1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "compiler/compileLog.hpp"
28#include "memory/allocation.inline.hpp"
29#include "memory/resourceArea.hpp"
30#include "oops/objArrayKlass.hpp"
31#include "opto/addnode.hpp"
32#include "opto/arraycopynode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/compile.hpp"
35#include "opto/connode.hpp"
36#include "opto/convertnode.hpp"
37#include "opto/loopnode.hpp"
38#include "opto/machnode.hpp"
39#include "opto/matcher.hpp"
40#include "opto/memnode.hpp"
41#include "opto/mulnode.hpp"
42#include "opto/narrowptrnode.hpp"
43#include "opto/phaseX.hpp"
44#include "opto/regmask.hpp"
45#include "utilities/copy.hpp"
46
47// Portions of code courtesy of Clifford Click
48
49// Optimization - Graph Style
50
51static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
52
53//=============================================================================
54uint MemNode::size_of() const { return sizeof(*this); }
55
56const TypePtr *MemNode::adr_type() const {
57  Node* adr = in(Address);
58  if (adr == NULL)  return NULL; // node is dead
59  const TypePtr* cross_check = NULL;
60  DEBUG_ONLY(cross_check = _adr_type);
61  return calculate_adr_type(adr->bottom_type(), cross_check);
62}
63
64bool MemNode::check_if_adr_maybe_raw(Node* adr) {
65  if (adr != NULL) {
66    if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
67      return true;
68    }
69  }
70  return false;
71}
72
73#ifndef PRODUCT
74void MemNode::dump_spec(outputStream *st) const {
75  if (in(Address) == NULL)  return; // node is dead
76#ifndef ASSERT
77  // fake the missing field
78  const TypePtr* _adr_type = NULL;
79  if (in(Address) != NULL)
80    _adr_type = in(Address)->bottom_type()->isa_ptr();
81#endif
82  dump_adr_type(this, _adr_type, st);
83
84  Compile* C = Compile::current();
85  if (C->alias_type(_adr_type)->is_volatile()) {
86    st->print(" Volatile!");
87  }
88  if (_unaligned_access) {
89    st->print(" unaligned");
90  }
91  if (_mismatched_access) {
92    st->print(" mismatched");
93  }
94}
95
96void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
97  st->print(" @");
98  if (adr_type == NULL) {
99    st->print("NULL");
100  } else {
101    adr_type->dump_on(st);
102    Compile* C = Compile::current();
103    Compile::AliasType* atp = NULL;
104    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
105    if (atp == NULL)
106      st->print(", idx=?\?;");
107    else if (atp->index() == Compile::AliasIdxBot)
108      st->print(", idx=Bot;");
109    else if (atp->index() == Compile::AliasIdxTop)
110      st->print(", idx=Top;");
111    else if (atp->index() == Compile::AliasIdxRaw)
112      st->print(", idx=Raw;");
113    else {
114      ciField* field = atp->field();
115      if (field) {
116        st->print(", name=");
117        field->print_name_on(st);
118      }
119      st->print(", idx=%d;", atp->index());
120    }
121  }
122}
123
124extern void print_alias_types();
125
126#endif
127
128Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
129  assert((t_oop != NULL), "sanity");
130  bool is_instance = t_oop->is_known_instance_field();
131  bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
132                             (load != NULL) && load->is_Load() &&
133                             (phase->is_IterGVN() != NULL);
134  if (!(is_instance || is_boxed_value_load))
135    return mchain;  // don't try to optimize non-instance types
136  uint instance_id = t_oop->instance_id();
137  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
138  Node *prev = NULL;
139  Node *result = mchain;
140  while (prev != result) {
141    prev = result;
142    if (result == start_mem)
143      break;  // hit one of our sentinels
144    // skip over a call which does not affect this memory slice
145    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
146      Node *proj_in = result->in(0);
147      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
148        break;  // hit one of our sentinels
149      } else if (proj_in->is_Call()) {
150        // ArrayCopyNodes processed here as well
151        CallNode *call = proj_in->as_Call();
152        if (!call->may_modify(t_oop, phase)) { // returns false for instances
153          result = call->in(TypeFunc::Memory);
154        }
155      } else if (proj_in->is_Initialize()) {
156        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
157        // Stop if this is the initialization for the object instance which
158        // contains this memory slice, otherwise skip over it.
159        if ((alloc == NULL) || (alloc->_idx == instance_id)) {
160          break;
161        }
162        if (is_instance) {
163          result = proj_in->in(TypeFunc::Memory);
164        } else if (is_boxed_value_load) {
165          Node* klass = alloc->in(AllocateNode::KlassNode);
166          const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
167          if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
168            result = proj_in->in(TypeFunc::Memory); // not related allocation
169          }
170        }
171      } else if (proj_in->is_MemBar()) {
172        ArrayCopyNode* ac = NULL;
173        if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
174          break;
175        }
176        result = proj_in->in(TypeFunc::Memory);
177      } else {
178        assert(false, "unexpected projection");
179      }
180    } else if (result->is_ClearArray()) {
181      if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
182        // Can not bypass initialization of the instance
183        // we are looking for.
184        break;
185      }
186      // Otherwise skip it (the call updated 'result' value).
187    } else if (result->is_MergeMem()) {
188      result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
189    }
190  }
191  return result;
192}
193
194Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
195  const TypeOopPtr* t_oop = t_adr->isa_oopptr();
196  if (t_oop == NULL)
197    return mchain;  // don't try to optimize non-oop types
198  Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
199  bool is_instance = t_oop->is_known_instance_field();
200  PhaseIterGVN *igvn = phase->is_IterGVN();
201  if (is_instance && igvn != NULL  && result->is_Phi()) {
202    PhiNode *mphi = result->as_Phi();
203    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
204    const TypePtr *t = mphi->adr_type();
205    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
206        t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
207        t->is_oopptr()->cast_to_exactness(true)
208         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
209         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
210      // clone the Phi with our address type
211      result = mphi->split_out_instance(t_adr, igvn);
212    } else {
213      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
214    }
215  }
216  return result;
217}
218
219static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
220  uint alias_idx = phase->C->get_alias_index(tp);
221  Node *mem = mmem;
222#ifdef ASSERT
223  {
224    // Check that current type is consistent with the alias index used during graph construction
225    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
226    bool consistent =  adr_check == NULL || adr_check->empty() ||
227                       phase->C->must_alias(adr_check, alias_idx );
228    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
229    if( !consistent && adr_check != NULL && !adr_check->empty() &&
230               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
231        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
232        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
233          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
234          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
235      // don't assert if it is dead code.
236      consistent = true;
237    }
238    if( !consistent ) {
239      st->print("alias_idx==%d, adr_check==", alias_idx);
240      if( adr_check == NULL ) {
241        st->print("NULL");
242      } else {
243        adr_check->dump();
244      }
245      st->cr();
246      print_alias_types();
247      assert(consistent, "adr_check must match alias idx");
248    }
249  }
250#endif
251  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
252  // means an array I have not precisely typed yet.  Do not do any
253  // alias stuff with it any time soon.
254  const TypeOopPtr *toop = tp->isa_oopptr();
255  if( tp->base() != Type::AnyPtr &&
256      !(toop &&
257        toop->klass() != NULL &&
258        toop->klass()->is_java_lang_Object() &&
259        toop->offset() == Type::OffsetBot) ) {
260    // compress paths and change unreachable cycles to TOP
261    // If not, we can update the input infinitely along a MergeMem cycle
262    // Equivalent code in PhiNode::Ideal
263    Node* m  = phase->transform(mmem);
264    // If transformed to a MergeMem, get the desired slice
265    // Otherwise the returned node represents memory for every slice
266    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
267    // Update input if it is progress over what we have now
268  }
269  return mem;
270}
271
272//--------------------------Ideal_common---------------------------------------
273// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
274// Unhook non-raw memories from complete (macro-expanded) initializations.
275Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
276  // If our control input is a dead region, kill all below the region
277  Node *ctl = in(MemNode::Control);
278  if (ctl && remove_dead_region(phase, can_reshape))
279    return this;
280  ctl = in(MemNode::Control);
281  // Don't bother trying to transform a dead node
282  if (ctl && ctl->is_top())  return NodeSentinel;
283
284  PhaseIterGVN *igvn = phase->is_IterGVN();
285  // Wait if control on the worklist.
286  if (ctl && can_reshape && igvn != NULL) {
287    Node* bol = NULL;
288    Node* cmp = NULL;
289    if (ctl->in(0)->is_If()) {
290      assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
291      bol = ctl->in(0)->in(1);
292      if (bol->is_Bool())
293        cmp = ctl->in(0)->in(1)->in(1);
294    }
295    if (igvn->_worklist.member(ctl) ||
296        (bol != NULL && igvn->_worklist.member(bol)) ||
297        (cmp != NULL && igvn->_worklist.member(cmp)) ) {
298      // This control path may be dead.
299      // Delay this memory node transformation until the control is processed.
300      phase->is_IterGVN()->_worklist.push(this);
301      return NodeSentinel; // caller will return NULL
302    }
303  }
304  // Ignore if memory is dead, or self-loop
305  Node *mem = in(MemNode::Memory);
306  if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
307  assert(mem != this, "dead loop in MemNode::Ideal");
308
309  if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
310    // This memory slice may be dead.
311    // Delay this mem node transformation until the memory is processed.
312    phase->is_IterGVN()->_worklist.push(this);
313    return NodeSentinel; // caller will return NULL
314  }
315
316  Node *address = in(MemNode::Address);
317  const Type *t_adr = phase->type(address);
318  if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
319
320  if (can_reshape && igvn != NULL &&
321      (igvn->_worklist.member(address) ||
322       igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
323    // The address's base and type may change when the address is processed.
324    // Delay this mem node transformation until the address is processed.
325    phase->is_IterGVN()->_worklist.push(this);
326    return NodeSentinel; // caller will return NULL
327  }
328
329  // Do NOT remove or optimize the next lines: ensure a new alias index
330  // is allocated for an oop pointer type before Escape Analysis.
331  // Note: C++ will not remove it since the call has side effect.
332  if (t_adr->isa_oopptr()) {
333    int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
334  }
335
336  Node* base = NULL;
337  if (address->is_AddP()) {
338    base = address->in(AddPNode::Base);
339  }
340  if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
341      !t_adr->isa_rawptr()) {
342    // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
343    // Skip this node optimization if its address has TOP base.
344    return NodeSentinel; // caller will return NULL
345  }
346
347  // Avoid independent memory operations
348  Node* old_mem = mem;
349
350  // The code which unhooks non-raw memories from complete (macro-expanded)
351  // initializations was removed. After macro-expansion all stores catched
352  // by Initialize node became raw stores and there is no information
353  // which memory slices they modify. So it is unsafe to move any memory
354  // operation above these stores. Also in most cases hooked non-raw memories
355  // were already unhooked by using information from detect_ptr_independence()
356  // and find_previous_store().
357
358  if (mem->is_MergeMem()) {
359    MergeMemNode* mmem = mem->as_MergeMem();
360    const TypePtr *tp = t_adr->is_ptr();
361
362    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
363  }
364
365  if (mem != old_mem) {
366    set_req(MemNode::Memory, mem);
367    if (can_reshape && old_mem->outcnt() == 0) {
368        igvn->_worklist.push(old_mem);
369    }
370    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
371    return this;
372  }
373
374  // let the subclass continue analyzing...
375  return NULL;
376}
377
378// Helper function for proving some simple control dominations.
379// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
380// Already assumes that 'dom' is available at 'sub', and that 'sub'
381// is not a constant (dominated by the method's StartNode).
382// Used by MemNode::find_previous_store to prove that the
383// control input of a memory operation predates (dominates)
384// an allocation it wants to look past.
385bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
386  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
387    return false; // Conservative answer for dead code
388
389  // Check 'dom'. Skip Proj and CatchProj nodes.
390  dom = dom->find_exact_control(dom);
391  if (dom == NULL || dom->is_top())
392    return false; // Conservative answer for dead code
393
394  if (dom == sub) {
395    // For the case when, for example, 'sub' is Initialize and the original
396    // 'dom' is Proj node of the 'sub'.
397    return false;
398  }
399
400  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
401    return true;
402
403  // 'dom' dominates 'sub' if its control edge and control edges
404  // of all its inputs dominate or equal to sub's control edge.
405
406  // Currently 'sub' is either Allocate, Initialize or Start nodes.
407  // Or Region for the check in LoadNode::Ideal();
408  // 'sub' should have sub->in(0) != NULL.
409  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
410         sub->is_Region() || sub->is_Call(), "expecting only these nodes");
411
412  // Get control edge of 'sub'.
413  Node* orig_sub = sub;
414  sub = sub->find_exact_control(sub->in(0));
415  if (sub == NULL || sub->is_top())
416    return false; // Conservative answer for dead code
417
418  assert(sub->is_CFG(), "expecting control");
419
420  if (sub == dom)
421    return true;
422
423  if (sub->is_Start() || sub->is_Root())
424    return false;
425
426  {
427    // Check all control edges of 'dom'.
428
429    ResourceMark rm;
430    Arena* arena = Thread::current()->resource_area();
431    Node_List nlist(arena);
432    Unique_Node_List dom_list(arena);
433
434    dom_list.push(dom);
435    bool only_dominating_controls = false;
436
437    for (uint next = 0; next < dom_list.size(); next++) {
438      Node* n = dom_list.at(next);
439      if (n == orig_sub)
440        return false; // One of dom's inputs dominated by sub.
441      if (!n->is_CFG() && n->pinned()) {
442        // Check only own control edge for pinned non-control nodes.
443        n = n->find_exact_control(n->in(0));
444        if (n == NULL || n->is_top())
445          return false; // Conservative answer for dead code
446        assert(n->is_CFG(), "expecting control");
447        dom_list.push(n);
448      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
449        only_dominating_controls = true;
450      } else if (n->is_CFG()) {
451        if (n->dominates(sub, nlist))
452          only_dominating_controls = true;
453        else
454          return false;
455      } else {
456        // First, own control edge.
457        Node* m = n->find_exact_control(n->in(0));
458        if (m != NULL) {
459          if (m->is_top())
460            return false; // Conservative answer for dead code
461          dom_list.push(m);
462        }
463        // Now, the rest of edges.
464        uint cnt = n->req();
465        for (uint i = 1; i < cnt; i++) {
466          m = n->find_exact_control(n->in(i));
467          if (m == NULL || m->is_top())
468            continue;
469          dom_list.push(m);
470        }
471      }
472    }
473    return only_dominating_controls;
474  }
475}
476
477//---------------------detect_ptr_independence---------------------------------
478// Used by MemNode::find_previous_store to prove that two base
479// pointers are never equal.
480// The pointers are accompanied by their associated allocations,
481// if any, which have been previously discovered by the caller.
482bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
483                                      Node* p2, AllocateNode* a2,
484                                      PhaseTransform* phase) {
485  // Attempt to prove that these two pointers cannot be aliased.
486  // They may both manifestly be allocations, and they should differ.
487  // Or, if they are not both allocations, they can be distinct constants.
488  // Otherwise, one is an allocation and the other a pre-existing value.
489  if (a1 == NULL && a2 == NULL) {           // neither an allocation
490    return (p1 != p2) && p1->is_Con() && p2->is_Con();
491  } else if (a1 != NULL && a2 != NULL) {    // both allocations
492    return (a1 != a2);
493  } else if (a1 != NULL) {                  // one allocation a1
494    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
495    return all_controls_dominate(p2, a1);
496  } else { //(a2 != NULL)                   // one allocation a2
497    return all_controls_dominate(p1, a2);
498  }
499  return false;
500}
501
502
503// Find an arraycopy that must have set (can_see_stored_value=true) or
504// could have set (can_see_stored_value=false) the value for this load
505Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
506  if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
507                                               mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
508    Node* mb = mem->in(0);
509    if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
510        mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
511      ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
512      if (ac->is_clonebasic()) {
513        intptr_t offset;
514        AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
515        assert(alloc != NULL && (!ReduceBulkZeroing || alloc->initialization()->is_complete_with_arraycopy()), "broken allocation");
516        if (alloc == ld_alloc) {
517          return ac;
518        }
519      }
520    }
521  } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
522    ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
523
524    if (ac->is_arraycopy_validated() ||
525        ac->is_copyof_validated() ||
526        ac->is_copyofrange_validated()) {
527      Node* ld_addp = in(MemNode::Address);
528      if (ld_addp->is_AddP()) {
529        Node* ld_base = ld_addp->in(AddPNode::Address);
530        Node* ld_offs = ld_addp->in(AddPNode::Offset);
531
532        Node* dest = ac->in(ArrayCopyNode::Dest);
533
534        if (dest == ld_base) {
535          const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
536          if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
537            return ac;
538          }
539          if (!can_see_stored_value) {
540            mem = ac->in(TypeFunc::Memory);
541          }
542        }
543      }
544    }
545  }
546  return NULL;
547}
548
549// The logic for reordering loads and stores uses four steps:
550// (a) Walk carefully past stores and initializations which we
551//     can prove are independent of this load.
552// (b) Observe that the next memory state makes an exact match
553//     with self (load or store), and locate the relevant store.
554// (c) Ensure that, if we were to wire self directly to the store,
555//     the optimizer would fold it up somehow.
556// (d) Do the rewiring, and return, depending on some other part of
557//     the optimizer to fold up the load.
558// This routine handles steps (a) and (b).  Steps (c) and (d) are
559// specific to loads and stores, so they are handled by the callers.
560// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
561//
562Node* MemNode::find_previous_store(PhaseTransform* phase) {
563  Node*         ctrl   = in(MemNode::Control);
564  Node*         adr    = in(MemNode::Address);
565  intptr_t      offset = 0;
566  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
567  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
568
569  if (offset == Type::OffsetBot)
570    return NULL;            // cannot unalias unless there are precise offsets
571
572  const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
573  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
574
575  intptr_t size_in_bytes = memory_size();
576
577  Node* mem = in(MemNode::Memory);   // start searching here...
578
579  int cnt = 50;             // Cycle limiter
580  for (;;) {                // While we can dance past unrelated stores...
581    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
582
583    Node* prev = mem;
584    if (mem->is_Store()) {
585      Node* st_adr = mem->in(MemNode::Address);
586      intptr_t st_offset = 0;
587      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
588      if (st_base == NULL)
589        break;              // inscrutable pointer
590
591      // For raw accesses it's not enough to prove that constant offsets don't intersect.
592      // We need the bases to be the equal in order for the offset check to make sense.
593      if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
594        break;
595      }
596
597      if (st_offset != offset && st_offset != Type::OffsetBot) {
598        const int MAX_STORE = BytesPerLong;
599        if (st_offset >= offset + size_in_bytes ||
600            st_offset <= offset - MAX_STORE ||
601            st_offset <= offset - mem->as_Store()->memory_size()) {
602          // Success:  The offsets are provably independent.
603          // (You may ask, why not just test st_offset != offset and be done?
604          // The answer is that stores of different sizes can co-exist
605          // in the same sequence of RawMem effects.  We sometimes initialize
606          // a whole 'tile' of array elements with a single jint or jlong.)
607          mem = mem->in(MemNode::Memory);
608          continue;           // (a) advance through independent store memory
609        }
610      }
611      if (st_base != base &&
612          detect_ptr_independence(base, alloc,
613                                  st_base,
614                                  AllocateNode::Ideal_allocation(st_base, phase),
615                                  phase)) {
616        // Success:  The bases are provably independent.
