1/*
2 * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "opto/addnode.hpp"
27#include "opto/castnode.hpp"
28#include "opto/convertnode.hpp"
29#include "opto/matcher.hpp"
30#include "opto/phaseX.hpp"
31#include "opto/subnode.hpp"
32#include "runtime/sharedRuntime.hpp"
33
34//=============================================================================
35//------------------------------Identity---------------------------------------
36Node* Conv2BNode::Identity(PhaseGVN* phase) {
37  const Type *t = phase->type( in(1) );
38  if( t == Type::TOP ) return in(1);
39  if( t == TypeInt::ZERO ) return in(1);
40  if( t == TypeInt::ONE ) return in(1);
41  if( t == TypeInt::BOOL ) return in(1);
42  return this;
43}
44
45//------------------------------Value------------------------------------------
46const Type* Conv2BNode::Value(PhaseGVN* phase) const {
47  const Type *t = phase->type( in(1) );
48  if( t == Type::TOP ) return Type::TOP;
49  if( t == TypeInt::ZERO ) return TypeInt::ZERO;
50  if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
51  const TypePtr *tp = t->isa_ptr();
52  if( tp != NULL ) {
53    if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
54    if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
55    if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
56    return TypeInt::BOOL;
57  }
58  if (t->base() != Type::Int) return TypeInt::BOOL;
59  const TypeInt *ti = t->is_int();
60  if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
61  return TypeInt::BOOL;
62}
63
64
65// The conversions operations are all Alpha sorted.  Please keep it that way!
66//=============================================================================
67//------------------------------Value------------------------------------------
68const Type* ConvD2FNode::Value(PhaseGVN* phase) const {
69  const Type *t = phase->type( in(1) );
70  if( t == Type::TOP ) return Type::TOP;
71  if( t == Type::DOUBLE ) return Type::FLOAT;
72  const TypeD *td = t->is_double_constant();
73  return TypeF::make( (float)td->getd() );
74}
75
76//------------------------------Identity---------------------------------------
77// Float's can be converted to doubles with no loss of bits.  Hence
78// converting a float to a double and back to a float is a NOP.
79Node* ConvD2FNode::Identity(PhaseGVN* phase) {
80  return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
81}
82
83//=============================================================================
84//------------------------------Value------------------------------------------
85const Type* ConvD2INode::Value(PhaseGVN* phase) const {
86  const Type *t = phase->type( in(1) );
87  if( t == Type::TOP ) return Type::TOP;
88  if( t == Type::DOUBLE ) return TypeInt::INT;
89  const TypeD *td = t->is_double_constant();
90  return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
91}
92
93//------------------------------Ideal------------------------------------------
94// If converting to an int type, skip any rounding nodes
95Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
96  if( in(1)->Opcode() == Op_RoundDouble )
97  set_req(1,in(1)->in(1));
98  return NULL;
99}
100
101//------------------------------Identity---------------------------------------
102// Int's can be converted to doubles with no loss of bits.  Hence
103// converting an integer to a double and back to an integer is a NOP.
104Node* ConvD2INode::Identity(PhaseGVN* phase) {
105  return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
106}
107
108//=============================================================================
109//------------------------------Value------------------------------------------
110const Type* ConvD2LNode::Value(PhaseGVN* phase) const {
111  const Type *t = phase->type( in(1) );
112  if( t == Type::TOP ) return Type::TOP;
113  if( t == Type::DOUBLE ) return TypeLong::LONG;
114  const TypeD *td = t->is_double_constant();
115  return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
116}
117
118//------------------------------Identity---------------------------------------
119Node* ConvD2LNode::Identity(PhaseGVN* phase) {
120  // Remove ConvD2L->ConvL2D->ConvD2L sequences.
