When merges grow, they are of course
4042// filled with "top" in the unused in() positions.
4043//
4044// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4045// (Top was chosen because it works smoothly with passes like GCM.)
4046//
4047// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4048// the type of random VM bits like TLS references.)  Since it is always the
4049// first non-Bot memory slice, some low-level loops use it to initialize an
4050// index variable:  for (i = AliasIdxRaw; i < req(); i++).
4051//
4052//
4053// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4054// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4055// the memory state for alias type <N>, or (if there is no particular slice at <N>,
4056// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4057// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4058// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4059//
4060// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4061// really that different from the other memory inputs.  An abbreviation called
4062// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4063//
4064//
4065// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4066// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4067// that "emerges though" the base memory will be marked as excluding the alias types
4068// of the other (narrow-memory) copies which "emerged through" the narrow edges:
4069//
4070//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4071//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4072//
4073// This strange "subtraction" effect is necessary to ensure IGVN convergence.
4074// (It is currently unimplemented.)  As you can see, the resulting merge is
4075// actually a disjoint union of memory states, rather than an overlay.
4076//
4077
4078//------------------------------MergeMemNode-----------------------------------
4079Node* MergeMemNode::make_empty_memory() {
4080  Node* empty_memory = (Node*) Compile::current()->top();
4081  assert(empty_memory->is_top(), "correct sentinel identity");
4082  return empty_memory;
4083}
4084
4085MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4086  init_class_id(Class_MergeMem);
4087  // all inputs are nullified in Node::Node(int)
4088  // set_input(0, NULL);  // no control input
4089
4090  // Initialize the edges uniformly to top, for starters.
4091  Node* empty_mem = make_empty_memory();
4092  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4093    init_req(i,empty_mem);
4094  }
4095  assert(empty_memory() == empty_mem, "");
4096
4097  if( new_base != NULL && new_base->is_MergeMem() ) {
4098    MergeMemNode* mdef = new_base->as_MergeMem();
4099    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4100    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4101      mms.set_memory(mms.memory2());
4102    }
4103    assert(base_memory() == mdef->base_memory(), "");
4104  } else {
4105    set_base_memory(new_base);
4106  }
4107}
4108
4109// Make a new, untransformed MergeMem with the same base as 'mem'.
4110// If mem is itself a MergeMem, populate the result with the same edges.
4111MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4112  return new(C) MergeMemNode(mem);
4113}
4114
4115//------------------------------cmp--------------------------------------------
4116uint MergeMemNode::hash() const { return NO_HASH; }
4117uint MergeMemNode::cmp( const Node &n ) const {
4118  return (&n == this);          // Always fail except on self
4119}
4120
4121//------------------------------Identity---------------------------------------
4122Node* MergeMemNode::Identity(PhaseTransform *phase) {
4123  // Identity if this merge point does not record any interesting memory
4124  // disambiguations.
4125  Node* base_mem = base_memory();
4126  Node* empty_mem = empty_memory();
4127  if (base_mem != empty_mem) {  // Memory path is not dead?
4128    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4129      Node* mem = in(i);
4130      if (mem != empty_mem && mem != base_mem) {
4131        return this;            // Many memory splits; no change
4132      }
4133    }
4134  }
4135  return base_mem;              // No memory splits; ID on the one true input
4136}
4137
4138//------------------------------Ideal------------------------------------------
4139// This method is invoked recursively on chains of MergeMem nodes
4140Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4141  // Remove chain'd MergeMems
4142  //
4143  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4144  // relative to the "in(Bot)".  Since we are patching both at the same time,
4145  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4146  // but rewrite each "in(i)" relative to the new "in(Bot)".
4147  Node *progress = NULL;
4148
4149
4150  Node* old_base = base_memory();
4151  Node* empty_mem = empty_memory();
4152  if (old_base == empty_mem)
4153    return NULL; // Dead memory path.
4154
4155  MergeMemNode* old_mbase;
4156  if (old_base != NULL && old_base->is_MergeMem())
4157    old_mbase = old_base->as_MergeMem();
4158  else
4159    old_mbase = NULL;
4160  Node* new_base = old_base;
4161
4162  // simplify stacked MergeMems in base memory
4163  if (old_mbase)  new_base = old_mbase->base_memory();
4164
4165  // the base memory might contribute new slices beyond my req()
4166  if (old_mbase)  grow_to_match(old_mbase);
4167
4168  // Look carefully at the base node if it is a phi.