617        mem = mem->in(MemNode::Memory);
618        continue;           // (a) advance through independent store memory
619      }
620
621      // (b) At this point, if the bases or offsets do not agree, we lose,
622      // since we have not managed to prove 'this' and 'mem' independent.
623      if (st_base == base && st_offset == offset) {
624        return mem;         // let caller handle steps (c), (d)
625      }
626
627    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
628      InitializeNode* st_init = mem->in(0)->as_Initialize();
629      AllocateNode*  st_alloc = st_init->allocation();
630      if (st_alloc == NULL)
631        break;              // something degenerated
632      bool known_identical = false;
633      bool known_independent = false;
634      if (alloc == st_alloc)
635        known_identical = true;
636      else if (alloc != NULL)
637        known_independent = true;
638      else if (all_controls_dominate(this, st_alloc))
639        known_independent = true;
640
641      if (known_independent) {
642        // The bases are provably independent: Either they are
643        // manifestly distinct allocations, or else the control
644        // of this load dominates the store's allocation.
645        int alias_idx = phase->C->get_alias_index(adr_type());
646        if (alias_idx == Compile::AliasIdxRaw) {
647          mem = st_alloc->in(TypeFunc::Memory);
648        } else {
649          mem = st_init->memory(alias_idx);
650        }
651        continue;           // (a) advance through independent store memory
652      }
653
654      // (b) at this point, if we are not looking at a store initializing
655      // the same allocation we are loading from, we lose.
656      if (known_identical) {
657        // From caller, can_see_stored_value will consult find_captured_store.
658        return mem;         // let caller handle steps (c), (d)
659      }
660
661    } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
662      if (prev != mem) {
663        // Found an arraycopy but it doesn't affect that load
664        continue;
665      }
666      // Found an arraycopy that may affect that load
667      return mem;
668    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
669      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
670      if (mem->is_Proj() && mem->in(0)->is_Call()) {
671        // ArrayCopyNodes processed here as well.
672        CallNode *call = mem->in(0)->as_Call();
673        if (!call->may_modify(addr_t, phase)) {
674          mem = call->in(TypeFunc::Memory);
675          continue;         // (a) advance through independent call memory
676        }
677      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
678        ArrayCopyNode* ac = NULL;
679        if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
680          break;
681        }
682        mem = mem->in(0)->in(TypeFunc::Memory);
683        continue;           // (a) advance through independent MemBar memory
684      } else if (mem->is_ClearArray()) {
685        if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
686          // (the call updated 'mem' value)
687          continue;         // (a) advance through independent allocation memory
688        } else {
689          // Can not bypass initialization of the instance
690          // we are looking for.
691          return mem;
692        }
693      } else if (mem->is_MergeMem()) {
694        int alias_idx = phase->C->get_alias_index(adr_type());
695        mem = mem->as_MergeMem()->memory_at(alias_idx);
696        continue;           // (a) advance through independent MergeMem memory
697      }
698    }
699
700    // Unless there is an explicit 'continue', we must bail out here,
701    // because 'mem' is an inscrutable memory state (e.g., a call).
702    break;
703  }
704
705  return NULL;              // bail out
706}
707
708//----------------------calculate_adr_type-------------------------------------
709// Helper function.  Notices when the given type of address hits top or bottom.
710// Also, asserts a cross-check of the type against the expected address type.
711const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
712  if (t == Type::TOP)  return NULL; // does not touch memory any more?
713  #ifdef PRODUCT
714  cross_check = NULL;
715  #else
716  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
717  #endif
718  const TypePtr* tp = t->isa_ptr();
719  if (tp == NULL) {
720    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
721    return TypePtr::BOTTOM;           // touches lots of memory
722  } else {
723    #ifdef ASSERT
724    // %%%% [phh] We don't check the alias index if cross_check is
725    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
726    if (cross_check != NULL &&
727        cross_check != TypePtr::BOTTOM &&
728        cross_check != TypeRawPtr::BOTTOM) {
729      // Recheck the alias index, to see if it has changed (due to a bug).
730      Compile* C = Compile::current();
731      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
732             "must stay in the original alias category");
733      // The type of the address must be contained in the adr_type,
734      // disregarding "null"-ness.
735      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
736      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
737      assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
738             "real address must not escape from expected memory type");
739    }
740    #endif
741    return tp;
742  }
743}
744
745//=============================================================================
746// Should LoadNode::Ideal() attempt to remove control edges?
747bool LoadNode::can_remove_control() const {
748  return true;
749}
750uint LoadNode::size_of() const { return sizeof(*this); }
751uint LoadNode::cmp( const Node &n ) const
752{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
753const Type *LoadNode::bottom_type() const { return _type; }
754uint LoadNode::ideal_reg() const {
755  return _type->ideal_reg();
756}
757
758#ifndef PRODUCT
759void LoadNode::dump_spec(outputStream *st) const {
760  MemNode::dump_spec(st);
761  if( !Verbose && !WizardMode ) {
762    // standard dump does this in Verbose and WizardMode
763    st->print(" #"); _type->dump_on(st);
764  }
765  if (!depends_only_on_test()) {
766    st->print(" (does not depend only on test)");
767  }
768}
769#endif
770
771#ifdef ASSERT
772//----------------------------is_immutable_value-------------------------------
773// Helper function to allow a raw load without control edge for some cases
774bool LoadNode::is_immutable_value(Node* adr) {
775  return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
776          adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
777          (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
778           in_bytes(JavaThread::osthread_offset())));
779}
780#endif
781
782//----------------------------LoadNode::make-----------------------------------
783// Polymorphic factory method:
784Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
785                     ControlDependency control_dependency, bool unaligned, bool mismatched) {
786  Compile* C = gvn.C;
787
788  // sanity check the alias category against the created node type
789  assert(!(adr_type->isa_oopptr() &&
790           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
791         "use LoadKlassNode instead");
792  assert(!(adr_type->isa_aryptr() &&
793           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
794         "use LoadRangeNode instead");
795  // Check control edge of raw loads
796  assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
797          // oop will be recorded in oop map if load crosses safepoint
798          rt->isa_oopptr() || is_immutable_value(adr),
799          "raw memory operations should have control edge");
800  LoadNode* load = NULL;
801  switch (bt) {
802  case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
803  case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
804  case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
805  case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
806  case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
807  case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
808  case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
809  case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
810  case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
811  case T_OBJECT:
812#ifdef _LP64
813    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
814      load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
815    } else
816#endif
817    {
818      assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
819      load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
820    }
821    break;
822  }
823  assert(load != NULL, "LoadNode should have been created");
824  if (unaligned) {
825    load->set_unaligned_access();
826  }
827  if (mismatched) {
828    load->set_mismatched_access();
829  }
830  if (load->Opcode() == Op_LoadN) {
831    Node* ld = gvn.transform(load);
832    return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
833  }
834
835  return load;
836}
837
838LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
839                                  ControlDependency control_dependency, bool unaligned, bool mismatched) {
840  bool require_atomic = true;
841  LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
842  if (unaligned) {
843    load->set_unaligned_access();
844  }
845  if (mismatched) {
846    load->set_mismatched_access();
847  }
848  return load;
849}
850
851LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
852                                  ControlDependency control_dependency, bool unaligned, bool mismatched) {
853  bool require_atomic = true;
854  LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
855  if (unaligned) {
856    load->set_unaligned_access();
857  }
858  if (mismatched) {
859    load->set_mismatched_access();
860  }
861  return load;
862}
863
864
865
866//------------------------------hash-------------------------------------------
867uint LoadNode::hash() const {
868  // unroll addition of interesting fields
869  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
870}
871
872static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
873  if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
874    bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
875    bool is_stable_ary = FoldStableValues &&
876                         (tp != NULL) && (tp->isa_aryptr() != NULL) &&
877                         tp->isa_aryptr()->is_stable();
878
879    return (eliminate_boxing && non_volatile) || is_stable_ary;
880  }
881
882  return false;
883}
884
885// Is the value loaded previously stored by an arraycopy? If so return
886// a load node that reads from the source array so we may be able to
887// optimize out the ArrayCopy node later.
888Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
889  Node* ld_adr = in(MemNode::Address);
890  intptr_t ld_off = 0;
891  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
892  Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
893  if (ac != NULL) {
894    assert(ac->is_ArrayCopy(), "what kind of node can this be?");
895
896    Node* mem = ac->in(TypeFunc::Memory);
897    Node* ctl = ac->in(0);
898    Node* src = ac->in(ArrayCopyNode::Src);
899
900    if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
901      return NULL;
902    }
903
904    LoadNode* ld = clone()->as_Load();
905    Node* addp = in(MemNode::Address)->clone();
906    if (ac->as_ArrayCopy()->is_clonebasic()) {
907      assert(ld_alloc != NULL, "need an alloc");
908      assert(addp->is_AddP(), "address must be addp");
909      assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
910      assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
911      addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
912      addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
913    } else {
914      assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
915             ac->as_ArrayCopy()->is_copyof_validated() ||
916             ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
917      assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
918      addp->set_req(AddPNode::Base, src);
919      addp->set_req(AddPNode::Address, src);
920
921      const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
922      BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
923      uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
924      uint shift  = exact_log2(type2aelembytes(ary_elem));
925
926      Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
927#ifdef _LP64
928      diff = phase->transform(new ConvI2LNode(diff));
929#endif
930      diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
931
932      Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
933      addp->set_req(AddPNode::Offset, offset);
934    }
935    addp = phase->transform(addp);
936#ifdef ASSERT
937    const TypePtr* adr_type = phase->type(addp)->is_ptr();
938    ld->_adr_type = adr_type;
939#endif
940    ld->set_req(MemNode::Address, addp);
941    ld->set_req(0, ctl);
942    ld->set_req(MemNode::Memory, mem);
943    // load depends on the tests that validate the arraycopy
944    ld->_control_dependency = Pinned;
945    return ld;
946  }
947  return NULL;
948}
949
950
951//---------------------------can_see_stored_value------------------------------
952// This routine exists to make sure this set of tests is done the same
953// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
954// will change the graph shape in a way which makes memory alive twice at the
955// same time (uses the Oracle model of aliasing), then some
956// LoadXNode::Identity will fold things back to the equivalence-class model
957// of aliasing.
958Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
959  Node* ld_adr = in(MemNode::Address);
960  intptr_t ld_off = 0;
961  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
962  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
963  Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
964  // This is more general than load from boxing objects.
965  if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
966    uint alias_idx = atp->index();
967    bool final = !atp->is_rewritable();
968    Node* result = NULL;
969    Node* current = st;
970    // Skip through chains of MemBarNodes checking the MergeMems for
971    // new states for the slice of this load.  Stop once any other
972    // kind of node is encountered.  Loads from final memory can skip
973    // through any kind of MemBar but normal loads shouldn't skip
974    // through MemBarAcquire since the could allow them to move out of
975    // a synchronized region.
976    while (current->is_Proj()) {
977      int opc = current->in(0)->Opcode();
978      if ((final && (opc == Op_MemBarAcquire ||
979                     opc == Op_MemBarAcquireLock ||
980                     opc == Op_LoadFence)) ||
981          opc == Op_MemBarRelease ||
982          opc == Op_StoreFence ||
983          opc == Op_MemBarReleaseLock ||
984          opc == Op_MemBarStoreStore ||
985          opc == Op_MemBarCPUOrder) {
986        Node* mem = current->in(0)->in(TypeFunc::Memory);
987        if (mem->is_MergeMem()) {
988          MergeMemNode* merge = mem->as_MergeMem();
989          Node* new_st = merge->memory_at(alias_idx);
990          if (new_st == merge->base_memory()) {
991            // Keep searching
992            current = new_st;
993            continue;
994          }
995          // Save the new memory state for the slice and fall through
996          // to exit.
997          result = new_st;
998        }
999      }
1000      break;
1001    }
1002    if (result != NULL) {
1003      st = result;
1004    }
1005  }
1006
1007  // Loop around twice in the case Load -> Initialize -> Store.
1008  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1009  for (int trip = 0; trip <= 1; trip++) {
1010
1011    if (st->is_Store()) {
1012      Node* st_adr = st->in(MemNode::Address);
1013      if (!phase->eqv(st_adr, ld_adr)) {
1014        // Try harder before giving up...  Match raw and non-raw pointers.
1015        intptr_t st_off = 0;
1016        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1017        if (alloc == NULL)       return NULL;
1018        if (alloc != ld_alloc)   return NULL;
1019        if (ld_off != st_off)    return NULL;
1020        // At this point we have proven something like this setup:
1021        //  A = Allocate(...)
1022        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1023        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1024        // (Actually, we haven't yet proven the Q's are the same.)
1025        // In other words, we are loading from a casted version of
1026        // the same pointer-and-offset that we stored to.
1027        // Thus, we are able to replace L by V.
1028      }
1029      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1030      if (store_Opcode() != st->Opcode())
1031        return NULL;
1032      return st->in(MemNode::ValueIn);
1033    }
1034
1035    // A load from a freshly-created object always returns zero.
1036    // (This can happen after LoadNode::Ideal resets the load's memory input
1037    // to find_captured_store, which returned InitializeNode::zero_memory.)
1038    if (st->is_Proj() && st->in(0)->is_Allocate() &&
1039        (st->in(0) == ld_alloc) &&
1040        (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1041      // return a zero value for the load's basic type
1042      // (This is one of the few places where a generic PhaseTransform
1043      // can create new nodes.  Think of it as lazily manifesting
1044      // virtually pre-existing constants.)
1045      return phase->zerocon(memory_type());
1046    }
1047
1048    // A load from an initialization barrier can match a captured store.
1049    if (st->is_Proj() && st->in(0)->is_Initialize()) {
1050      InitializeNode* init = st->in(0)->as_Initialize();
1051      AllocateNode* alloc = init->allocation();
1052      if ((alloc != NULL) && (alloc == ld_alloc)) {
1053        // examine a captured store value
1054        st = init->find_captured_store(ld_off, memory_size(), phase);
1055        if (st != NULL) {
1056          continue;             // take one more trip around
1057        }
1058      }
1059    }
1060
1061    // Load boxed value from result of valueOf() call is input parameter.
1062    if (this->is_Load() && ld_adr->is_AddP() &&
1063        (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1064      intptr_t ignore = 0;
1065      Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1066      if (base != NULL && base->is_Proj() &&
1067          base->as_Proj()->_con == TypeFunc::Parms &&
1068          base->in(0)->is_CallStaticJava() &&
1069          base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1070        return base->in(0)->in(TypeFunc::Parms);
1071      }
1072    }
1073
1074    break;
1075  }
1076
1077  return NULL;
1078}
1079
1080//----------------------is_instance_field_load_with_local_phi------------------
1081bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1082  if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1083      in(Address)->is_AddP() ) {
1084    const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1085    // Only instances and boxed values.
1086    if( t_oop != NULL &&
1087        (t_oop->is_ptr_to_boxed_value() ||
1088         t_oop->is_known_instance_field()) &&
1089        t_oop->offset() != Type::OffsetBot &&
1090        t_oop->offset() != Type::OffsetTop) {
1091      return true;
1092    }
1093  }
1094  return false;
1095}
1096
1097//------------------------------Identity---------------------------------------
1098// Loads are identity if previous store is to same address
1099Node* LoadNode::Identity(PhaseGVN* phase) {
1100  // If the previous store-maker is the right kind of Store, and the store is
1101  // to the same address, then we are equal to the value stored.
1102  Node* mem = in(Memory);
1103  Node* value = can_see_stored_value(mem, phase);
1104  if( value ) {
1105    // byte, short & char stores truncate naturally.
1106    // A load has to load the truncated value which requires
1107    // some sort of masking operation and that requires an
1108    // Ideal call instead of an Identity call.
1109    if (memory_size() < BytesPerInt) {
1110      // If the input to the store does not fit with the load's result type,
1111      // it must be truncated via an Ideal call.
1112      if (!phase->type(value)->higher_equal(phase->type(this)))
1113        return this;
1114    }
1115    // (This works even when value is a Con, but LoadNode::Value
1116    // usually runs first, producing the singleton type of the Con.)
1117    return value;
1118  }
1119
1120  // Search for an existing data phi which was generated before for the same
1121  // instance's field to avoid infinite generation of phis in a loop.
1122  Node *region = mem->in(0);
1123  if (is_instance_field_load_with_local_phi(region)) {
1124    const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1125    int this_index  = phase->C->get_alias_index(addr_t);
1126    int this_offset = addr_t->offset();
1127    int this_iid    = addr_t->instance_id();
1128    if (!addr_t->is_known_instance() &&
1129         addr_t->is_ptr_to_boxed_value()) {
1130      // Use _idx of address base (could be Phi node) for boxed values.
1131      intptr_t   ignore = 0;
1132      Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1133      if (base == NULL) {
1134        return this;
1135      }
1136      this_iid = base->_idx;
1137    }
1138    const Type* this_type = bottom_type();
1139    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1140      Node* phi = region->fast_out(i);
1141      if (phi->is_Phi() && phi != mem &&
1142          phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1143        return phi;
1144      }
1145    }
1146  }
1147
1148  return this;
1149}
1150
1151// Construct an equivalent unsigned load.
1152Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1153  BasicType bt = T_ILLEGAL;
1154  const Type* rt = NULL;
1155  switch (Opcode()) {
1156    case Op_LoadUB: return this;
1157    case Op_LoadUS: return this;
1158    case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1159    case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1160    default:
1161      assert(false, "no unsigned variant: %s", Name());
1162      return NULL;
1163  }
1164  return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1165                        raw_adr_type(), rt, bt, _mo, _control_dependency,
1166                        is_unaligned_access(), is_mismatched_access());
1167}
1168
1169// Construct an equivalent signed load.
1170Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1171  BasicType bt = T_ILLEGAL;
1172  const Type* rt = NULL;
1173  switch (Opcode()) {
1174    case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1175    case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1176    case Op_LoadB: // fall through
1177    case Op_LoadS: // fall through
1178    case Op_LoadI: // fall through
1179    case Op_LoadL: return this;
1180    default:
1181      assert(false, "no signed variant: %s", Name());
1182      return NULL;
1183  }
1184  return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1185                        raw_adr_type(), rt, bt, _mo, _control_dependency,
1186                        is_unaligned_access(), is_mismatched_access());
1187}
1188
1189// We're loading from an object which has autobox behaviour.
1190// If this object is result of a valueOf call we'll have a phi
1191// merging a newly allocated object and a load from the cache.
1192// We want to replace this load with the original incoming
1193// argument to the valueOf call.
1194Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1195  assert(phase->C->eliminate_boxing(), "sanity");
1196  intptr_t ignore = 0;
1197  Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1198  if ((base == NULL) || base->is_Phi()) {
1199    // Push the loads from the phi that comes from valueOf up
1200    // through it to allow elimination of the loads and the recovery
1201    // of the original value. It is done in split_through_phi().
1202    return NULL;
1203  } else if (base->is_Load() ||
1204             base->is_DecodeN() && base->in(1)->is_Load()) {
1205    // Eliminate the load of boxed value for integer types from the cache
1206    // array by deriving the value from the index into the array.
1207    // Capture the offset of the load and then reverse the computation.
1208
1209    // Get LoadN node which loads a boxing object from 'cache' array.
1210    if (base->is_DecodeN()) {
1211      base = base->in(1);
1212    }
1213    if (!base->in(Address)->is_AddP()) {
1214      return NULL; // Complex address
1215    }
1216    AddPNode* address = base->in(Address)->as_AddP();
1217    Node* cache_base = address->in(AddPNode::Base);
1218    if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1219      // Get ConP node which is static 'cache' field.
1220      cache_base = cache_base->in(1);
1221    }
1222    if ((cache_base != NULL) && cache_base->is_Con()) {
1223      const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1224      if ((base_type != NULL) && base_type->is_autobox_cache()) {
1225        Node* elements[4];
1226        int shift = exact_log2(type2aelembytes(T_OBJECT));
1227        int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1228        if ((count >  0) && elements[0]->is_Con() &&
1229            ((count == 1) ||
1230             (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1231                             elements[1]->in(2) == phase->intcon(shift))) {
1232          ciObjArray* array = base_type->const_oop()->as_obj_array();
1233          // Fetch the box object cache[0] at the base of the array and get its value
1234          ciInstance* box = array->obj_at(0)->as_instance();
1235          ciInstanceKlass* ik = box->klass()->as_instance_klass();
1236          assert(ik->is_box_klass(), "sanity");
1237          assert(ik->nof_nonstatic_fields() == 1, "change following code");
1238          if (ik->nof_nonstatic_fields() == 1) {
1239            // This should be true nonstatic_field_at requires calling
1240            // nof_nonstatic_fields so check it anyway
1241            ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1242            BasicType bt = c.basic_type();
1243            // Only integer types have boxing cache.
1244            assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1245                   bt == T_BYTE    || bt == T_SHORT ||
1246                   bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1247            jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1248            if (cache_low != (int)cache_low) {
1249              return NULL; // should not happen since cache is array indexed by value
1250            }
1251            jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1252            if (offset != (int)offset) {
1253              return NULL; // should not happen since cache is array indexed by value
1254            }
1255           // Add up all the offsets making of the address of the load
1256            Node* result = elements[0];
1257            for (int i = 1; i < count; i++) {
1258              result = phase->transform(new AddXNode(result, elements[i]));
1259            }
1260            // Remove the constant offset from the address and then
1261            result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1262            // remove the scaling of the offset to recover the original index.
1263            if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1264              // Peel the shift off directly but wrap it in a dummy node
1265              // since Ideal can't return existing nodes
1266              result = new RShiftXNode(result->in(1), phase->intcon(0));
1267            } else if (result->is_Add() && result->in(2)->is_Con() &&
1268                       result->in(1)->Opcode() == Op_LShiftX &&
1269                       result->in(1)->in(2) == phase->intcon(shift)) {
1270              // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1271              // but for boxing cache access we know that X<<Z will not overflow
1272              // (there is range check) so we do this optimizatrion by hand here.
1273              Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1274              result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1275            } else {
1276              result = new RShiftXNode(result, phase->intcon(shift));
1277            }
1278#ifdef _LP64
1279            if (bt != T_LONG) {
1280              result = new ConvL2INode(phase->transform(result));
1281            }
1282#else
1283            if (bt == T_LONG) {
1284              result = new ConvI2LNode(phase->transform(result));
1285            }
1286#endif
1287            // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1288            // Need to preserve unboxing load type if it is unsigned.
1289            switch(this->Opcode()) {
1290              case Op_LoadUB:
1291                result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1292                break;
1293              case Op_LoadUS:
1294                result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1295                break;
1296            }
1297            return result;
1298          }
1299        }
1300      }
1301    }
1302  }
1303  return NULL;
1304}
1305
1306static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1307  Node* region = phi->in(0);
1308  if (region == NULL) {
1309    return false; // Wait stable graph
1310  }
1311  uint cnt = phi->req();
1312  for (uint i = 1; i < cnt; i++) {
1313    Node* rc = region->in(i);
1314    if (rc == NULL || phase->type(rc) == Type::TOP)
1315      return false; // Wait stable graph
1316    Node* in = phi->in(i);
1317    if (in == NULL || phase->type(in) == Type::TOP)
1318      return false; // Wait stable graph
1319  }
1320  return true;
1321}
1322//------------------------------split_through_phi------------------------------
1323// Split instance or boxed field load through Phi.
1324Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1325  Node* mem     = in(Memory);
1326  Node* address = in(Address);
1327  const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1328
1329  assert((t_oop != NULL) &&
1330         (t_oop->is_known_instance_field() ||
1331          t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1332
1333  Compile* C = phase->C;
1334  intptr_t ignore = 0;
1335  Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1336  bool base_is_phi = (base != NULL) && base->is_Phi();
1337  bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1338                           (base != NULL) && (base == address->in(AddPNode::Base)) &&
1339                           phase->type(base)->higher_equal(TypePtr::NOTNULL);
1340
1341  if (!((mem->is_Phi() || base_is_phi) &&
1342        (load_boxed_values || t_oop->is_known_instance_field()))) {
1343    return NULL; // memory is not Phi
1344  }
1345
1346  if (mem->is_Phi()) {
1347    if (!stable_phi(mem->as_Phi(), phase)) {
1348      return NULL; // Wait stable graph
1349    }
1350    uint cnt = mem->req();
1351    // Check for loop invariant memory.
1352    if (cnt == 3) {
1353      for (uint i = 1; i < cnt; i++) {
1354        Node* in = mem->in(i);
1355        Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1356        if (m == mem) {
1357          set_req(Memory, mem->in(cnt - i));
1358          return this; // made change
1359        }
1360      }
1361    }
1362  }
1363  if (base_is_phi) {
1364    if (!stable_phi(base->as_Phi(), phase)) {
1365      return NULL; // Wait stable graph
1366    }
1367    uint cnt = base->req();
1368    // Check for loop invariant memory.
1369    if (cnt == 3) {
1370      for (uint i = 1; i < cnt; i++) {
1371        if (base->in(i) == base) {
1372          return NULL; // Wait stable graph
1373        }
1374      }
1375    }
1376  }
1377
1378  bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1379
1380  // Split through Phi (see original code in loopopts.cpp).
1381  assert(C->have_alias_type(t_oop), "instance should have alias type");
1382
1383  // Do nothing here if Identity will find a value
1384  // (to avoid infinite chain of value phis generation).
1385  if (!phase->eqv(this, this->Identity(phase)))
1386    return NULL;
1387
1388  // Select Region to split through.
1389  Node* region;
1390  if (!base_is_phi) {
1391    assert(mem->is_Phi(), "sanity");
1392    region = mem->in(0);
1393    // Skip if the region dominates some control edge of the address.
1394    if (!MemNode::all_controls_dominate(address, region))
1395      return NULL;
1396  } else if (!mem->is_Phi()) {
1397    assert(base_is_phi, "sanity");
1398    region = base->in(0);
1399    // Skip if the region dominates some control edge of the memory.
1400    if (!MemNode::all_controls_dominate(mem, region))
1401      return NULL;
1402  } else if (base->in(0) != mem->in(0)) {
1403    assert(base_is_phi && mem->is_Phi(), "sanity");
1404    if (MemNode::all_controls_dominate(mem, base->in(0))) {
1405      region = base->in(0);
1406    } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1407      region = mem->in(0);
1408    } else {
1409      return NULL; // complex graph
1410    }
1411  } else {
1412    assert(base->in(0) == mem->in(0), "sanity");
1413    region = mem->in(0);
1414  }
1415
1416  const Type* this_type = this->bottom_type();
1417  int this_index  = C->get_alias_index(t_oop);
1418  int this_offset = t_oop->offset();
1419  int this_iid    = t_oop->instance_id();
1420  if (!t_oop->is_known_instance() && load_boxed_values) {
1421    // Use _idx of address base for boxed values.
1422    this_iid = base->_idx;
1423  }
1424  PhaseIterGVN* igvn = phase->is_IterGVN();
1425  Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1426  for (uint i = 1; i < region->req(); i++) {
1427    Node* x;
1428    Node* the_clone = NULL;
1429    if (region->in(i) == C->top()) {
1430      x = C->top();      // Dead path?  Use a dead data op
1431    } else {
1432      x = this->clone();        // Else clone up the data op
1433      the_clone = x;            // Remember for possible deletion.
1434      // Alter data node to use pre-phi inputs
1435      if (this->in(0) == region) {
1436        x->set_req(0, region->in(i));
1437      } else {
1438        x->set_req(0, NULL);
1439      }
1440      if (mem->is_Phi() && (mem->in(0) == region)) {
1441        x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1442      }
1443      if (address->is_Phi() && address->in(0) == region) {
1444        x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1445      }
1446      if (base_is_phi && (base->in(0) == region)) {
1447        Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1448        Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1449        x->set_req(Address, adr_x);
1450      }
1451    }
1452    // Check for a 'win' on some paths
1453    const Type *t = x->Value(igvn);
1454
1455    bool singleton = t->singleton();
1456
1457    // See comments in PhaseIdealLoop::split_thru_phi().
1458    if (singleton && t == Type::TOP) {
1459      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1460    }
1461
1462    if (singleton) {
1463      x = igvn->makecon(t);
1464    } else {
1465      // We now call Identity to try to simplify the cloned node.
1466      // Note that some Identity methods call phase->type(this).
1467      // Make sure that the type array is big enough for
1468      // our new node, even though we may throw the node away.
1469      // (This tweaking with igvn only works because x is a new node.)
1470      igvn->set_type(x, t);
1471      // If x is a TypeNode, capture any more-precise type permanently into Node
1472      // otherwise it will be not updated during igvn->transform since
1473      // igvn->type(x) is set to x->Value() already.
1474      x->raise_bottom_type(t);
1475      Node *y = x->Identity(igvn);
1476      if (y != x) {
1477        x = y;
1478      } else {
1479        y = igvn->hash_find_insert(x);
1480        if (y) {
1481          x = y;
1482        } else {
1483          // Else x is a new node we are keeping
1484          // We do not need register_new_node_with_optimizer
1485          // because set_type has already been called.
1486          igvn->_worklist.push(x);
1487        }
1488      }
1489    }
1490    if (x != the_clone && the_clone != NULL) {
1491      igvn->remove_dead_node(the_clone);
1492    }
1493    phi->set_req(i, x);
1494  }
1495  // Record Phi
1496  igvn->register_new_node_with_optimizer(phi);
1497  return phi;
1498}
1499
1500//------------------------------Ideal------------------------------------------
1501// If the load is from Field memory and the pointer is non-null, it might be possible to
1502// zero out the control input.
1503// If the offset is constant and the base is an object allocation,
1504// try to hook me up to the exact initializing store.
1505Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1506  Node* p = MemNode::Ideal_common(phase, can_reshape);
1507  if (p)  return (p == NodeSentinel) ? NULL : p;
1508
1509  Node* ctrl    = in(MemNode::Control);
1510  Node* address = in(MemNode::Address);
1511  bool progress = false;
1512
1513  // Skip up past a SafePoint control.  Cannot do this for Stores because
1514  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1515  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1516      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1517    ctrl = ctrl->in(0);
1518    set_req(MemNode::Control,ctrl);
1519    progress = true;
1520  }
1521
1522  intptr_t ignore = 0;
1523  Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1524  if (base != NULL
1525      && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1526    // Check for useless control edge in some common special cases
1527    if (in(MemNode::Control) != NULL
1528        && can_remove_control()
1529        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1530        && all_controls_dominate(base, phase->C->start())) {
1531      // A method-invariant, non-null address (constant or 'this' argument).
1532      set_req(MemNode::Control, NULL);
1533      progress = true;
1534    }
1535  }
1536
1537  Node* mem = in(MemNode::Memory);
1538  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1539
1540  if (can_reshape && (addr_t != NULL)) {
1541    // try to optimize our memory input
1542    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1543    if (opt_mem != mem) {
1544      set_req(MemNode::Memory, opt_mem);
1545      if (phase->type( opt_mem ) == Type::TOP) return NULL;
1546      return this;
1547    }
1548    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1549    if ((t_oop != NULL) &&
1550        (t_oop->is_known_instance_field() ||
1551         t_oop->is_ptr_to_boxed_value())) {
1552      PhaseIterGVN *igvn = phase->is_IterGVN();
1553      if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1554        // Delay this transformation until memory Phi is processed.
1555        phase->is_IterGVN()->_worklist.push(this);
1556        return NULL;
1557      }
1558      // Split instance field load through Phi.
1559      Node* result = split_through_phi(phase);
1560      if (result != NULL) return result;
1561
1562      if (t_oop->is_ptr_to_boxed_value()) {
1563        Node* result = eliminate_autobox(phase);
1564        if (result != NULL) return result;
1565      }
1566    }
1567  }
1568
1569  // Is there a dominating load that loads the same value?  Leave
1570  // anything that is not a load of a field/array element (like
1571  // barriers etc.) alone
1572  if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) {
1573    for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1574      Node *use = mem->fast_out(i);
1575      if (use != this &&
1576          use->Opcode() == Opcode() &&
1577          use->in(0) != NULL &&
1578          use->in(0) != in(0) &&
1579          use->in(Address) == in(Address)) {
1580        Node* ctl = in(0);
1581        for (int i = 0; i < 10 && ctl != NULL; i++) {
1582          ctl = IfNode::up_one_dom(ctl);
1583          if (ctl == use->in(0)) {
1584            set_req(0, use->in(0));
1585            return this;
1586          }
1587        }
1588      }
1589    }
1590  }
1591
1592  // Check for prior store with a different base or offset; make Load
1593  // independent.  Skip through any number of them.  Bail out if the stores
1594  // are in an endless dead cycle and report no progress.  This is a key
1595  // transform for Reflection.  However, if after skipping through the Stores
1596  // we can't then fold up against a prior store do NOT do the transform as
1597  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1598  // array memory alive twice: once for the hoisted Load and again after the
1599  // bypassed Store.  This situation only works if EVERYBODY who does
1600  // anti-dependence work knows how to bypass.  I.e. we need all
1601  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1602  // the alias index stuff.  So instead, peek through Stores and IFF we can
1603  // fold up, do so.
1604  Node* prev_mem = find_previous_store(phase);
1605  if (prev_mem != NULL) {
1606    Node* value = can_see_arraycopy_value(prev_mem, phase);
1607    if (value != NULL) {
1608      return value;
1609    }
1610  }
1611  // Steps (a), (b):  Walk past independent stores to find an exact match.
1612  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1613    // (c) See if we can fold up on the spot, but don't fold up here.
1614    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1615    // just return a prior value, which is done by Identity calls.
1616    if (can_see_stored_value(prev_mem, phase)) {
1617      // Make ready for step (d):
1618      set_req(MemNode::Memory, prev_mem);
1619      return this;
1620    }
1621  }
1622
1623  return progress ? this : NULL;
1624}
1625
1626// Helper to recognize certain Klass fields which are invariant across
1627// some group of array types (e.g., int[] or all T[] where T < Object).
1628const Type*
1629LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1630                                 ciKlass* klass) const {
1631  if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1632    // The field is Klass::_modifier_flags.  Return its (constant) value.
1633    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1634    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1635    return TypeInt::make(klass->modifier_flags());
1636  }
1637  if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1638    // The field is Klass::_access_flags.  Return its (constant) value.
1639    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1640    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1641    return TypeInt::make(klass->access_flags());
1642  }
1643  if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1644    // The field is Klass::_layout_helper.  Return its constant value if known.
1645    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1646    return TypeInt::make(klass->layout_helper());
1647  }
1648
1649  // No match.
1650  return NULL;
1651}
1652
1653//------------------------------Value-----------------------------------------
1654const Type* LoadNode::Value(PhaseGVN* phase) const {
1655  // Either input is TOP ==> the result is TOP
1656  Node* mem = in(MemNode::Memory);
1657  const Type *t1 = phase->type(mem);
1658  if (t1 == Type::TOP)  return Type::TOP;
1659  Node* adr = in(MemNode::Address);
1660  const TypePtr* tp = phase->type(adr)->isa_ptr();
1661  if (tp == NULL || tp->empty())  return Type::TOP;
1662  int off = tp->offset();
1663  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1664  Compile* C = phase->C;
1665
1666  // Try to guess loaded type from pointer type
1667  if (tp->isa_aryptr()) {
1668    const TypeAryPtr* ary = tp->is_aryptr();
1669    const Type* t = ary->elem();
1670
1671    // Determine whether the reference is beyond the header or not, by comparing
1672    // the offset against the offset of the start of the array's data.
1673    // Different array types begin at slightly different offsets (12 vs. 16).
1674    // We choose T_BYTE as an example base type that is least restrictive
1675    // as to alignment, which will therefore produce the smallest
1676    // possible base offset.
1677    const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1678    const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1679
1680    // Try to constant-fold a stable array element.
1681    if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1682      // Make sure the reference is not into the header and the offset is constant
1683      ciObject* aobj = ary->const_oop();
1684      if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1685        int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1686        const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1687                                                                      stable_dimension,
1688                                                                      memory_type(), is_unsigned());
1689        if (con_type != NULL) {
1690          return con_type;
1691        }
1692      }
1693    }
1694
1695    // Don't do this for integer types. There is only potential profit if
1696    // the element type t is lower than _type; that is, for int types, if _type is
1697    // more restrictive than t.  This only happens here if one is short and the other
1698    // char (both 16 bits), and in those cases we've made an intentional decision
1699    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1700    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1701    //
1702    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1703    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1704    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1705    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1706    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1707    // In fact, that could have been the original type of p1, and p1 could have
1708    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1709    // expression (LShiftL quux 3) independently optimized to the constant 8.
1710    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1711        && (_type->isa_vect() == NULL)
1712        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1713      // t might actually be lower than _type, if _type is a unique
1714      // concrete subclass of abstract class t.
1715      if (off_beyond_header) {  // is the offset beyond the header?
1716        const Type* jt = t->join_speculative(_type);
1717        // In any case, do not allow the join, per se, to empty out the type.
1718        if (jt->empty() && !t->empty()) {
1719          // This can happen if a interface-typed array narrows to a class type.
1720          jt = _type;
1721        }
1722#ifdef ASSERT
1723        if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1724          // The pointers in the autobox arrays are always non-null
1725          Node* base = adr->in(AddPNode::Base);
1726          if ((base != NULL) && base->is_DecodeN()) {
1727            // Get LoadN node which loads IntegerCache.cache field
1728            base = base->in(1);
1729          }
1730          if ((base != NULL) && base->is_Con()) {
1731            const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1732            if ((base_type != NULL) && base_type->is_autobox_cache()) {
1733              // It could be narrow oop
1734              assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1735            }
1736          }
1737        }
1738#endif
1739        return jt;
1740      }
1741    }
1742  } else if (tp->base() == Type::InstPtr) {
1743    assert( off != Type::OffsetBot ||
1744            // arrays can be cast to Objects
1745            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1746            // unsafe field access may not have a constant offset
1747            C->has_unsafe_access(),
1748            "Field accesses must be precise" );
1749    // For oop loads, we expect the _type to be precise.
1750
1751    // Optimize loads from constant fields.
1752    const TypeInstPtr* tinst = tp->is_instptr();
1753    ciObject* const_oop = tinst->const_oop();
1754    if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1755      const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1756      if (con_type != NULL) {
1757        return con_type;
1758      }
1759    }
1760  } else if (tp->base() == Type::KlassPtr) {
1761    assert( off != Type::OffsetBot ||
1762            // arrays can be cast to Objects
1763            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1764            // also allow array-loading from the primary supertype
1765            // array during subtype checks
1766            Opcode() == Op_LoadKlass,
1767            "Field accesses must be precise" );
1768    // For klass/static loads, we expect the _type to be precise
1769  }
1770
1771  const TypeKlassPtr *tkls = tp->isa_klassptr();
1772  if (tkls != NULL && !StressReflectiveCode) {
1773    ciKlass* klass = tkls->klass();
1774    if (klass->is_loaded() && tkls->klass_is_exact()) {
1775      // We are loading a field from a Klass metaobject whose identity
1776      // is known at compile time (the type is "exact" or "precise").