4169  PhiNode* phi_base;
4170  if (new_base != NULL && new_base->is_Phi())
4171    phi_base = new_base->as_Phi();
4172  else
4173    phi_base = NULL;
4174
4175  Node*    phi_reg = NULL;
4176  uint     phi_len = (uint)-1;
4177  if (phi_base != NULL && !phi_base->is_copy()) {
4178    // do not examine phi if degraded to a copy
4179    phi_reg = phi_base->region();
4180    phi_len = phi_base->req();
4181    // see if the phi is unfinished
4182    for (uint i = 1; i < phi_len; i++) {
4183      if (phi_base->in(i) == NULL) {
4184        // incomplete phi; do not look at it yet!
4185        phi_reg = NULL;
4186        phi_len = (uint)-1;
4187        break;
4188      }
4189    }
4190  }
4191
4192  // Note:  We do not call verify_sparse on entry, because inputs
4193  // can normalize to the base_memory via subsume_node or similar
4194  // mechanisms.  This method repairs that damage.
4195
4196  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4197
4198  // Look at each slice.
4199  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4200    Node* old_in = in(i);
4201    // calculate the old memory value
4202    Node* old_mem = old_in;
4203    if (old_mem == empty_mem)  old_mem = old_base;
4204    assert(old_mem == memory_at(i), "");
4205
4206    // maybe update (reslice) the old memory value
4207
4208    // simplify stacked MergeMems
4209    Node* new_mem = old_mem;
4210    MergeMemNode* old_mmem;
4211    if (old_mem != NULL && old_mem->is_MergeMem())
4212      old_mmem = old_mem->as_MergeMem();
4213    else
4214      old_mmem = NULL;
4215    if (old_mmem == this) {
4216      // This can happen if loops break up and safepoints disappear.
4217      // A merge of BotPtr (default) with a RawPtr memory derived from a
4218      // safepoint can be rewritten to a merge of the same BotPtr with
4219      // the BotPtr phi coming into the loop.  If that phi disappears
4220      // also, we can end up with a self-loop of the mergemem.
4221      // In general, if loops degenerate and memory effects disappear,
4222      // a mergemem can be left looking at itself.  This simply means
4223      // that the mergemem's default should be used, since there is
4224      // no longer any apparent effect on this slice.
4225      // Note: If a memory slice is a MergeMem cycle, it is unreachable
4226      //       from start.  Update the input to TOP.
4227      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4228    }
4229    else if (old_mmem != NULL) {
4230      new_mem = old_mmem->memory_at(i);
4231    }
4232    // else preceding memory was not a MergeMem
4233
4234    // replace equivalent phis (unfortunately, they do not GVN together)
4235    if (new_mem != NULL && new_mem != new_base &&
4236        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4237      if (new_mem->is_Phi()) {
4238        PhiNode* phi_mem = new_mem->as_Phi();
4239        for (uint i = 1; i < phi_len; i++) {
4240          if (phi_base->in(i) != phi_mem->in(i)) {
4241            phi_mem = NULL;
4242            break;
4243          }
4244        }
4245        if (phi_mem != NULL) {
4246          // equivalent phi nodes; revert to the def
4247          new_mem = new_base;
4248        }
4249      }
4250    }
4251
4252    // maybe store down a new value
4253    Node* new_in = new_mem;
4254    if (new_in == new_base)  new_in = empty_mem;
4255
4256    if (new_in != old_in) {
4257      // Warning:  Do not combine this "if" with the previous "if"
4258      // A memory slice might have be be rewritten even if it is semantically
4259      // unchanged, if the base_memory value has changed.
4260      set_req(i, new_in);
4261      progress = this;          // Report progress
4262    }
4263  }
4264
4265  if (new_base != old_base) {
4266    set_req(Compile::AliasIdxBot, new_base);
4267    // Don't use set_base_memory(new_base), because we need to update du.