1777      // Check for fields we know are maintained as constants by the VM.
1778      if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1779        // The field is Klass::_super_check_offset.  Return its (constant) value.
1780        // (Folds up type checking code.)
1781        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1782        return TypeInt::make(klass->super_check_offset());
1783      }
1784      // Compute index into primary_supers array
1785      juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1786      // Check for overflowing; use unsigned compare to handle the negative case.
1787      if( depth < ciKlass::primary_super_limit() ) {
1788        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1789        // (Folds up type checking code.)
1790        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1791        ciKlass *ss = klass->super_of_depth(depth);
1792        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1793      }
1794      const Type* aift = load_array_final_field(tkls, klass);
1795      if (aift != NULL)  return aift;
1796      if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1797        // The field is Klass::_java_mirror.  Return its (constant) value.
1798        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1799        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1800        return TypeInstPtr::make(klass->java_mirror());
1801      }
1802    }
1803
1804    // We can still check if we are loading from the primary_supers array at a
1805    // shallow enough depth.  Even though the klass is not exact, entries less
1806    // than or equal to its super depth are correct.
1807    if (klass->is_loaded() ) {
1808      ciType *inner = klass;
1809      while( inner->is_obj_array_klass() )
1810        inner = inner->as_obj_array_klass()->base_element_type();
1811      if( inner->is_instance_klass() &&
1812          !inner->as_instance_klass()->flags().is_interface() ) {
1813        // Compute index into primary_supers array
1814        juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1815        // Check for overflowing; use unsigned compare to handle the negative case.
1816        if( depth < ciKlass::primary_super_limit() &&
1817            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1818          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1819          // (Folds up type checking code.)
1820          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1821          ciKlass *ss = klass->super_of_depth(depth);
1822          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1823        }
1824      }
1825    }
1826
1827    // If the type is enough to determine that the thing is not an array,
1828    // we can give the layout_helper a positive interval type.
1829    // This will help short-circuit some reflective code.
1830    if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1831        && !klass->is_array_klass() // not directly typed as an array
1832        && !klass->is_interface()  // specifically not Serializable & Cloneable
1833        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1834        ) {
1835      // Note:  When interfaces are reliable, we can narrow the interface
1836      // test to (klass != Serializable && klass != Cloneable).
1837      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1838      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1839      // The key property of this type is that it folds up tests
1840      // for array-ness, since it proves that the layout_helper is positive.
1841      // Thus, a generic value like the basic object layout helper works fine.
1842      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1843    }
1844  }
1845
1846  // If we are loading from a freshly-allocated object, produce a zero,
1847  // if the load is provably beyond the header of the object.
1848  // (Also allow a variable load from a fresh array to produce zero.)
1849  const TypeOopPtr *tinst = tp->isa_oopptr();
1850  bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1851  bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1852  if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1853    Node* value = can_see_stored_value(mem,phase);
1854    if (value != NULL && value->is_Con()) {
1855      assert(value->bottom_type()->higher_equal(_type),"sanity");
1856      return value->bottom_type();
1857    }
1858  }
1859
1860  if (is_instance) {
1861    // If we have an instance type and our memory input is the
1862    // programs's initial memory state, there is no matching store,
1863    // so just return a zero of the appropriate type
1864    Node *mem = in(MemNode::Memory);
1865    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1866      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1867      return Type::get_zero_type(_type->basic_type());
1868    }
1869  }
1870  return _type;
1871}
1872
1873//------------------------------match_edge-------------------------------------
1874// Do we Match on this edge index or not?  Match only the address.
1875uint LoadNode::match_edge(uint idx) const {
1876  return idx == MemNode::Address;
1877}
1878
1879//--------------------------LoadBNode::Ideal--------------------------------------
1880//
1881//  If the previous store is to the same address as this load,
1882//  and the value stored was larger than a byte, replace this load
1883//  with the value stored truncated to a byte.  If no truncation is
1884//  needed, the replacement is done in LoadNode::Identity().
1885//
1886Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1887  Node* mem = in(MemNode::Memory);
1888  Node* value = can_see_stored_value(mem,phase);
1889  if( value && !phase->type(value)->higher_equal( _type ) ) {
1890    Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1891    return new RShiftINode(result, phase->intcon(24));
1892  }
1893  // Identity call will handle the case where truncation is not needed.
1894  return LoadNode::Ideal(phase, can_reshape);
1895}
1896
1897const Type* LoadBNode::Value(PhaseGVN* phase) const {
1898  Node* mem = in(MemNode::Memory);
1899  Node* value = can_see_stored_value(mem,phase);
1900  if (value != NULL && value->is_Con() &&
1901      !value->bottom_type()->higher_equal(_type)) {
1902    // If the input to the store does not fit with the load's result type,
1903    // it must be truncated. We can't delay until Ideal call since
1904    // a singleton Value is needed for split_thru_phi optimization.
1905    int con = value->get_int();
1906    return TypeInt::make((con << 24) >> 24);
1907  }
1908  return LoadNode::Value(phase);
1909}
1910
1911//--------------------------LoadUBNode::Ideal-------------------------------------
1912//
1913//  If the previous store is to the same address as this load,
1914//  and the value stored was larger than a byte, replace this load
1915//  with the value stored truncated to a byte.  If no truncation is
1916//  needed, the replacement is done in LoadNode::Identity().
1917//
1918Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1919  Node* mem = in(MemNode::Memory);
1920  Node* value = can_see_stored_value(mem, phase);
1921  if (value && !phase->type(value)->higher_equal(_type))
1922    return new AndINode(value, phase->intcon(0xFF));
1923  // Identity call will handle the case where truncation is not needed.
1924  return LoadNode::Ideal(phase, can_reshape);
1925}
1926
1927const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1928  Node* mem = in(MemNode::Memory);
1929  Node* value = can_see_stored_value(mem,phase);
1930  if (value != NULL && value->is_Con() &&
1931      !value->bottom_type()->higher_equal(_type)) {
1932    // If the input to the store does not fit with the load's result type,
1933    // it must be truncated. We can't delay until Ideal call since
1934    // a singleton Value is needed for split_thru_phi optimization.
1935    int con = value->get_int();
1936    return TypeInt::make(con & 0xFF);
1937  }
1938  return LoadNode::Value(phase);
1939}
1940
1941//--------------------------LoadUSNode::Ideal-------------------------------------
1942//
1943//  If the previous store is to the same address as this load,
1944//  and the value stored was larger than a char, replace this load
1945//  with the value stored truncated to a char.  If no truncation is
1946//  needed, the replacement is done in LoadNode::Identity().
1947//
1948Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1949  Node* mem = in(MemNode::Memory);
1950  Node* value = can_see_stored_value(mem,phase);
1951  if( value && !phase->type(value)->higher_equal( _type ) )
1952    return new AndINode(value,phase->intcon(0xFFFF));
1953  // Identity call will handle the case where truncation is not needed.
1954  return LoadNode::Ideal(phase, can_reshape);
1955}
1956
1957const Type* LoadUSNode::Value(PhaseGVN* phase) const {
1958  Node* mem = in(MemNode::Memory);
1959  Node* value = can_see_stored_value(mem,phase);
1960  if (value != NULL && value->is_Con() &&
1961      !value->bottom_type()->higher_equal(_type)) {
1962    // If the input to the store does not fit with the load's result type,
1963    // it must be truncated. We can't delay until Ideal call since
1964    // a singleton Value is needed for split_thru_phi optimization.
1965    int con = value->get_int();
1966    return TypeInt::make(con & 0xFFFF);
1967  }
1968  return LoadNode::Value(phase);
1969}
1970
1971//--------------------------LoadSNode::Ideal--------------------------------------
1972//
1973//  If the previous store is to the same address as this load,
1974//  and the value stored was larger than a short, replace this load
1975//  with the value stored truncated to a short.  If no truncation is
1976//  needed, the replacement is done in LoadNode::Identity().
1977//
1978Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1979  Node* mem = in(MemNode::Memory);
1980  Node* value = can_see_stored_value(mem,phase);
1981  if( value && !phase->type(value)->higher_equal( _type ) ) {
1982    Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
1983    return new RShiftINode(result, phase->intcon(16));
1984  }
1985  // Identity call will handle the case where truncation is not needed.
1986  return LoadNode::Ideal(phase, can_reshape);
1987}
1988
1989const Type* LoadSNode::Value(PhaseGVN* phase) const {
1990  Node* mem = in(MemNode::Memory);
1991  Node* value = can_see_stored_value(mem,phase);
1992  if (value != NULL && value->is_Con() &&
1993      !value->bottom_type()->higher_equal(_type)) {
1994    // If the input to the store does not fit with the load's result type,
1995    // it must be truncated. We can't delay until Ideal call since
1996    // a singleton Value is needed for split_thru_phi optimization.
1997    int con = value->get_int();
1998    return TypeInt::make((con << 16) >> 16);
1999  }
2000  return LoadNode::Value(phase);
2001}
2002
2003//=============================================================================
2004//----------------------------LoadKlassNode::make------------------------------
2005// Polymorphic factory method:
2006Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2007  // sanity check the alias category against the created node type
2008  const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2009  assert(adr_type != NULL, "expecting TypeKlassPtr");
2010#ifdef _LP64
2011  if (adr_type->is_ptr_to_narrowklass()) {
2012    assert(UseCompressedClassPointers, "no compressed klasses");
2013    Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2014    return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2015  }
2016#endif
2017  assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2018  return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2019}
2020
2021//------------------------------Value------------------------------------------
2022const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2023  return klass_value_common(phase);
2024}
2025
2026// In most cases, LoadKlassNode does not have the control input set. If the control
2027// input is set, it must not be removed (by LoadNode::Ideal()).
2028bool LoadKlassNode::can_remove_control() const {
2029  return false;
2030}
2031
2032const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2033  // Either input is TOP ==> the result is TOP
2034  const Type *t1 = phase->type( in(MemNode::Memory) );
2035  if (t1 == Type::TOP)  return Type::TOP;
2036  Node *adr = in(MemNode::Address);
2037  const Type *t2 = phase->type( adr );
2038  if (t2 == Type::TOP)  return Type::TOP;
2039  const TypePtr *tp = t2->is_ptr();
2040  if (TypePtr::above_centerline(tp->ptr()) ||
2041      tp->ptr() == TypePtr::Null)  return Type::TOP;
2042
2043  // Return a more precise klass, if possible
2044  const TypeInstPtr *tinst = tp->isa_instptr();
2045  if (tinst != NULL) {
2046    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2047    int offset = tinst->offset();
2048    if (ik == phase->C->env()->Class_klass()
2049        && (offset == java_lang_Class::klass_offset_in_bytes() ||
2050            offset == java_lang_Class::array_klass_offset_in_bytes())) {
2051      // We are loading a special hidden field from a Class mirror object,
2052      // the field which points to the VM's Klass metaobject.
2053      ciType* t = tinst->java_mirror_type();
2054      // java_mirror_type returns non-null for compile-time Class constants.
2055      if (t != NULL) {
2056        // constant oop => constant klass
2057        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2058          if (t->is_void()) {
2059            // We cannot create a void array.  Since void is a primitive type return null
2060            // klass.  Users of this result need to do a null check on the returned klass.
2061            return TypePtr::NULL_PTR;
2062          }
2063          return TypeKlassPtr::make(ciArrayKlass::make(t));
2064        }
2065        if (!t->is_klass()) {
2066          // a primitive Class (e.g., int.class) has NULL for a klass field
2067          return TypePtr::NULL_PTR;
2068        }
2069        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2070        return TypeKlassPtr::make(t->as_klass());
2071      }
2072      // non-constant mirror, so we can't tell what's going on
2073    }
2074    if( !ik->is_loaded() )
2075      return _type;             // Bail out if not loaded
2076    if (offset == oopDesc::klass_offset_in_bytes()) {
2077      if (tinst->klass_is_exact()) {
2078        return TypeKlassPtr::make(ik);
2079      }
2080      // See if we can become precise: no subklasses and no interface
2081      // (Note:  We need to support verified interfaces.)
2082      if (!ik->is_interface() && !ik->has_subklass()) {
2083        //assert(!UseExactTypes, "this code should be useless with exact types");
2084        // Add a dependence; if any subclass added we need to recompile
2085        if (!ik->is_final()) {
2086          // %%% should use stronger assert_unique_concrete_subtype instead
2087          phase->C->dependencies()->assert_leaf_type(ik);
2088        }
2089        // Return precise klass
2090        return TypeKlassPtr::make(ik);
2091      }
2092
2093      // Return root of possible klass
2094      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2095    }
2096  }
2097
2098  // Check for loading klass from an array
2099  const TypeAryPtr *tary = tp->isa_aryptr();
2100  if( tary != NULL ) {
2101    ciKlass *tary_klass = tary->klass();
2102    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2103        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2104      if (tary->klass_is_exact()) {
2105        return TypeKlassPtr::make(tary_klass);
2106      }
2107      ciArrayKlass *ak = tary->klass()->as_array_klass();
2108      // If the klass is an object array, we defer the question to the
2109      // array component klass.
2110      if( ak->is_obj_array_klass() ) {
2111        assert( ak->is_loaded(), "" );
2112        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2113        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2114          ciInstanceKlass* ik = base_k->as_instance_klass();
2115          // See if we can become precise: no subklasses and no interface
2116          if (!ik->is_interface() && !ik->has_subklass()) {
2117            //assert(!UseExactTypes, "this code should be useless with exact types");
2118            // Add a dependence; if any subclass added we need to recompile
2119            if (!ik->is_final()) {
2120              phase->C->dependencies()->assert_leaf_type(ik);
2121            }
2122            // Return precise array klass
2123            return TypeKlassPtr::make(ak);
2124          }
2125        }
2126        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2127      } else {                  // Found a type-array?
2128        //assert(!UseExactTypes, "this code should be useless with exact types");
2129        assert( ak->is_type_array_klass(), "" );
2130        return TypeKlassPtr::make(ak); // These are always precise
2131      }
2132    }
2133  }
2134
2135  // Check for loading klass from an array klass
2136  const TypeKlassPtr *tkls = tp->isa_klassptr();
2137  if (tkls != NULL && !StressReflectiveCode) {
2138    ciKlass* klass = tkls->klass();
2139    if( !klass->is_loaded() )
2140      return _type;             // Bail out if not loaded
2141    if( klass->is_obj_array_klass() &&
2142        tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2143      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2144      // // Always returning precise element type is incorrect,
2145      // // e.g., element type could be object and array may contain strings
2146      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2147
2148      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2149      // according to the element type's subclassing.
2150      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2151    }
2152    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2153        tkls->offset() == in_bytes(Klass::super_offset())) {
2154      ciKlass* sup = klass->as_instance_klass()->super();
2155      // The field is Klass::_super.  Return its (constant) value.
2156      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2157      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2158    }
2159  }
2160
2161  // Bailout case
2162  return LoadNode::Value(phase);
2163}
2164
2165//------------------------------Identity---------------------------------------
2166// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2167// Also feed through the klass in Allocate(...klass...)._klass.
2168Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2169  return klass_identity_common(phase);
2170}
2171
2172Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2173  Node* x = LoadNode::Identity(phase);
2174  if (x != this)  return x;
2175
2176  // Take apart the address into an oop and and offset.
2177  // Return 'this' if we cannot.
2178  Node*    adr    = in(MemNode::Address);
2179  intptr_t offset = 0;
2180  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2181  if (base == NULL)     return this;
2182  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2183  if (toop == NULL)     return this;
2184
2185  // We can fetch the klass directly through an AllocateNode.
2186  // This works even if the klass is not constant (clone or newArray).
2187  if (offset == oopDesc::klass_offset_in_bytes()) {
2188    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2189    if (allocated_klass != NULL) {
2190      return allocated_klass;
2191    }
2192  }
2193
2194  // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2195  // See inline_native_Class_query for occurrences of these patterns.
2196  // Java Example:  x.getClass().isAssignableFrom(y)
2197  //
2198  // This improves reflective code, often making the Class
2199  // mirror go completely dead.  (Current exception:  Class
2200  // mirrors may appear in debug info, but we could clean them out by
2201  // introducing a new debug info operator for Klass*.java_mirror).
2202  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2203      && offset == java_lang_Class::klass_offset_in_bytes()) {
2204    // We are loading a special hidden field from a Class mirror,
2205    // the field which points to its Klass or ArrayKlass metaobject.
2206    if (base->is_Load()) {
2207      Node* adr2 = base->in(MemNode::Address);
2208      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2209      if (tkls != NULL && !tkls->empty()
2210          && (tkls->klass()->is_instance_klass() ||
2211              tkls->klass()->is_array_klass())
2212          && adr2->is_AddP()
2213          ) {
2214        int mirror_field = in_bytes(Klass::java_mirror_offset());
2215        if (tkls->offset() == mirror_field) {
2216          return adr2->in(AddPNode::Base);
2217        }
2218      }
2219    }
2220  }
2221
2222  return this;
2223}
2224
2225
2226//------------------------------Value------------------------------------------
2227const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2228  const Type *t = klass_value_common(phase);
2229  if (t == Type::TOP)
2230    return t;
2231
2232  return t->make_narrowklass();
2233}
2234
2235//------------------------------Identity---------------------------------------
2236// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2237// Also feed through the klass in Allocate(...klass...)._klass.
2238Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2239  Node *x = klass_identity_common(phase);
2240
2241  const Type *t = phase->type( x );
2242  if( t == Type::TOP ) return x;
2243  if( t->isa_narrowklass()) return x;
2244  assert (!t->isa_narrowoop(), "no narrow oop here");
2245
2246  return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2247}
2248
2249//------------------------------Value-----------------------------------------
2250const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2251  // Either input is TOP ==> the result is TOP
2252  const Type *t1 = phase->type( in(MemNode::Memory) );
2253  if( t1 == Type::TOP ) return Type::TOP;
2254  Node *adr = in(MemNode::Address);
2255  const Type *t2 = phase->type( adr );
2256  if( t2 == Type::TOP ) return Type::TOP;
2257  const TypePtr *tp = t2->is_ptr();
2258  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2259  const TypeAryPtr *tap = tp->isa_aryptr();
2260  if( !tap ) return _type;
2261  return tap->size();
2262}
2263
2264//-------------------------------Ideal---------------------------------------
2265// Feed through the length in AllocateArray(...length...)._length.
2266Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2267  Node* p = MemNode::Ideal_common(phase, can_reshape);
2268  if (p)  return (p == NodeSentinel) ? NULL : p;
2269
2270  // Take apart the address into an oop and and offset.
2271  // Return 'this' if we cannot.
2272  Node*    adr    = in(MemNode::Address);
2273  intptr_t offset = 0;
2274  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2275  if (base == NULL)     return NULL;
2276  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2277  if (tary == NULL)     return NULL;
2278
2279  // We can fetch the length directly through an AllocateArrayNode.
2280  // This works even if the length is not constant (clone or newArray).
2281  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2282    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2283    if (alloc != NULL) {
2284      Node* allocated_length = alloc->Ideal_length();
2285      Node* len = alloc->make_ideal_length(tary, phase);
2286      if (allocated_length != len) {
2287        // New CastII improves on this.
2288        return len;
2289      }
2290    }
2291  }
2292
2293  return NULL;
2294}
2295
2296//------------------------------Identity---------------------------------------
2297// Feed through the length in AllocateArray(...length...)._length.
2298Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2299  Node* x = LoadINode::Identity(phase);
2300  if (x != this)  return x;
2301
2302  // Take apart the address into an oop and and offset.
2303  // Return 'this' if we cannot.
2304  Node*    adr    = in(MemNode::Address);
2305  intptr_t offset = 0;
2306  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2307  if (base == NULL)     return this;
2308  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2309  if (tary == NULL)     return this;
2310
2311  // We can fetch the length directly through an AllocateArrayNode.
2312  // This works even if the length is not constant (clone or newArray).
2313  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2314    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2315    if (alloc != NULL) {
2316      Node* allocated_length = alloc->Ideal_length();
2317      // Do not allow make_ideal_length to allocate a CastII node.
2318      Node* len = alloc->make_ideal_length(tary, phase, false);
2319      if (allocated_length == len) {
2320        // Return allocated_length only if it would not be improved by a CastII.
2321        return allocated_length;
2322      }
2323    }
2324  }
2325
2326  return this;
2327
2328}
2329
2330//=============================================================================
2331//---------------------------StoreNode::make-----------------------------------
2332// Polymorphic factory method:
2333StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2334  assert((mo == unordered || mo == release), "unexpected");
2335  Compile* C = gvn.C;
2336  assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2337         ctl != NULL, "raw memory operations should have control edge");
2338
2339  switch (bt) {
2340  case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2341  case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2342  case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2343  case T_CHAR:
2344  case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2345  case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2346  case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2347  case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2348  case T_METADATA:
2349  case T_ADDRESS:
2350  case T_OBJECT:
2351#ifdef _LP64
2352    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2353      val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2354      return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2355    } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2356               (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2357                adr->bottom_type()->isa_rawptr())) {
2358      val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2359      return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2360    }
2361#endif
2362    {
2363      return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2364    }
2365  }
2366  ShouldNotReachHere();
2367  return (StoreNode*)NULL;
2368}
2369
2370StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2371  bool require_atomic = true;
2372  return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2373}
2374
2375StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2376  bool require_atomic = true;
2377  return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2378}
2379
2380
2381//--------------------------bottom_type----------------------------------------
2382const Type *StoreNode::bottom_type() const {
2383  return Type::MEMORY;
2384}
2385
2386//------------------------------hash-------------------------------------------
2387uint StoreNode::hash() const {
2388  // unroll addition of interesting fields
2389  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2390
2391  // Since they are not commoned, do not hash them:
2392  return NO_HASH;
2393}
2394
2395//------------------------------Ideal------------------------------------------
2396// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2397// When a store immediately follows a relevant allocation/initialization,
2398// try to capture it into the initialization, or hoist it above.
2399Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2400  Node* p = MemNode::Ideal_common(phase, can_reshape);
2401  if (p)  return (p == NodeSentinel) ? NULL : p;
2402
2403  Node* mem     = in(MemNode::Memory);
2404  Node* address = in(MemNode::Address);
2405  // Back-to-back stores to same address?  Fold em up.  Generally
2406  // unsafe if I have intervening uses...  Also disallowed for StoreCM
2407  // since they must follow each StoreP operation.  Redundant StoreCMs
2408  // are eliminated just before matching in final_graph_reshape.
2409  {
2410    Node* st = mem;
2411    // If Store 'st' has more than one use, we cannot fold 'st' away.
2412    // For example, 'st' might be the final state at a conditional
2413    // return.  Or, 'st' might be used by some node which is live at
2414    // the same time 'st' is live, which might be unschedulable.  So,
2415    // require exactly ONE user until such time as we clone 'mem' for
2416    // each of 'mem's uses (thus making the exactly-1-user-rule hold
2417    // true).
2418    while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2419      // Looking at a dead closed cycle of memory?
2420      assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2421      assert(Opcode() == st->Opcode() ||
2422             st->Opcode() == Op_StoreVector ||
2423             Opcode() == Op_StoreVector ||
2424             phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2425             (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2426             (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2427             "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2428
2429      if (st->in(MemNode::Address)->eqv_uncast(address) &&
2430          st->as_Store()->memory_size() <= this->memory_size()) {
2431        Node* use = st->raw_out(0);
2432        phase->igvn_rehash_node_delayed(use);
2433        if (can_reshape) {
2434          use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2435        } else {
2436          // It's OK to do this in the parser, since DU info is always accurate,
2437          // and the parser always refers to nodes via SafePointNode maps.
2438          use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2439        }
2440        return this;
2441      }
2442      st = st->in(MemNode::Memory);
2443    }
2444  }
2445
2446
2447  // Capture an unaliased, unconditional, simple store into an initializer.
2448  // Or, if it is independent of the allocation, hoist it above the allocation.
2449  if (ReduceFieldZeroing && /*can_reshape &&*/
2450      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2451    InitializeNode* init = mem->in(0)->as_Initialize();
2452    intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2453    if (offset > 0) {
2454      Node* moved = init->capture_store(this, offset, phase, can_reshape);
2455      // If the InitializeNode captured me, it made a raw copy of me,
2456      // and I need to disappear.
2457      if (moved != NULL) {
2458        // %%% hack to ensure that Ideal returns a new node:
2459        mem = MergeMemNode::make(mem);
2460        return mem;             // fold me away
2461      }
2462    }
2463  }
2464
2465  return NULL;                  // No further progress
2466}
2467
2468//------------------------------Value-----------------------------------------
2469const Type* StoreNode::Value(PhaseGVN* phase) const {
2470  // Either input is TOP ==> the result is TOP
2471  const Type *t1 = phase->type( in(MemNode::Memory) );
2472  if( t1 == Type::TOP ) return Type::TOP;
2473  const Type *t2 = phase->type( in(MemNode::Address) );
2474  if( t2 == Type::TOP ) return Type::TOP;
2475  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2476  if( t3 == Type::TOP ) return Type::TOP;
2477  return Type::MEMORY;
2478}
2479
2480//------------------------------Identity---------------------------------------
2481// Remove redundant stores:
2482//   Store(m, p, Load(m, p)) changes to m.
2483//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2484Node* StoreNode::Identity(PhaseGVN* phase) {
2485  Node* mem = in(MemNode::Memory);
2486  Node* adr = in(MemNode::Address);
2487  Node* val = in(MemNode::ValueIn);
2488
2489  // Load then Store?  Then the Store is useless
2490  if (val->is_Load() &&
2491      val->in(MemNode::Address)->eqv_uncast(adr) &&
2492      val->in(MemNode::Memory )->eqv_uncast(mem) &&
2493      val->as_Load()->store_Opcode() == Opcode()) {
2494    return mem;
2495  }
2496
2497  // Two stores in a row of the same value?
2498  if (mem->is_Store() &&
2499      mem->in(MemNode::Address)->eqv_uncast(adr) &&
2500      mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2501      mem->Opcode() == Opcode()) {
2502    return mem;
2503  }
2504
2505  // Store of zero anywhere into a freshly-allocated object?
2506  // Then the store is useless.
2507  // (It must already have been captured by the InitializeNode.)
2508  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2509    // a newly allocated object is already all-zeroes everywhere
2510    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2511      return mem;
2512    }
2513
2514    // the store may also apply to zero-bits in an earlier object
2515    Node* prev_mem = find_previous_store(phase);
2516    // Steps (a), (b):  Walk past independent stores to find an exact match.
2517    if (prev_mem != NULL) {
2518      Node* prev_val = can_see_stored_value(prev_mem, phase);
2519      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2520        // prev_val and val might differ by a cast; it would be good
2521        // to keep the more informative of the two.
2522        return mem;
2523      }
2524    }
2525  }
2526
2527  return this;
2528}
2529
2530//------------------------------match_edge-------------------------------------
2531// Do we Match on this edge index or not?  Match only memory & value
2532uint StoreNode::match_edge(uint idx) const {
2533  return idx == MemNode::Address || idx == MemNode::ValueIn;
2534}
2535
2536//------------------------------cmp--------------------------------------------
2537// Do not common stores up together.  They generally have to be split
2538// back up anyways, so do not bother.
2539uint StoreNode::cmp( const Node &n ) const {
2540  return (&n == this);          // Always fail except on self
2541}
2542
2543//------------------------------Ideal_masked_input-----------------------------
2544// Check for a useless mask before a partial-word store
2545// (StoreB ... (AndI valIn conIa) )
2546// If (conIa & mask == mask) this simplifies to
2547// (StoreB ... (valIn) )
2548Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2549  Node *val = in(MemNode::ValueIn);
2550  if( val->Opcode() == Op_AndI ) {
2551    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2552    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2553      set_req(MemNode::ValueIn, val->in(1));
2554      return this;
2555    }
2556  }
2557  return NULL;
2558}
2559
2560
2561//------------------------------Ideal_sign_extended_input----------------------
2562// Check for useless sign-extension before a partial-word store
2563// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2564// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2565// (StoreB ... (valIn) )
2566Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2567  Node *val = in(MemNode::ValueIn);
2568  if( val->Opcode() == Op_RShiftI ) {
2569    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2570    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2571      Node *shl = val->in(1);
2572      if( shl->Opcode() == Op_LShiftI ) {
2573        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2574        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2575          set_req(MemNode::ValueIn, shl->in(1));
2576          return this;
2577        }
2578      }
2579    }
2580  }
2581  return NULL;
2582}
2583
2584//------------------------------value_never_loaded-----------------------------------
2585// Determine whether there are any possible loads of the value stored.
2586// For simplicity, we actually check if there are any loads from the
2587// address stored to, not just for loads of the value stored by this node.
2588//
2589bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2590  Node *adr = in(Address);
2591  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2592  if (adr_oop == NULL)
2593    return false;
2594  if (!adr_oop->is_known_instance_field())
2595    return false; // if not a distinct instance, there may be aliases of the address
2596  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2597    Node *use = adr->fast_out(i);
2598    if (use->is_Load() || use->is_LoadStore()) {
2599      return false;
2600    }
2601  }
2602  return true;
2603}
2604
2605//=============================================================================
2606//------------------------------Ideal------------------------------------------
2607// If the store is from an AND mask that leaves the low bits untouched, then
2608// we can skip the AND operation.  If the store is from a sign-extension
2609// (a left shift, then right shift) we can skip both.
2610Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2611  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2612  if( progress != NULL ) return progress;
2613
2614  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2615  if( progress != NULL ) return progress;
2616
2617  // Finally check the default case
2618  return StoreNode::Ideal(phase, can_reshape);
2619}
2620
2621//=============================================================================
2622//------------------------------Ideal------------------------------------------
2623// If the store is from an AND mask that leaves the low bits untouched, then
2624// we can skip the AND operation
2625Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2626  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2627  if( progress != NULL ) return progress;
2628
2629  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2630  if( progress != NULL ) return progress;
2631
2632  // Finally check the default case
2633  return StoreNode::Ideal(phase, can_reshape);
2634}
2635
2636//=============================================================================
2637//------------------------------Identity---------------------------------------
2638Node* StoreCMNode::Identity(PhaseGVN* phase) {
2639  // No need to card mark when storing a null ptr
2640  Node* my_store = in(MemNode::OopStore);
2641  if (my_store->is_Store()) {
2642    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2643    if( t1 == TypePtr::NULL_PTR ) {
2644      return in(MemNode::Memory);
2645    }
2646  }
2647  return this;
2648}
2649
2650//=============================================================================
2651//------------------------------Ideal---------------------------------------
2652Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2653  Node* progress = StoreNode::Ideal(phase, can_reshape);
2654  if (progress != NULL) return progress;
2655
2656  Node* my_store = in(MemNode::OopStore);
2657  if (my_store->is_MergeMem()) {
2658    Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2659    set_req(MemNode::OopStore, mem);
2660    return this;
2661  }
2662
2663  return NULL;
2664}
2665
2666//------------------------------Value-----------------------------------------
2667const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2668  // Either input is TOP ==> the result is TOP
2669  const Type *t = phase->type( in(MemNode::Memory) );
2670  if( t == Type::TOP ) return Type::TOP;
2671  t = phase->type( in(MemNode::Address) );
2672  if( t == Type::TOP ) return Type::TOP;
2673  t = phase->type( in(MemNode::ValueIn) );
2674  if( t == Type::TOP ) return Type::TOP;
2675  // If extra input is TOP ==> the result is TOP
2676  t = phase->type( in(MemNode::OopStore) );
2677  if( t == Type::TOP ) return Type::TOP;
2678
2679  return StoreNode::Value( phase );
2680}
2681
2682
2683//=============================================================================
2684//----------------------------------SCMemProjNode------------------------------
2685const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2686{
2687  return bottom_type();
2688}
2689
2690//=============================================================================
2691//----------------------------------LoadStoreNode------------------------------
2692LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2693  : Node(required),
2694    _type(rt),
2695    _adr_type(at)
2696{
2697  init_req(MemNode::Control, c  );
2698  init_req(MemNode::Memory , mem);
2699  init_req(MemNode::Address, adr);
2700  init_req(MemNode::ValueIn, val);
2701  init_class_id(Class_LoadStore);
2702}
2703
2704uint LoadStoreNode::ideal_reg() const {
2705  return _type->ideal_reg();
2706}
2707
2708bool LoadStoreNode::result_not_used() const {
2709  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2710    Node *x = fast_out(i);
2711    if (x->Opcode() == Op_SCMemProj) continue;
2712    return false;
2713  }
2714  return true;
2715}
2716
2717uint LoadStoreNode::size_of() const { return sizeof(*this); }
2718
2719//=============================================================================
2720//----------------------------------LoadStoreConditionalNode--------------------
2721LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2722  init_req(ExpectedIn, ex );
2723}
2724
2725//=============================================================================
2726//-------------------------------adr_type--------------------------------------
2727const TypePtr* ClearArrayNode::adr_type() const {
2728  Node *adr = in(3);
2729  if (adr == NULL)  return NULL; // node is dead
2730  return MemNode::calculate_adr_type(adr->bottom_type());
2731}
2732
2733//------------------------------match_edge-------------------------------------
2734// Do we Match on this edge index or not?  Do not match memory
2735uint ClearArrayNode::match_edge(uint idx) const {
2736  return idx > 1;
2737}
2738
2739//------------------------------Identity---------------------------------------
2740// Clearing a zero length array does nothing
2741Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2742  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2743}
2744
2745//------------------------------Idealize---------------------------------------
2746// Clearing a short array is faster with stores
2747Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2748  // Already know this is a large node, do not try to ideal it
2749  if (!IdealizeClearArrayNode || _is_large) return NULL;
2750
2751  const int unit = BytesPerLong;
2752  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2753  if (!t)  return NULL;
2754  if (!t->is_con())  return NULL;
2755  intptr_t raw_count = t->get_con();
2756  intptr_t size = raw_count;
2757  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2758  // Clearing nothing uses the Identity call.
2759  // Negative clears are possible on dead ClearArrays
2760  // (see jck test stmt114.stmt11402.val).
2761  if (size <= 0 || size % unit != 0)  return NULL;
2762  intptr_t count = size / unit;
2763  // Length too long; communicate this to matchers and assemblers.
2764  // Assemblers are responsible to produce fast hardware clears for it.
2765  if (size > InitArrayShortSize) {
2766    return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2767  }
2768  Node *mem = in(1);
2769  if( phase->type(mem)==Type::TOP ) return NULL;
2770  Node *adr = in(3);
2771  const Type* at = phase->type(adr);
2772  if( at==Type::TOP ) return NULL;
2773  const TypePtr* atp = at->isa_ptr();
2774  // adjust atp to be the correct array element address type
2775  if (atp == NULL)  atp = TypePtr::BOTTOM;
2776  else              atp = atp->add_offset(Type::OffsetBot);
2777  // Get base for derived pointer purposes
2778  if( adr->Opcode() != Op_AddP ) Unimplemented();
2779  Node *base = adr->in(1);
2780
2781  Node *zero = phase->makecon(TypeLong::ZERO);
2782  Node *off  = phase->MakeConX(BytesPerLong);
2783  mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2784  count--;
2785  while( count-- ) {
2786    mem = phase->transform(mem);
2787    adr = phase->transform(new AddPNode(base,adr,off));
2788    mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2789  }
2790  return mem;
2791}
2792
2793//----------------------------step_through----------------------------------
2794// Return allocation input memory edge if it is different instance
2795// or itself if it is the one we are looking for.
2796bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2797  Node* n = *np;
2798  assert(n->is_ClearArray(), "sanity");
2799  intptr_t offset;
2800  AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2801  // This method is called only before Allocate nodes are expanded
2802  // during macro nodes expansion. Before that ClearArray nodes are
2803  // only generated in PhaseMacroExpand::generate_arraycopy() (before
2804  // Allocate nodes are expanded) which follows allocations.
2805  assert(alloc != NULL, "should have allocation");
2806  if (alloc->_idx == instance_id) {
2807    // Can not bypass initialization of the instance we are looking for.
2808    return false;
2809  }
2810  // Otherwise skip it.
2811  InitializeNode* init = alloc->initialization();
2812  if (init != NULL)
2813    *np = init->in(TypeFunc::Memory);
2814  else
2815    *np = alloc->in(TypeFunc::Memory);
2816  return true;
2817}
2818
2819//----------------------------clear_memory-------------------------------------
2820// Generate code to initialize object storage to zero.
2821Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2822                                   intptr_t start_offset,
2823                                   Node* end_offset,
2824                                   PhaseGVN* phase) {
2825  intptr_t offset = start_offset;
2826
2827  int unit = BytesPerLong;
2828  if ((offset % unit) != 0) {
2829    Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2830    adr = phase->transform(adr);
2831    const TypePtr* atp = TypeRawPtr::BOTTOM;
2832    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2833    mem = phase->transform(mem);
2834    offset += BytesPerInt;
2835  }
2836  assert((offset % unit) == 0, "");
2837
2838  // Initialize the remaining stuff, if any, with a ClearArray.
2839  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2840}
2841
2842Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2843                                   Node* start_offset,
2844                                   Node* end_offset,
2845                                   PhaseGVN* phase) {
2846  if (start_offset == end_offset) {
2847    // nothing to do
2848    return mem;
2849  }
2850
2851  int unit = BytesPerLong;
2852  Node* zbase = start_offset;
2853  Node* zend  = end_offset;
2854
2855  // Scale to the unit required by the CPU:
2856  if (!Matcher::init_array_count_is_in_bytes) {
2857    Node* shift = phase->intcon(exact_log2(unit));
2858    zbase = phase->transform(new URShiftXNode(zbase, shift) );
2859    zend  = phase->transform(new URShiftXNode(zend,  shift) );
2860  }
2861
2862  // Bulk clear double-words
2863  Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2864  Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2865  mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2866  return phase->transform(mem);
2867}
2868
2869Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2870                                   intptr_t start_offset,
2871                                   intptr_t end_offset,
2872                                   PhaseGVN* phase) {
2873  if (start_offset == end_offset) {
2874    // nothing to do
2875    return mem;
2876  }
2877
2878  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2879  intptr_t done_offset = end_offset;
2880  if ((done_offset % BytesPerLong) != 0) {
2881    done_offset -= BytesPerInt;
2882  }
2883  if (done_offset > start_offset) {
2884    mem = clear_memory(ctl, mem, dest,
2885                       start_offset, phase->MakeConX(done_offset), phase);
2886  }
2887  if (done_offset < end_offset) { // emit the final 32-bit store
2888    Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2889    adr = phase->transform(adr);
2890    const TypePtr* atp = TypeRawPtr::BOTTOM;
2891    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2892    mem = phase->transform(mem);
2893    done_offset += BytesPerInt;
2894  }
2895  assert(done_offset == end_offset, "");
2896  return mem;
2897}
2898
2899//=============================================================================
2900MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2901  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2902    _adr_type(C->get_adr_type(alias_idx))
2903{
2904  init_class_id(Class_MemBar);
2905  Node* top = C->top();
2906  init_req(TypeFunc::I_O,top);
2907  init_req(TypeFunc::FramePtr,top);
2908  init_req(TypeFunc::ReturnAdr,top);
2909  if (precedent != NULL)
2910    init_req(TypeFunc::Parms, precedent);
2911}
2912
2913//------------------------------cmp--------------------------------------------
2914uint MemBarNode::hash() const { return NO_HASH; }
2915uint MemBarNode::cmp( const Node &n ) const {
2916  return (&n == this);          // Always fail except on self
2917}
2918
2919//------------------------------make-------------------------------------------
2920MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2921  switch (opcode) {
2922  case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2923  case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2924  case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2925  case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2926  case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2927  case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2928  case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2929  case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2930  case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
2931  case Op_Initialize:        return new InitializeNode(C, atp, pn);
2932  case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2933  default: ShouldNotReachHere(); return NULL;
2934  }
2935}
2936
2937//------------------------------Ideal------------------------------------------
2938// Return a node which is more "ideal" than the current node.  Strip out
2939// control copies
2940Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2941  if (remove_dead_region(phase, can_reshape)) return this;
2942  // Don't bother trying to transform a dead node
2943  if (in(0) && in(0)->is_top()) {
2944    return NULL;
2945  }
2946
2947  bool progress = false;
2948  // Eliminate volatile MemBars for scalar replaced objects.