4268    assert(base_memory() == new_base, "");
4269    progress = this;
4270  }
4271
4272  if( base_memory() == this ) {
4273    // a self cycle indicates this memory path is dead
4274    set_req(Compile::AliasIdxBot, empty_mem);
4275  }
4276
4277  // Resolve external cycles by calling Ideal on a MergeMem base_memory
4278  // Recursion must occur after the self cycle check above
4279  if( base_memory()->is_MergeMem() ) {
4280    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4281    Node *m = phase->transform(new_mbase);  // Rollup any cycles
4282    if( m != NULL && (m->is_top() ||
4283        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4284      // propagate rollup of dead cycle to self
4285      set_req(Compile::AliasIdxBot, empty_mem);
4286    }
4287  }
4288
4289  if( base_memory() == empty_mem ) {
4290    progress = this;
4291    // Cut inputs during Parse phase only.
4292    // During Optimize phase a dead MergeMem node will be subsumed by Top.
4293    if( !can_reshape ) {
4294      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4295        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4296      }
4297    }
4298  }
4299
4300  if( !progress && base_memory()->is_Phi() && can_reshape ) {
4301    // Check if PhiNode::Ideal's "Split phis through memory merges"
4302    // transform should be attempted. Look for this->phi->this cycle.
4303    uint merge_width = req();
4304    if (merge_width > Compile::AliasIdxRaw) {
4305      PhiNode* phi = base_memory()->as_Phi();
4306      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4307        if (phi->in(i) == this) {
4308          phase->is_IterGVN()->_worklist.push(phi);
4309          break;
4310        }
4311      }
4312    }
4313  }
4314
4315  assert(progress || verify_sparse(), "please, no dups of base");
4316  return progress;
4317}
4318
4319//-------------------------set_base_memory-------------------------------------
4320void MergeMemNode::set_base_memory(Node *new_base) {
4321  Node* empty_mem = empty_memory();
4322  set_req(Compile::AliasIdxBot, new_base);
4323  assert(memory_at(req()) == new_base, "must set default memory");
4324  // Clear out other occurrences of new_base:
4325  if (new_base != empty_mem) {
4326    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4327      if (in(i) == new_base)  set_req(i, empty_mem);
4328    }
4329  }
4330}
4331
4332//------------------------------out_RegMask------------------------------------
4333const RegMask &MergeMemNode::out_RegMask() const {
4334  return RegMask::Empty;
4335}
4336
4337//------------------------------dump_spec--------------------------------------
4338#ifndef PRODUCT
4339void MergeMemNode::dump_spec(outputStream *st) const {
4340  st->print(" {");
4341  Node* base_mem = base_memory();
4342  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4343    Node* mem = memory_at(i);
4344    if (mem == base_mem) { st->print(" -"); continue; }
4345    st->print( " N%d:", mem->_idx );
4346    Compile::current()->get_adr_type(i)->dump_on(st);
4347  }
4348  st->print(" }");
4349}
4350#endif // !PRODUCT
4351
4352
4353#ifdef ASSERT
4354static bool might_be_same(Node* a, Node* b) {
4355  if (a == b)  return true;
4356  if (!(a->is_Phi() || b->is_Phi()))  return false;
4357  // phis shift around during optimization
4358  return true;  // pretty stupid...
4359}
4360
4361// verify a narrow slice (either incoming or outgoing)
4362static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4363  if (!VerifyAliases)       return;  // don't bother to verify unless requested
4364  if (is_error_reported())  return;  // muzzle asserts when debugging an error
4365  if (Node::in_dump())      return;  // muzzle asserts when printing
4366  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4367  assert(n != NULL, "");
4368  // Elide intervening MergeMem's
4369  while (n->is_MergeMem()) {
4370    n = n->as_MergeMem()->memory_at(alias_idx);
4371  }
4372  Compile* C = Compile::current();
4373  const TypePtr* n_adr_type = n->adr_type();
4374  if (n == m->empty_memory()) {
4375    // Implicit copy of base_memory()
4376  } else if (n_adr_type != TypePtr::BOTTOM) {
4377    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4378    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4379  } else {
4380    // A few places like make_runtime_call "know" that VM calls are narrow,
4381    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4382    bool expected_wide_mem = false;
4383    if (n == m->base_memory()) {
4384      expected_wide_mem = true;
4385    } else if (alias_idx == Compile::AliasIdxRaw ||
4386               n == m->memory_at(Compile::AliasIdxRaw)) {
4387      expected_wide_mem = true;
4388    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4389      // memory can "leak through" calls on channels that
4390      // are write-once.  Allow this also.