2949  if (can_reshape && req() == (Precedent+1)) {
2950    bool eliminate = false;
2951    int opc = Opcode();
2952    if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2953      // Volatile field loads and stores.
2954      Node* my_mem = in(MemBarNode::Precedent);
2955      // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2956      if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2957        // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2958        // replace this Precedent (decodeN) with the Load instead.
2959        if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2960          Node* load_node = my_mem->in(1);
2961          set_req(MemBarNode::Precedent, load_node);
2962          phase->is_IterGVN()->_worklist.push(my_mem);
2963          my_mem = load_node;
2964        } else {
2965          assert(my_mem->unique_out() == this, "sanity");
2966          del_req(Precedent);
2967          phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2968          my_mem = NULL;
2969        }
2970        progress = true;
2971      }
2972      if (my_mem != NULL && my_mem->is_Mem()) {
2973        const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2974        // Check for scalar replaced object reference.
2975        if( t_oop != NULL && t_oop->is_known_instance_field() &&
2976            t_oop->offset() != Type::OffsetBot &&
2977            t_oop->offset() != Type::OffsetTop) {
2978          eliminate = true;
2979        }
2980      }
2981    } else if (opc == Op_MemBarRelease) {
2982      // Final field stores.
2983      Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2984      if ((alloc != NULL) && alloc->is_Allocate() &&
2985          alloc->as_Allocate()->does_not_escape_thread()) {
2986        // The allocated object does not escape.
2987        eliminate = true;
2988      }
2989    }
2990    if (eliminate) {
2991      // Replace MemBar projections by its inputs.
2992      PhaseIterGVN* igvn = phase->is_IterGVN();
2993      igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2994      igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2995      // Must return either the original node (now dead) or a new node
2996      // (Do not return a top here, since that would break the uniqueness of top.)
2997      return new ConINode(TypeInt::ZERO);
2998    }
2999  }
3000  return progress ? this : NULL;
3001}
3002
3003//------------------------------Value------------------------------------------
3004const Type* MemBarNode::Value(PhaseGVN* phase) const {
3005  if( !in(0) ) return Type::TOP;
3006  if( phase->type(in(0)) == Type::TOP )
3007    return Type::TOP;
3008  return TypeTuple::MEMBAR;
3009}
3010
3011//------------------------------match------------------------------------------
3012// Construct projections for memory.
3013Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3014  switch (proj->_con) {
3015  case TypeFunc::Control:
3016  case TypeFunc::Memory:
3017    return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3018  }
3019  ShouldNotReachHere();
3020  return NULL;
3021}
3022
3023//===========================InitializeNode====================================
3024// SUMMARY:
3025// This node acts as a memory barrier on raw memory, after some raw stores.
3026// The 'cooked' oop value feeds from the Initialize, not the Allocation.
3027// The Initialize can 'capture' suitably constrained stores as raw inits.
3028// It can coalesce related raw stores into larger units (called 'tiles').
3029// It can avoid zeroing new storage for memory units which have raw inits.
3030// At macro-expansion, it is marked 'complete', and does not optimize further.
3031//
3032// EXAMPLE:
3033// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3034//   ctl = incoming control; mem* = incoming memory
3035// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3036// First allocate uninitialized memory and fill in the header:
3037//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3038//   ctl := alloc.Control; mem* := alloc.Memory*
3039//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3040// Then initialize to zero the non-header parts of the raw memory block:
3041//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3042//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3043// After the initialize node executes, the object is ready for service:
3044//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3045// Suppose its body is immediately initialized as {1,2}:
3046//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3047//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3048//   mem.SLICE(#short[*]) := store2
3049//
3050// DETAILS:
3051// An InitializeNode collects and isolates object initialization after
3052// an AllocateNode and before the next possible safepoint.  As a
3053// memory barrier (MemBarNode), it keeps critical stores from drifting
3054// down past any safepoint or any publication of the allocation.
3055// Before this barrier, a newly-allocated object may have uninitialized bits.
3056// After this barrier, it may be treated as a real oop, and GC is allowed.
3057//
3058// The semantics of the InitializeNode include an implicit zeroing of
3059// the new object from object header to the end of the object.
3060// (The object header and end are determined by the AllocateNode.)
3061//
3062// Certain stores may be added as direct inputs to the InitializeNode.
3063// These stores must update raw memory, and they must be to addresses
3064// derived from the raw address produced by AllocateNode, and with
3065// a constant offset.  They must be ordered by increasing offset.
3066// The first one is at in(RawStores), the last at in(req()-1).
3067// Unlike most memory operations, they are not linked in a chain,
3068// but are displayed in parallel as users of the rawmem output of
3069// the allocation.
3070//
3071// (See comments in InitializeNode::capture_store, which continue
3072// the example given above.)
3073//
3074// When the associated Allocate is macro-expanded, the InitializeNode
3075// may be rewritten to optimize collected stores.  A ClearArrayNode
3076// may also be created at that point to represent any required zeroing.
3077// The InitializeNode is then marked 'complete', prohibiting further
3078// capturing of nearby memory operations.
3079//
3080// During macro-expansion, all captured initializations which store
3081// constant values of 32 bits or smaller are coalesced (if advantageous)
3082// into larger 'tiles' 32 or 64 bits.  This allows an object to be
3083// initialized in fewer memory operations.  Memory words which are
3084// covered by neither tiles nor non-constant stores are pre-zeroed
3085// by explicit stores of zero.  (The code shape happens to do all
3086// zeroing first, then all other stores, with both sequences occurring
3087// in order of ascending offsets.)
3088//
3089// Alternatively, code may be inserted between an AllocateNode and its
3090// InitializeNode, to perform arbitrary initialization of the new object.
3091// E.g., the object copying intrinsics insert complex data transfers here.
3092// The initialization must then be marked as 'complete' disable the
3093// built-in zeroing semantics and the collection of initializing stores.
3094//
3095// While an InitializeNode is incomplete, reads from the memory state
3096// produced by it are optimizable if they match the control edge and
3097// new oop address associated with the allocation/initialization.
3098// They return a stored value (if the offset matches) or else zero.
3099// A write to the memory state, if it matches control and address,
3100// and if it is to a constant offset, may be 'captured' by the
3101// InitializeNode.  It is cloned as a raw memory operation and rewired
3102// inside the initialization, to the raw oop produced by the allocation.
3103// Operations on addresses which are provably distinct (e.g., to
3104// other AllocateNodes) are allowed to bypass the initialization.
3105//
3106// The effect of all this is to consolidate object initialization
3107// (both arrays and non-arrays, both piecewise and bulk) into a
3108// single location, where it can be optimized as a unit.
3109//
3110// Only stores with an offset less than TrackedInitializationLimit words
3111// will be considered for capture by an InitializeNode.  This puts a
3112// reasonable limit on the complexity of optimized initializations.
3113
3114//---------------------------InitializeNode------------------------------------
3115InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3116  : _is_complete(Incomplete), _does_not_escape(false),
3117    MemBarNode(C, adr_type, rawoop)
3118{
3119  init_class_id(Class_Initialize);
3120
3121  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3122  assert(in(RawAddress) == rawoop, "proper init");
3123  // Note:  allocation() can be NULL, for secondary initialization barriers
3124}
3125
3126// Since this node is not matched, it will be processed by the
3127// register allocator.  Declare that there are no constraints
3128// on the allocation of the RawAddress edge.
3129const RegMask &InitializeNode::in_RegMask(uint idx) const {
3130  // This edge should be set to top, by the set_complete.  But be conservative.
3131  if (idx == InitializeNode::RawAddress)
3132    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3133  return RegMask::Empty;
3134}
3135
3136Node* InitializeNode::memory(uint alias_idx) {
3137  Node* mem = in(Memory);
3138  if (mem->is_MergeMem()) {
3139    return mem->as_MergeMem()->memory_at(alias_idx);
3140  } else {
3141    // incoming raw memory is not split
3142    return mem;
3143  }
3144}
3145
3146bool InitializeNode::is_non_zero() {
3147  if (is_complete())  return false;
3148  remove_extra_zeroes();
3149  return (req() > RawStores);
3150}
3151
3152void InitializeNode::set_complete(PhaseGVN* phase) {
3153  assert(!is_complete(), "caller responsibility");
3154  _is_complete = Complete;
3155
3156  // After this node is complete, it contains a bunch of
3157  // raw-memory initializations.  There is no need for
3158  // it to have anything to do with non-raw memory effects.
3159  // Therefore, tell all non-raw users to re-optimize themselves,
3160  // after skipping the memory effects of this initialization.
3161  PhaseIterGVN* igvn = phase->is_IterGVN();
3162  if (igvn)  igvn->add_users_to_worklist(this);
3163}
3164
3165// convenience function
3166// return false if the init contains any stores already
3167bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3168  InitializeNode* init = initialization();
3169  if (init == NULL || init->is_complete())  return false;
3170  init->remove_extra_zeroes();
3171  // for now, if this allocation has already collected any inits, bail:
3172  if (init->is_non_zero())  return false;
3173  init->set_complete(phase);
3174  return true;
3175}
3176
3177void InitializeNode::remove_extra_zeroes() {
3178  if (req() == RawStores)  return;
3179  Node* zmem = zero_memory();
3180  uint fill = RawStores;
3181  for (uint i = fill; i < req(); i++) {
3182    Node* n = in(i);
3183    if (n->is_top() || n == zmem)  continue;  // skip
3184    if (fill < i)  set_req(fill, n);          // compact
3185    ++fill;
3186  }
3187  // delete any empty spaces created:
3188  while (fill < req()) {
3189    del_req(fill);
3190  }
3191}
3192
3193// Helper for remembering which stores go with which offsets.
3194intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3195  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3196  intptr_t offset = -1;
3197  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3198                                               phase, offset);
3199  if (base == NULL)     return -1;  // something is dead,
3200  if (offset < 0)       return -1;  //        dead, dead
3201  return offset;
3202}
3203
3204// Helper for proving that an initialization expression is
3205// "simple enough" to be folded into an object initialization.
3206// Attempts to prove that a store's initial value 'n' can be captured
3207// within the initialization without creating a vicious cycle, such as:
3208//     { Foo p = new Foo(); p.next = p; }
3209// True for constants and parameters and small combinations thereof.
3210bool InitializeNode::detect_init_independence(Node* n, int& count) {
3211  if (n == NULL)      return true;   // (can this really happen?)
3212  if (n->is_Proj())   n = n->in(0);
3213  if (n == this)      return false;  // found a cycle
3214  if (n->is_Con())    return true;
3215  if (n->is_Start())  return true;   // params, etc., are OK
3216  if (n->is_Root())   return true;   // even better
3217
3218  Node* ctl = n->in(0);
3219  if (ctl != NULL && !ctl->is_top()) {
3220    if (ctl->is_Proj())  ctl = ctl->in(0);
3221    if (ctl == this)  return false;
3222
3223    // If we already know that the enclosing memory op is pinned right after
3224    // the init, then any control flow that the store has picked up
3225    // must have preceded the init, or else be equal to the init.
3226    // Even after loop optimizations (which might change control edges)
3227    // a store is never pinned *before* the availability of its inputs.
3228    if (!MemNode::all_controls_dominate(n, this))
3229      return false;                  // failed to prove a good control
3230  }
3231
3232  // Check data edges for possible dependencies on 'this'.
3233  if ((count += 1) > 20)  return false;  // complexity limit
3234  for (uint i = 1; i < n->req(); i++) {
3235    Node* m = n->in(i);
3236    if (m == NULL || m == n || m->is_top())  continue;
3237    uint first_i = n->find_edge(m);
3238    if (i != first_i)  continue;  // process duplicate edge just once
3239    if (!detect_init_independence(m, count)) {
3240      return false;
3241    }
3242  }
3243
3244  return true;
3245}
3246
3247// Here are all the checks a Store must pass before it can be moved into
3248// an initialization.  Returns zero if a check fails.
3249// On success, returns the (constant) offset to which the store applies,
3250// within the initialized memory.
3251intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3252  const int FAIL = 0;
3253  if (st->is_unaligned_access()) {
3254    return FAIL;
3255  }
3256  if (st->req() != MemNode::ValueIn + 1)
3257    return FAIL;                // an inscrutable StoreNode (card mark?)
3258  Node* ctl = st->in(MemNode::Control);
3259  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3260    return FAIL;                // must be unconditional after the initialization
3261  Node* mem = st->in(MemNode::Memory);
3262  if (!(mem->is_Proj() && mem->in(0) == this))
3263    return FAIL;                // must not be preceded by other stores
3264  Node* adr = st->in(MemNode::Address);
3265  intptr_t offset;
3266  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3267  if (alloc == NULL)
3268    return FAIL;                // inscrutable address
3269  if (alloc != allocation())
3270    return FAIL;                // wrong allocation!  (store needs to float up)
3271  Node* val = st->in(MemNode::ValueIn);
3272  int complexity_count = 0;
3273  if (!detect_init_independence(val, complexity_count))
3274    return FAIL;                // stored value must be 'simple enough'
3275
3276  // The Store can be captured only if nothing after the allocation
3277  // and before the Store is using the memory location that the store
3278  // overwrites.
3279  bool failed = false;
3280  // If is_complete_with_arraycopy() is true the shape of the graph is
3281  // well defined and is safe so no need for extra checks.
3282  if (!is_complete_with_arraycopy()) {
3283    // We are going to look at each use of the memory state following
3284    // the allocation to make sure nothing reads the memory that the
3285    // Store writes.
3286    const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3287    int alias_idx = phase->C->get_alias_index(t_adr);
3288    ResourceMark rm;
3289    Unique_Node_List mems;
3290    mems.push(mem);
3291    Node* unique_merge = NULL;
3292    for (uint next = 0; next < mems.size(); ++next) {
3293      Node *m  = mems.at(next);
3294      for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3295        Node *n = m->fast_out(j);
3296        if (n->outcnt() == 0) {
3297          continue;
3298        }
3299        if (n == st) {
3300          continue;
3301        } else if (n->in(0) != NULL && n->in(0) != ctl) {
3302          // If the control of this use is different from the control
3303          // of the Store which is right after the InitializeNode then
3304          // this node cannot be between the InitializeNode and the
3305          // Store.
3306          continue;
3307        } else if (n->is_MergeMem()) {
3308          if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3309            // We can hit a MergeMemNode (that will likely go away
3310            // later) that is a direct use of the memory state
3311            // following the InitializeNode on the same slice as the
3312            // store node that we'd like to capture. We need to check
3313            // the uses of the MergeMemNode.
3314            mems.push(n);
3315          }
3316        } else if (n->is_Mem()) {
3317          Node* other_adr = n->in(MemNode::Address);
3318          if (other_adr == adr) {
3319            failed = true;
3320            break;
3321          } else {
3322            const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3323            if (other_t_adr != NULL) {
3324              int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3325              if (other_alias_idx == alias_idx) {
3326                // A load from the same memory slice as the store right
3327                // after the InitializeNode. We check the control of the
3328                // object/array that is loaded from. If it's the same as
3329                // the store control then we cannot capture the store.
3330                assert(!n->is_Store(), "2 stores to same slice on same control?");
3331                Node* base = other_adr;
3332                assert(base->is_AddP(), "should be addp but is %s", base->Name());
3333                base = base->in(AddPNode::Base);
3334                if (base != NULL) {
3335                  base = base->uncast();
3336                  if (base->is_Proj() && base->in(0) == alloc) {
3337                    failed = true;
3338                    break;
3339                  }
3340                }
3341              }
3342            }
3343          }
3344        } else {
3345          failed = true;
3346          break;
3347        }
3348      }
3349    }
3350  }
3351  if (failed) {
3352    if (!can_reshape) {
3353      // We decided we couldn't capture the store during parsing. We
3354      // should try again during the next IGVN once the graph is
3355      // cleaner.
3356      phase->C->record_for_igvn(st);
3357    }
3358    return FAIL;
3359  }
3360
3361  return offset;                // success
3362}
3363
3364// Find the captured store in(i) which corresponds to the range
3365// [start..start+size) in the initialized object.
3366// If there is one, return its index i.  If there isn't, return the
3367// negative of the index where it should be inserted.
3368// Return 0 if the queried range overlaps an initialization boundary
3369// or if dead code is encountered.
3370// If size_in_bytes is zero, do not bother with overlap checks.
3371int InitializeNode::captured_store_insertion_point(intptr_t start,
3372                                                   int size_in_bytes,
3373                                                   PhaseTransform* phase) {
3374  const int FAIL = 0, MAX_STORE = BytesPerLong;
3375
3376  if (is_complete())
3377    return FAIL;                // arraycopy got here first; punt
3378
3379  assert(allocation() != NULL, "must be present");
3380
3381  // no negatives, no header fields:
3382  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3383
3384  // after a certain size, we bail out on tracking all the stores:
3385  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3386  if (start >= ti_limit)  return FAIL;
3387
3388  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3389    if (i >= limit)  return -(int)i; // not found; here is where to put it
3390
3391    Node*    st     = in(i);
3392    intptr_t st_off = get_store_offset(st, phase);
3393    if (st_off < 0) {
3394      if (st != zero_memory()) {
3395        return FAIL;            // bail out if there is dead garbage
3396      }
3397    } else if (st_off > start) {
3398      // ...we are done, since stores are ordered
3399      if (st_off < start + size_in_bytes) {
3400        return FAIL;            // the next store overlaps
3401      }
3402      return -(int)i;           // not found; here is where to put it
3403    } else if (st_off < start) {
3404      if (size_in_bytes != 0 &&
3405          start < st_off + MAX_STORE &&
3406          start < st_off + st->as_Store()->memory_size()) {
3407        return FAIL;            // the previous store overlaps
3408      }
3409    } else {
3410      if (size_in_bytes != 0 &&
3411          st->as_Store()->memory_size() != size_in_bytes) {
3412        return FAIL;            // mismatched store size
3413      }
3414      return i;
3415    }
3416
3417    ++i;
3418  }
3419}
3420
3421// Look for a captured store which initializes at the offset 'start'
3422// with the given size.  If there is no such store, and no other
3423// initialization interferes, then return zero_memory (the memory
3424// projection of the AllocateNode).