4391      expected_wide_mem = true;
4392    }
4393    assert(expected_wide_mem, "expected narrow slice replacement");
4394  }
4395}
4396#else // !ASSERT
4397#define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4398#endif
4399
4400
4401//-----------------------------memory_at---------------------------------------
4402Node* MergeMemNode::memory_at(uint alias_idx) const {
4403  assert(alias_idx >= Compile::AliasIdxRaw ||
4404         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4405         "must avoid base_memory and AliasIdxTop");
4406
4407  // Otherwise, it is a narrow slice.
4408  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4409  Compile *C = Compile::current();
4410  if (is_empty_memory(n)) {
4411    // the array is sparse; empty slots are the "top" node
4412    n = base_memory();
4413    assert(Node::in_dump()
4414           || n == NULL || n->bottom_type() == Type::TOP
4415           || n->adr_type() == NULL // address is TOP
4416           || n->adr_type() == TypePtr::BOTTOM
4417           || n->adr_type() == TypeRawPtr::BOTTOM
4418           || Compile::current()->AliasLevel() == 0,
4419           "must be a wide memory");
4420    // AliasLevel == 0 if we are organizing the memory states manually.
4421    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4422  } else {
4423    // make sure the stored slice is sane
4424    #ifdef ASSERT
4425    if (is_error_reported() || Node::in_dump()) {
4426    } else if (might_be_same(n, base_memory())) {
4427      // Give it a pass:  It is a mostly harmless repetition of the base.
4428      // This can arise normally from node subsumption during optimization.
4429    } else {
4430      verify_memory_slice(this, alias_idx, n);
4431    }
4432    #endif
4433  }
4434  return n;
4435}
4436
4437//---------------------------set_memory_at-------------------------------------
4438void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4439  verify_memory_slice(this, alias_idx, n);
4440  Node* empty_mem = empty_memory();
4441  if (n == base_memory())  n = empty_mem;  // collapse default
4442  uint need_req = alias_idx+1;
4443  if (req() < need_req) {
4444    if (n == empty_mem)  return;  // already the default, so do not grow me
4445    // grow the sparse array
4446    do {
4447      add_req(empty_mem);
4448    } while (req() < need_req);
4449  }
4450  set_req( alias_idx, n );
4451}
4452
4453
4454
4455//--------------------------iteration_setup------------------------------------
4456void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4457  if (other != NULL) {
4458    grow_to_match(other);
4459    // invariant:  the finite support of mm2 is within mm->req()
4460    #ifdef ASSERT
4461    for (uint i = req(); i < other->req(); i++) {
4462      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4463    }
4464    #endif
4465  }
4466  // Replace spurious copies of base_memory by top.
4467  Node* base_mem = base_memory();
4468  if (base_mem != NULL && !base_mem->is_top()) {
4469    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4470      if (in(i) == base_mem)
4471        set_req(i, empty_memory());
4472    }
4473  }
4474}
4475
4476//---------------------------grow_to_match-------------------------------------
4477void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4478  Node* empty_mem = empty_memory();
4479  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4480  // look for the finite support of the other memory
4481  for (uint i = other->req(); --i >= req(); ) {
4482    if (other->in(i) != empty_mem) {
4483      uint new_len = i+1;
4484      while (req() < new_len)  add_req(empty_mem);
4485      break;
4486    }
4487  }
4488}
4489
4490//---------------------------verify_sparse-------------------------------------
4491#ifndef PRODUCT
4492bool MergeMemNode::verify_sparse() const {
4493  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4494  Node* base_mem = base_memory();
4495  // The following can happen in degenerate cases, since empty==top.
4496  if (is_empty_memory(base_mem))  return true;
4497  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4498    assert(in(i) != NULL, "sane slice");
4499    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4500  }
4501  return true;
4502}
4503
4504bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4505  Node* n;
4506  n = mm->in(idx);
4507  if (mem == n)  return true;  // might be empty_memory()
4508  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4509  if (mem == n)  return true;
4510  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4511    if (mem == n)  return true;
4512    if (n == NULL)  break;
4513  }
4514  return false;
4515}
4516#endif // !PRODUCT
4517