3425Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3426                                          PhaseTransform* phase) {
3427  assert(stores_are_sane(phase), "");
3428  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3429  if (i == 0) {
3430    return NULL;                // something is dead
3431  } else if (i < 0) {
3432    return zero_memory();       // just primordial zero bits here
3433  } else {
3434    Node* st = in(i);           // here is the store at this position
3435    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3436    return st;
3437  }
3438}
3439
3440// Create, as a raw pointer, an address within my new object at 'offset'.
3441Node* InitializeNode::make_raw_address(intptr_t offset,
3442                                       PhaseTransform* phase) {
3443  Node* addr = in(RawAddress);
3444  if (offset != 0) {
3445    Compile* C = phase->C;
3446    addr = phase->transform( new AddPNode(C->top(), addr,
3447                                                 phase->MakeConX(offset)) );
3448  }
3449  return addr;
3450}
3451
3452// Clone the given store, converting it into a raw store
3453// initializing a field or element of my new object.
3454// Caller is responsible for retiring the original store,
3455// with subsume_node or the like.
3456//
3457// From the example above InitializeNode::InitializeNode,
3458// here are the old stores to be captured:
3459//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3460//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3461//
3462// Here is the changed code; note the extra edges on init:
3463//   alloc = (Allocate ...)
3464//   rawoop = alloc.RawAddress
3465//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3466//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3467//   init = (Initialize alloc.Control alloc.Memory rawoop
3468//                      rawstore1 rawstore2)
3469//
3470Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3471                                    PhaseTransform* phase, bool can_reshape) {
3472  assert(stores_are_sane(phase), "");
3473
3474  if (start < 0)  return NULL;
3475  assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3476
3477  Compile* C = phase->C;
3478  int size_in_bytes = st->memory_size();
3479  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3480  if (i == 0)  return NULL;     // bail out
3481  Node* prev_mem = NULL;        // raw memory for the captured store
3482  if (i > 0) {
3483    prev_mem = in(i);           // there is a pre-existing store under this one
3484    set_req(i, C->top());       // temporarily disconnect it
3485    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3486  } else {
3487    i = -i;                     // no pre-existing store
3488    prev_mem = zero_memory();   // a slice of the newly allocated object
3489    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3490      set_req(--i, C->top());   // reuse this edge; it has been folded away
3491    else
3492      ins_req(i, C->top());     // build a new edge
3493  }
3494  Node* new_st = st->clone();
3495  new_st->set_req(MemNode::Control, in(Control));
3496  new_st->set_req(MemNode::Memory,  prev_mem);
3497  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3498  new_st = phase->transform(new_st);
3499
3500  // At this point, new_st might have swallowed a pre-existing store
3501  // at the same offset, or perhaps new_st might have disappeared,
3502  // if it redundantly stored the same value (or zero to fresh memory).
3503
3504  // In any case, wire it in:
3505  phase->igvn_rehash_node_delayed(this);
3506  set_req(i, new_st);
3507
3508  // The caller may now kill the old guy.
3509  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3510  assert(check_st == new_st || check_st == NULL, "must be findable");
3511  assert(!is_complete(), "");
3512  return new_st;
3513}
3514
3515static bool store_constant(jlong* tiles, int num_tiles,
3516                           intptr_t st_off, int st_size,
3517                           jlong con) {
3518  if ((st_off & (st_size-1)) != 0)
3519    return false;               // strange store offset (assume size==2**N)
3520  address addr = (address)tiles + st_off;
3521  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3522  switch (st_size) {
3523  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3524  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3525  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3526  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3527  default: return false;        // strange store size (detect size!=2**N here)
3528  }
3529  return true;                  // return success to caller
3530}
3531
3532// Coalesce subword constants into int constants and possibly
3533// into long constants.  The goal, if the CPU permits,
3534// is to initialize the object with a small number of 64-bit tiles.
3535// Also, convert floating-point constants to bit patterns.
3536// Non-constants are not relevant to this pass.
3537//
3538// In terms of the running example on InitializeNode::InitializeNode
3539// and InitializeNode::capture_store, here is the transformation
3540// of rawstore1 and rawstore2 into rawstore12:
3541//   alloc = (Allocate ...)
3542//   rawoop = alloc.RawAddress
3543//   tile12 = 0x00010002
3544//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3545//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3546//
3547void
3548InitializeNode::coalesce_subword_stores(intptr_t header_size,
3549                                        Node* size_in_bytes,
3550                                        PhaseGVN* phase) {
3551  Compile* C = phase->C;
3552
3553  assert(stores_are_sane(phase), "");
3554  // Note:  After this pass, they are not completely sane,
3555  // since there may be some overlaps.
3556
3557  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3558
3559  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3560  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3561  size_limit = MIN2(size_limit, ti_limit);
3562  size_limit = align_size_up(size_limit, BytesPerLong);
3563  int num_tiles = size_limit / BytesPerLong;
3564
3565  // allocate space for the tile map:
3566  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3567  jlong  tiles_buf[small_len];
3568  Node*  nodes_buf[small_len];
3569  jlong  inits_buf[small_len];
3570  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3571                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3572  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3573                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3574  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3575                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3576  // tiles: exact bitwise model of all primitive constants
3577  // nodes: last constant-storing node subsumed into the tiles model
3578  // inits: which bytes (in each tile) are touched by any initializations
3579
3580  //// Pass A: Fill in the tile model with any relevant stores.
3581
3582  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3583  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3584  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3585  Node* zmem = zero_memory(); // initially zero memory state
3586  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3587    Node* st = in(i);
3588    intptr_t st_off = get_store_offset(st, phase);
3589
3590    // Figure out the store's offset and constant value:
3591    if (st_off < header_size)             continue; //skip (ignore header)
3592    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3593    int st_size = st->as_Store()->memory_size();
3594    if (st_off + st_size > size_limit)    break;
3595
3596    // Record which bytes are touched, whether by constant or not.
3597    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3598      continue;                 // skip (strange store size)
3599
3600    const Type* val = phase->type(st->in(MemNode::ValueIn));
3601    if (!val->singleton())                continue; //skip (non-con store)
3602    BasicType type = val->basic_type();
3603
3604    jlong con = 0;
3605    switch (type) {
3606    case T_INT:    con = val->is_int()->get_con();  break;
3607    case T_LONG:   con = val->is_long()->get_con(); break;
3608    case T_FLOAT:  con = jint_cast(val->getf());    break;
3609    case T_DOUBLE: con = jlong_cast(val->getd());   break;
3610    default:                              continue; //skip (odd store type)
3611    }
3612
3613    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3614        st->Opcode() == Op_StoreL) {
3615      continue;                 // This StoreL is already optimal.
3616    }
3617
3618    // Store down the constant.
3619    store_constant(tiles, num_tiles, st_off, st_size, con);
3620
3621    intptr_t j = st_off >> LogBytesPerLong;
3622
3623    if (type == T_INT && st_size == BytesPerInt
3624        && (st_off & BytesPerInt) == BytesPerInt) {
3625      jlong lcon = tiles[j];
3626      if (!Matcher::isSimpleConstant64(lcon) &&
3627          st->Opcode() == Op_StoreI) {
3628        // This StoreI is already optimal by itself.
3629        jint* intcon = (jint*) &tiles[j];
3630        intcon[1] = 0;  // undo the store_constant()
3631
3632        // If the previous store is also optimal by itself, back up and
3633        // undo the action of the previous loop iteration... if we can.
3634        // But if we can't, just let the previous half take care of itself.
3635        st = nodes[j];
3636        st_off -= BytesPerInt;
3637        con = intcon[0];
3638        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3639          assert(st_off >= header_size, "still ignoring header");
3640          assert(get_store_offset(st, phase) == st_off, "must be");
3641          assert(in(i-1) == zmem, "must be");
3642          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3643          assert(con == tcon->is_int()->get_con(), "must be");
3644          // Undo the effects of the previous loop trip, which swallowed st:
3645          intcon[0] = 0;        // undo store_constant()
3646          set_req(i-1, st);     // undo set_req(i, zmem)
3647          nodes[j] = NULL;      // undo nodes[j] = st
3648          --old_subword;        // undo ++old_subword
3649        }
3650        continue;               // This StoreI is already optimal.
3651      }
3652    }
3653
3654    // This store is not needed.
3655    set_req(i, zmem);
3656    nodes[j] = st;              // record for the moment
3657    if (st_size < BytesPerLong) // something has changed
3658          ++old_subword;        // includes int/float, but who's counting...
3659    else  ++old_long;
3660  }
3661
3662  if ((old_subword + old_long) == 0)
3663    return;                     // nothing more to do
3664
3665  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3666  // Be sure to insert them before overlapping non-constant stores.
3667  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3668  for (int j = 0; j < num_tiles; j++) {
3669    jlong con  = tiles[j];
3670    jlong init = inits[j];
3671    if (con == 0)  continue;
3672    jint con0,  con1;           // split the constant, address-wise
3673    jint init0, init1;          // split the init map, address-wise
3674    { union { jlong con; jint intcon[2]; } u;
3675      u.con = con;
3676      con0  = u.intcon[0];
3677      con1  = u.intcon[1];
3678      u.con = init;
3679      init0 = u.intcon[0];
3680      init1 = u.intcon[1];
3681    }
3682
3683    Node* old = nodes[j];
3684    assert(old != NULL, "need the prior store");
3685    intptr_t offset = (j * BytesPerLong);
3686
3687    bool split = !Matcher::isSimpleConstant64(con);
3688
3689    if (offset < header_size) {
3690      assert(offset + BytesPerInt >= header_size, "second int counts");
3691      assert(*(jint*)&tiles[j] == 0, "junk in header");
3692      split = true;             // only the second word counts
3693      // Example:  int a[] = { 42 ... }
3694    } else if (con0 == 0 && init0 == -1) {
3695      split = true;             // first word is covered by full inits
3696      // Example:  int a[] = { ... foo(), 42 ... }
3697    } else if (con1 == 0 && init1 == -1) {
3698      split = true;             // second word is covered by full inits
3699      // Example:  int a[] = { ... 42, foo() ... }
3700    }
3701
3702    // Here's a case where init0 is neither 0 nor -1:
3703    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3704    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3705    // In this case the tile is not split; it is (jlong)42.
3706    // The big tile is stored down, and then the foo() value is inserted.
3707    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3708
3709    Node* ctl = old->in(MemNode::Control);
3710    Node* adr = make_raw_address(offset, phase);
3711    const TypePtr* atp = TypeRawPtr::BOTTOM;
3712
3713    // One or two coalesced stores to plop down.
3714    Node*    st[2];
3715    intptr_t off[2];
3716    int  nst = 0;
3717    if (!split) {
3718      ++new_long;
3719      off[nst] = offset;
3720      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3721                                  phase->longcon(con), T_LONG, MemNode::unordered);
3722    } else {
3723      // Omit either if it is a zero.
3724      if (con0 != 0) {
3725        ++new_int;
3726        off[nst]  = offset;
3727        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3728                                    phase->intcon(con0), T_INT, MemNode::unordered);
3729      }
3730      if (con1 != 0) {
3731        ++new_int;
3732        offset += BytesPerInt;
3733        adr = make_raw_address(offset, phase);
3734        off[nst]  = offset;
3735        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3736                                    phase->intcon(con1), T_INT, MemNode::unordered);
3737      }
3738    }
3739
3740    // Insert second store first, then the first before the second.
3741    // Insert each one just before any overlapping non-constant stores.
3742    while (nst > 0) {
3743      Node* st1 = st[--nst];
3744      C->copy_node_notes_to(st1, old);
3745      st1 = phase->transform(st1);
3746      offset = off[nst];
3747      assert(offset >= header_size, "do not smash header");
3748      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3749      guarantee(ins_idx != 0, "must re-insert constant store");
3750      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3751      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3752        set_req(--ins_idx, st1);
3753      else
3754        ins_req(ins_idx, st1);
3755    }
3756  }
3757
3758  if (PrintCompilation && WizardMode)
3759    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3760                  old_subword, old_long, new_int, new_long);
3761  if (C->log() != NULL)
3762    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3763                   old_subword, old_long, new_int, new_long);
3764
3765  // Clean up any remaining occurrences of zmem:
3766  remove_extra_zeroes();
3767}
3768
3769// Explore forward from in(start) to find the first fully initialized
3770// word, and return its offset.  Skip groups of subword stores which
3771// together initialize full words.  If in(start) is itself part of a
3772// fully initialized word, return the offset of in(start).  If there
3773// are no following full-word stores, or if something is fishy, return
3774// a negative value.
3775intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3776  int       int_map = 0;
3777  intptr_t  int_map_off = 0;
3778  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3779
3780  for (uint i = start, limit = req(); i < limit; i++) {
3781    Node* st = in(i);
3782
3783    intptr_t st_off = get_store_offset(st, phase);
3784    if (st_off < 0)  break;  // return conservative answer
3785
3786    int st_size = st->as_Store()->memory_size();
3787    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3788      return st_off;            // we found a complete word init
3789    }
3790
3791    // update the map:
3792
3793    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3794    if (this_int_off != int_map_off) {
3795      // reset the map:
3796      int_map = 0;
3797      int_map_off = this_int_off;
3798    }
3799
3800    int subword_off = st_off - this_int_off;
3801    int_map |= right_n_bits(st_size) << subword_off;
3802    if ((int_map & FULL_MAP) == FULL_MAP) {
3803      return this_int_off;      // we found a complete word init
3804    }
3805
3806    // Did this store hit or cross the word boundary?
3807    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3808    if (next_int_off == this_int_off + BytesPerInt) {
3809      // We passed the current int, without fully initializing it.
3810      int_map_off = next_int_off;
3811      int_map >>= BytesPerInt;
3812    } else if (next_int_off > this_int_off + BytesPerInt) {
3813      // We passed the current and next int.
3814      return this_int_off + BytesPerInt;
3815    }
3816  }
3817
3818  return -1;
3819}
3820
3821
3822// Called when the associated AllocateNode is expanded into CFG.
3823// At this point, we may perform additional optimizations.
3824// Linearize the stores by ascending offset, to make memory
3825// activity as coherent as possible.
3826Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3827                                      intptr_t header_size,
3828                                      Node* size_in_bytes,
3829                                      PhaseGVN* phase) {
3830  assert(!is_complete(), "not already complete");
3831  assert(stores_are_sane(phase), "");
3832  assert(allocation() != NULL, "must be present");
3833
3834  remove_extra_zeroes();
3835
3836  if (ReduceFieldZeroing || ReduceBulkZeroing)
3837    // reduce instruction count for common initialization patterns
3838    coalesce_subword_stores(header_size, size_in_bytes, phase);
3839
3840  Node* zmem = zero_memory();   // initially zero memory state
3841  Node* inits = zmem;           // accumulating a linearized chain of inits
3842  #ifdef ASSERT
3843  intptr_t first_offset = allocation()->minimum_header_size();
3844  intptr_t last_init_off = first_offset;  // previous init offset
3845  intptr_t last_init_end = first_offset;  // previous init offset+size
3846  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3847  #endif
3848  intptr_t zeroes_done = header_size;
3849
3850  bool do_zeroing = true;       // we might give up if inits are very sparse
3851  int  big_init_gaps = 0;       // how many large gaps have we seen?
3852
3853  if (UseTLAB && ZeroTLAB)  do_zeroing = false;
3854  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3855
3856  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3857    Node* st = in(i);
3858    intptr_t st_off = get_store_offset(st, phase);
3859    if (st_off < 0)
3860      break;                    // unknown junk in the inits
3861    if (st->in(MemNode::Memory) != zmem)
3862      break;                    // complicated store chains somehow in list
3863
3864    int st_size = st->as_Store()->memory_size();
3865    intptr_t next_init_off = st_off + st_size;
3866
3867    if (do_zeroing && zeroes_done < next_init_off) {
3868      // See if this store needs a zero before it or under it.
3869      intptr_t zeroes_needed = st_off;
3870
3871      if (st_size < BytesPerInt) {
3872        // Look for subword stores which only partially initialize words.
3873        // If we find some, we must lay down some word-level zeroes first,
3874        // underneath the subword stores.
3875        //
3876        // Examples:
3877        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3878        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3879        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3880        //
3881        // Note:  coalesce_subword_stores may have already done this,
3882        // if it was prompted by constant non-zero subword initializers.
3883        // But this case can still arise with non-constant stores.
3884
3885        intptr_t next_full_store = find_next_fullword_store(i, phase);
3886
3887        // In the examples above:
3888        //   in(i)          p   q   r   s     x   y     z
3889        //   st_off        12  13  14  15    12  13    14
3890        //   st_size        1   1   1   1     1   1     1
3891        //   next_full_s.  12  16  16  16    16  16    16
3892        //   z's_done      12  16  16  16    12  16    12
3893        //   z's_needed    12  16  16  16    16  16    16
3894        //   zsize          0   0   0   0     4   0     4
3895        if (next_full_store < 0) {
3896          // Conservative tack:  Zero to end of current word.
3897          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3898        } else {
3899          // Zero to beginning of next fully initialized word.
3900          // Or, don't zero at all, if we are already in that word.
3901          assert(next_full_store >= zeroes_needed, "must go forward");
3902          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3903          zeroes_needed = next_full_store;
3904        }
3905      }
3906
3907      if (zeroes_needed > zeroes_done) {
3908        intptr_t zsize = zeroes_needed - zeroes_done;
3909        // Do some incremental zeroing on rawmem, in parallel with inits.
3910        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3911        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3912                                              zeroes_done, zeroes_needed,
3913                                              phase);
3914        zeroes_done = zeroes_needed;
3915        if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
3916          do_zeroing = false;   // leave the hole, next time
3917      }
3918    }
3919
3920    // Collect the store and move on:
3921    st->set_req(MemNode::Memory, inits);
3922    inits = st;                 // put it on the linearized chain
3923    set_req(i, zmem);           // unhook from previous position
3924
3925    if (zeroes_done == st_off)
3926      zeroes_done = next_init_off;
3927
3928    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3929
3930    #ifdef ASSERT
3931    // Various order invariants.  Weaker than stores_are_sane because
3932    // a large constant tile can be filled in by smaller non-constant stores.
3933    assert(st_off >= last_init_off, "inits do not reverse");
3934    last_init_off = st_off;
3935    const Type* val = NULL;
3936    if (st_size >= BytesPerInt &&
3937        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3938        (int)val->basic_type() < (int)T_OBJECT) {
3939      assert(st_off >= last_tile_end, "tiles do not overlap");
3940      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3941      last_tile_end = MAX2(last_tile_end, next_init_off);
3942    } else {
3943      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3944      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3945      assert(st_off      >= last_init_end, "inits do not overlap");
3946      last_init_end = next_init_off;  // it's a non-tile
3947    }
3948    #endif //ASSERT
3949  }
3950
3951  remove_extra_zeroes();        // clear out all the zmems left over
3952  add_req(inits);
3953
3954  if (!(UseTLAB && ZeroTLAB)) {
3955    // If anything remains to be zeroed, zero it all now.
3956    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3957    // if it is the last unused 4 bytes of an instance, forget about it
3958    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3959    if (zeroes_done + BytesPerLong >= size_limit) {
3960      AllocateNode* alloc = allocation();
3961      assert(alloc != NULL, "must be present");
3962      if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
3963        Node* klass_node = alloc->in(AllocateNode::KlassNode);
3964        ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3965        if (zeroes_done == k->layout_helper())
3966          zeroes_done = size_limit;
3967      }
3968    }
3969    if (zeroes_done < size_limit) {
3970      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3971                                            zeroes_done, size_in_bytes, phase);
3972    }
3973  }
3974
3975  set_complete(phase);
3976  return rawmem;
3977}
3978
3979
3980#ifdef ASSERT
3981bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3982  if (is_complete())
3983    return true;                // stores could be anything at this point
3984  assert(allocation() != NULL, "must be present");
3985  intptr_t last_off = allocation()->minimum_header_size();
3986  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3987    Node* st = in(i);
3988    intptr_t st_off = get_store_offset(st, phase);
3989    if (st_off < 0)  continue;  // ignore dead garbage
3990    if (last_off > st_off) {
3991      tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
3992      this->dump(2);
3993      assert(false, "ascending store offsets");
3994      return false;
3995    }
3996    last_off = st_off + st->as_Store()->memory_size();
3997  }
3998  return true;
3999}
4000#endif //ASSERT
4001
4002
4003
4004
4005//============================MergeMemNode=====================================
4006//
4007// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4008// contributing store or call operations.  Each contributor provides the memory
4009// state for a particular "alias type" (see Compile::alias_type).  For example,
4010// if a MergeMem has an input X for alias category #6, then any memory reference
4011// to alias category #6 may use X as its memory state input, as an exact equivalent
4012// to using the MergeMem as a whole.
4013//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4014//
4015// (Here, the <N> notation gives the index of the relevant adr_type.)
4016//
4017// In one special case (and more cases in the future), alias categories overlap.
4018// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4019// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4020// it is exactly equivalent to that state W:
4021//   MergeMem(<Bot>: W) <==> W
4022//
4023// Usually, the merge has more than one input.  In that case, where inputs
4024// overlap (i.e., one is Bot), the narrower alias type determines the memory
4025// state for that type, and the wider alias type (Bot) fills in everywhere else:
4026//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4027//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4028//
4029// A merge can take a "wide" memory state as one of its narrow inputs.
4030// This simply means that the merge observes out only the relevant parts of
4031// the wide input.  That is, wide memory states arriving at narrow merge inputs
4032// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4033//
4034// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4035// and that memory slices "leak through":
4036//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4037//
4038// But, in such a cascade, repeated memory slices can "block the leak":
4039//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4040//
4041// In the last example, Y is not part of the combined memory state of the
4042// outermost MergeMem.  The system must, of course, prevent unschedulable
4043// memory states from arising, so you can be sure that the state Y is somehow
4044// a precursor to state Y'.
4045//
4046//
4047// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4048// of each MergeMemNode array are exactly the numerical alias indexes, including
4049// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4050// Compile::alias_type (and kin) produce and manage these indexes.
4051//
4052// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4053// (Note that this provides quick access to the top node inside MergeMem methods,
4054// without the need to reach out via TLS to Compile::current.)
4055//
4056// As a consequence of what was just described, a MergeMem that represents a full
4057// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4058// containing all alias categories.
4059//
4060// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4061//
4062// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4063// a memory state for the alias type <N>, or else the top node, meaning that
4064// there is no particular input for that alias type.  Note that the length of
4065// a MergeMem is variable, and may be extended at any time to accommodate new
4066// memory states at larger alias indexes.  When merges grow, they are of course
4067// filled with "top" in the unused in() positions.
4068//
4069// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4070// (Top was chosen because it works smoothly with passes like GCM.)
4071//
4072// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4073// the type of random VM bits like TLS references.)  Since it is always the
4074// first non-Bot memory slice, some low-level loops use it to initialize an
4075// index variable:  for (i = AliasIdxRaw; i < req(); i++).
4076//
4077//
4078// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4079// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4080// the memory state for alias type <N>, or (if there is no particular slice at <N>,
4081// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4082// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4083// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4084//
4085// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4086// really that different from the other memory inputs.  An abbreviation called
4087// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4088//
4089//
4090// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4091// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4092// that "emerges though" the base memory will be marked as excluding the alias types
4093// of the other (narrow-memory) copies which "emerged through" the narrow edges:
4094//
4095//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4096//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4097//
4098// This strange "subtraction" effect is necessary to ensure IGVN convergence.
4099// (It is currently unimplemented.)  As you can see, the resulting merge is
4100// actually a disjoint union of memory states, rather than an overlay.
4101//
4102
4103//------------------------------MergeMemNode-----------------------------------
4104Node* MergeMemNode::make_empty_memory() {
4105  Node* empty_memory = (Node*) Compile::current()->top();
4106  assert(empty_memory->is_top(), "correct sentinel identity");
4107  return empty_memory;
4108}
4109
4110MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4111  init_class_id(Class_MergeMem);
4112  // all inputs are nullified in Node::Node(int)
4113  // set_input(0, NULL);  // no control input
4114
4115  // Initialize the edges uniformly to top, for starters.
4116  Node* empty_mem = make_empty_memory();
4117  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4118    init_req(i,empty_mem);
4119  }
4120  assert(empty_memory() == empty_mem, "");
4121
4122  if( new_base != NULL && new_base->is_MergeMem() ) {
4123    MergeMemNode* mdef = new_base->as_MergeMem();
4124    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4125    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4126      mms.set_memory(mms.memory2());
4127    }
4128    assert(base_memory() == mdef->base_memory(), "");
4129  } else {
4130    set_base_memory(new_base);
4131  }
4132}
4133
4134// Make a new, untransformed MergeMem with the same base as 'mem'.
4135// If mem is itself a MergeMem, populate the result with the same edges.
4136MergeMemNode* MergeMemNode::make(Node* mem) {
4137  return new MergeMemNode(mem);
4138}
4139
4140//------------------------------cmp--------------------------------------------
4141uint MergeMemNode::hash() const { return NO_HASH; }
4142uint MergeMemNode::cmp( const Node &n ) const {
4143  return (&n == this);          // Always fail except on self
4144}
4145
4146//------------------------------Identity---------------------------------------
4147Node* MergeMemNode::Identity(PhaseGVN* phase) {
4148  // Identity if this merge point does not record any interesting memory
4149  // disambiguations.
4150  Node* base_mem = base_memory();
4151  Node* empty_mem = empty_memory();
4152  if (base_mem != empty_mem) {  // Memory path is not dead?
4153    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4154      Node* mem = in(i);
4155      if (mem != empty_mem && mem != base_mem) {
4156        return this;            // Many memory splits; no change
4157      }
4158    }
4159  }
4160  return base_mem;              // No memory splits; ID on the one true input
4161}
4162
4163//------------------------------Ideal------------------------------------------
4164// This method is invoked recursively on chains of MergeMem nodes
4165Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4166  // Remove chain'd MergeMems
4167  //
4168  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4169  // relative to the "in(Bot)".  Since we are patching both at the same time,
4170  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4171  // but rewrite each "in(i)" relative to the new "in(Bot)".
4172  Node *progress = NULL;
4173
4174
4175  Node* old_base = base_memory();
4176  Node* empty_mem = empty_memory();
4177  if (old_base == empty_mem)
4178    return NULL; // Dead memory path.
4179
4180  MergeMemNode* old_mbase;
4181  if (old_base != NULL && old_base->is_MergeMem())
4182    old_mbase = old_base->as_MergeMem();
4183  else
4184    old_mbase = NULL;
4185  Node* new_base = old_base;
4186
4187  // simplify stacked MergeMems in base memory
4188  if (old_mbase)  new_base = old_mbase->base_memory();
4189
4190  // the base memory might contribute new slices beyond my req()
4191  if (old_mbase)  grow_to_match(old_mbase);
4192
4193  // Look carefully at the base node if it is a phi.
4194  PhiNode* phi_base;
4195  if (new_base != NULL && new_base->is_Phi())
4196    phi_base = new_base->as_Phi();
4197  else
4198    phi_base = NULL;
4199
4200  Node*    phi_reg = NULL;
4201  uint     phi_len = (uint)-1;
4202  if (phi_base != NULL && !phi_base->is_copy()) {
4203    // do not examine phi if degraded to a copy
4204    phi_reg = phi_base->region();
4205    phi_len = phi_base->req();
4206    // see if the phi is unfinished
4207    for (uint i = 1; i < phi_len; i++) {
4208      if (phi_base->in(i) == NULL) {
4209        // incomplete phi; do not look at it yet!
4210        phi_reg = NULL;
4211        phi_len = (uint)-1;
4212        break;
4213      }
4214    }
4215  }
4216
4217  // Note:  We do not call verify_sparse on entry, because inputs
4218  // can normalize to the base_memory via subsume_node or similar
4219  // mechanisms.  This method repairs that damage.
4220
4221  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4222
4223  // Look at each slice.
4224  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4225    Node* old_in = in(i);
4226    // calculate the old memory value
4227    Node* old_mem = old_in;
4228    if (old_mem == empty_mem)  old_mem = old_base;
4229    assert(old_mem == memory_at(i), "");
4230
4231    // maybe update (reslice) the old memory value
4232
4233    // simplify stacked MergeMems
4234    Node* new_mem = old_mem;
4235    MergeMemNode* old_mmem;
4236    if (old_mem != NULL && old_mem->is_MergeMem())
4237      old_mmem = old_mem->as_MergeMem();
4238    else
4239      old_mmem = NULL;
4240    if (old_mmem == this) {
4241      // This can happen if loops break up and safepoints disappear.
4242      // A merge of BotPtr (default) with a RawPtr memory derived from a
4243      // safepoint can be rewritten to a merge of the same BotPtr with
4244      // the BotPtr phi coming into the loop.  If that phi disappears
4245      // also, we can end up with a self-loop of the mergemem.
4246      // In general, if loops degenerate and memory effects disappear,
4247      // a mergemem can be left looking at itself.  This simply means
4248      // that the mergemem's default should be used, since there is
4249      // no longer any apparent effect on this slice.
4250      // Note: If a memory slice is a MergeMem cycle, it is unreachable
4251      //       from start.  Update the input to TOP.
4252      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4253    }
4254    else if (old_mmem != NULL) {
4255      new_mem = old_mmem->memory_at(i);
4256    }
4257    // else preceding memory was not a MergeMem
4258
4259    // replace equivalent phis (unfortunately, they do not GVN together)
4260    if (new_mem != NULL && new_mem != new_base &&
4261        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4262      if (new_mem->is_Phi()) {
4263        PhiNode* phi_mem = new_mem->as_Phi();
4264        for (uint i = 1; i < phi_len; i++) {
4265          if (phi_base->in(i) != phi_mem->in(i)) {
4266            phi_mem = NULL;
4267            break;
4268          }
4269        }
4270        if (phi_mem != NULL) {
4271          // equivalent phi nodes; revert to the def
4272          new_mem = new_base;
4273        }
4274      }
4275    }
4276
4277    // maybe store down a new value
4278    Node* new_in = new_mem;
4279    if (new_in == new_base)  new_in = empty_mem;
4280
4281    if (new_in != old_in) {
4282      // Warning:  Do not combine this "if" with the previous "if"
4283      // A memory slice might have be be rewritten even if it is semantically
4284      // unchanged, if the base_memory value has changed.
4285      set_req(i, new_in);
4286      progress = this;          // Report progress
4287    }
4288  }
4289
4290  if (new_base != old_base) {
4291    set_req(Compile::AliasIdxBot, new_base);
4292    // Don't use set_base_memory(new_base), because we need to update du.
4293    assert(base_memory() == new_base, "");
4294    progress = this;
4295  }
4296
4297  if( base_memory() == this ) {
4298    // a self cycle indicates this memory path is dead
4299    set_req(Compile::AliasIdxBot, empty_mem);
4300  }
4301
4302  // Resolve external cycles by calling Ideal on a MergeMem base_memory
4303  // Recursion must occur after the self cycle check above
4304  if( base_memory()->is_MergeMem() ) {
4305    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4306    Node *m = phase->transform(new_mbase);  // Rollup any cycles
4307    if( m != NULL && (m->is_top() ||
4308        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4309      // propagate rollup of dead cycle to self
4310      set_req(Compile::AliasIdxBot, empty_mem);
4311    }
4312  }
4313
4314  if( base_memory() == empty_mem ) {
4315    progress = this;
4316    // Cut inputs during Parse phase only.
4317    // During Optimize phase a dead MergeMem node will be subsumed by Top.
4318    if( !can_reshape ) {
4319      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4320        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4321      }
4322    }
4323  }
4324
4325  if( !progress && base_memory()->is_Phi() && can_reshape ) {
4326    // Check if PhiNode::Ideal's "Split phis through memory merges"
4327    // transform should be attempted. Look for this->phi->this cycle.
4328    uint merge_width = req();
4329    if (merge_width > Compile::AliasIdxRaw) {
4330      PhiNode* phi = base_memory()->as_Phi();
4331      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4332        if (phi->in(i) == this) {
4333          phase->is_IterGVN()->_worklist.push(phi);
4334          break;
4335        }
4336      }
4337    }
4338  }
4339
4340  assert(progress || verify_sparse(), "please, no dups of base");
4341  return progress;
4342}
4343
4344//-------------------------set_base_memory-------------------------------------
4345void MergeMemNode::set_base_memory(Node *new_base) {
4346  Node* empty_mem = empty_memory();
4347  set_req(Compile::AliasIdxBot, new_base);
4348  assert(memory_at(req()) == new_base, "must set default memory");
4349  // Clear out other occurrences of new_base:
4350  if (new_base != empty_mem) {
4351    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4352      if (in(i) == new_base)  set_req(i, empty_mem);
4353    }
4354  }
4355}
4356
4357//------------------------------out_RegMask------------------------------------
4358const RegMask &MergeMemNode::out_RegMask() const {
4359  return RegMask::Empty;
4360}
4361
4362//------------------------------dump_spec--------------------------------------
4363#ifndef PRODUCT
4364void MergeMemNode::dump_spec(outputStream *st) const {
4365  st->print(" {");
4366  Node* base_mem = base_memory();
4367  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4368    Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4369    if (mem == base_mem) { st->print(" -"); continue; }
4370    st->print( " N%d:", mem->_idx );
4371    Compile::current()->get_adr_type(i)->dump_on(st);
4372  }
4373  st->print(" }");
4374}
4375#endif // !PRODUCT
4376
4377
4378#ifdef ASSERT
4379static bool might_be_same(Node* a, Node* b) {
4380  if (a == b)  return true;
4381  if (!(a->is_Phi() || b->is_Phi()))  return false;
4382  // phis shift around during optimization
4383  return true;  // pretty stupid...
4384}
4385
4386// verify a narrow slice (either incoming or outgoing)
4387static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4388  if (!VerifyAliases)       return;  // don't bother to verify unless requested
4389  if (is_error_reported())  return;  // muzzle asserts when debugging an error
4390  if (Node::in_dump())      return;  // muzzle asserts when printing
4391  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4392  assert(n != NULL, "");
4393  // Elide intervening MergeMem's
4394  while (n->is_MergeMem()) {
4395    n = n->as_MergeMem()->memory_at(alias_idx);
4396  }
4397  Compile* C = Compile::current();
4398  const TypePtr* n_adr_type = n->adr_type();
4399  if (n == m->empty_memory()) {
4400    // Implicit copy of base_memory()
4401  } else if (n_adr_type != TypePtr::BOTTOM) {
4402    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4403    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4404  } else {
4405    // A few places like make_runtime_call "know" that VM calls are narrow,
4406    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4407    bool expected_wide_mem = false;
4408    if (n == m->base_memory()) {
4409      expected_wide_mem = true;
4410    } else if (alias_idx == Compile::AliasIdxRaw ||
4411               n == m->memory_at(Compile::AliasIdxRaw)) {
4412      expected_wide_mem = true;
4413    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4414      // memory can "leak through" calls on channels that
4415      // are write-once.  Allow this also.
4416      expected_wide_mem = true;
4417    }
4418    assert(expected_wide_mem, "expected narrow slice replacement");
4419  }
4420}
4421#else // !ASSERT
4422#define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4423#endif
4424
4425
4426//-----------------------------memory_at---------------------------------------
4427Node* MergeMemNode::memory_at(uint alias_idx) const {
4428  assert(alias_idx >= Compile::AliasIdxRaw ||
4429         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4430         "must avoid base_memory and AliasIdxTop");
4431
4432  // Otherwise, it is a narrow slice.
4433  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4434  Compile *C = Compile::current();
4435  if (is_empty_memory(n)) {
4436    // the array is sparse; empty slots are the "top" node
4437    n = base_memory();
4438    assert(Node::in_dump()
4439           || n == NULL || n->bottom_type() == Type::TOP
4440           || n->adr_type() == NULL // address is TOP
4441           || n->adr_type() == TypePtr::BOTTOM
4442           || n->adr_type() == TypeRawPtr::BOTTOM
4443           || Compile::current()->AliasLevel() == 0,
4444           "must be a wide memory");
4445    // AliasLevel == 0 if we are organizing the memory states manually.
4446    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4447  } else {
4448    // make sure the stored slice is sane
4449    #ifdef ASSERT
4450    if (is_error_reported() || Node::in_dump()) {
4451    } else if (might_be_same(n, base_memory())) {
4452      // Give it a pass:  It is a mostly harmless repetition of the base.
4453      // This can arise normally from node subsumption during optimization.
4454    } else {
4455      verify_memory_slice(this, alias_idx, n);
4456    }
4457    #endif
4458  }
4459  return n;
4460}
4461
4462//---------------------------set_memory_at-------------------------------------
4463void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4464  verify_memory_slice(this, alias_idx, n);
4465  Node* empty_mem = empty_memory();
4466  if (n == base_memory())  n = empty_mem;  // collapse default
4467  uint need_req = alias_idx+1;
4468  if (req() < need_req) {
4469    if (n == empty_mem)  return;  // already the default, so do not grow me
4470    // grow the sparse array
4471    do {
4472      add_req(empty_mem);
4473    } while (req() < need_req);
4474  }
4475  set_req( alias_idx, n );
4476}
4477
4478
4479
4480//--------------------------iteration_setup------------------------------------
4481void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4482  if (other != NULL) {
4483    grow_to_match(other);
4484    // invariant:  the finite support of mm2 is within mm->req()
4485    #ifdef ASSERT
4486    for (uint i = req(); i < other->req(); i++) {
4487      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4488    }
4489    #endif
4490  }
4491  // Replace spurious copies of base_memory by top.
4492  Node* base_mem = base_memory();
4493  if (base_mem != NULL && !base_mem->is_top()) {
4494    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4495      if (in(i) == base_mem)
4496        set_req(i, empty_memory());
4497    }
4498  }
4499}
4500
4501//---------------------------grow_to_match-------------------------------------
4502void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4503  Node* empty_mem = empty_memory();
4504  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4505  // look for the finite support of the other memory
4506  for (uint i = other->req(); --i >= req(); ) {
4507    if (other->in(i) != empty_mem) {
4508      uint new_len = i+1;
4509      while (req() < new_len)  add_req(empty_mem);
4510      break;
4511    }
4512  }
4513}
4514
4515//---------------------------verify_sparse-------------------------------------
4516#ifndef PRODUCT
4517bool MergeMemNode::verify_sparse() const {
4518  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4519  Node* base_mem = base_memory();
4520  // The following can happen in degenerate cases, since empty==top.
4521  if (is_empty_memory(base_mem))  return true;
4522  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4523    assert(in(i) != NULL, "sane slice");
4524    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4525  }
4526  return true;
4527}
4528
4529bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4530  Node* n;
4531  n = mm->in(idx);
4532  if (mem == n)  return true;  // might be empty_memory()
4533  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4534  if (mem == n)  return true;
4535  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4536    if (mem == n)  return true;
4537    if (n == NULL)  break;
4538  }
4539  return false;
4540}
4541#endif // !PRODUCT
4542