121  if( in(1)       ->Opcode() == Op_ConvL2D &&
122     in(1)->in(1)->Opcode() == Op_ConvD2L )
123  return in(1)->in(1);
124  return this;
125}
126
127//------------------------------Ideal------------------------------------------
128// If converting to an int type, skip any rounding nodes
129Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
130  if( in(1)->Opcode() == Op_RoundDouble )
131  set_req(1,in(1)->in(1));
132  return NULL;
133}
134
135//=============================================================================
136//------------------------------Value------------------------------------------
137const Type* ConvF2DNode::Value(PhaseGVN* phase) const {
138  const Type *t = phase->type( in(1) );
139  if( t == Type::TOP ) return Type::TOP;
140  if( t == Type::FLOAT ) return Type::DOUBLE;
141  const TypeF *tf = t->is_float_constant();
142  return TypeD::make( (double)tf->getf() );
143}
144
145//=============================================================================
146//------------------------------Value------------------------------------------
147const Type* ConvF2INode::Value(PhaseGVN* phase) const {
148  const Type *t = phase->type( in(1) );
149  if( t == Type::TOP )       return Type::TOP;
150  if( t == Type::FLOAT ) return TypeInt::INT;
151  const TypeF *tf = t->is_float_constant();
152  return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
153}
154
155//------------------------------Identity---------------------------------------
156Node* ConvF2INode::Identity(PhaseGVN* phase) {
157  // Remove ConvF2I->ConvI2F->ConvF2I sequences.
158  if( in(1)       ->Opcode() == Op_ConvI2F &&
159     in(1)->in(1)->Opcode() == Op_ConvF2I )
160  return in(1)->in(1);
161  return this;
162}
163
164//------------------------------Ideal------------------------------------------
165// If converting to an int type, skip any rounding nodes
166Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
167  if( in(1)->Opcode() == Op_RoundFloat )
168  set_req(1,in(1)->in(1));
169  return NULL;
170}
171
172//=============================================================================
173//------------------------------Value------------------------------------------
174const Type* ConvF2LNode::Value(PhaseGVN* phase) const {
175  const Type *t = phase->type( in(1) );
176  if( t == Type::TOP )       return Type::TOP;
177  if( t == Type::FLOAT ) return TypeLong::LONG;
178  const TypeF *tf = t->is_float_constant();
179  return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
180}
181
182//------------------------------Identity---------------------------------------
183Node* ConvF2LNode::Identity(PhaseGVN* phase) {
184  // Remove ConvF2L->ConvL2F->ConvF2L sequences.
185  if( in(1)       ->Opcode() == Op_ConvL2F &&
186     in(1)->in(1)->Opcode() == Op_ConvF2L )
187  return in(1)->in(1);
188  return this;
189}
190
191//------------------------------Ideal------------------------------------------
192// If converting to an int type, skip any rounding nodes
193Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
194  if( in(1)->Opcode() == Op_RoundFloat )
195  set_req(1,in(1)->in(1));
196  return NULL;
197}
198
199//=============================================================================
200//------------------------------Value------------------------------------------
201const Type* ConvI2DNode::Value(PhaseGVN* phase) const {
202  const Type *t = phase->type( in(1) );
203  if( t == Type::TOP ) return Type::TOP;
204  const TypeInt *ti = t->is_int();
205  if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
206  return bottom_type();
207}
208
209//=============================================================================
210//------------------------------Value------------------------------------------
211const Type* ConvI2FNode::Value(PhaseGVN* phase) const {
212  const Type *t = phase->type( in(1) );
213  if( t == Type::TOP ) return Type::TOP;
214  const TypeInt *ti = t->is_int();
215  if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
216  return bottom_type();
217}
218
219//------------------------------Identity---------------------------------------
220Node* ConvI2FNode::Identity(PhaseGVN* phase) {
221  // Remove ConvI2F->ConvF2I->ConvI2F sequences.
222  if( in(1)       ->Opcode() == Op_ConvF2I &&
223     in(1)->in(1)->Opcode() == Op_ConvI2F )
224  return in(1)->in(1);
225  return this;
226}
227
228//=============================================================================
229//------------------------------Value------------------------------------------
230const Type* ConvI2LNode::Value(PhaseGVN* phase) const {
231  const Type *t = phase->type( in(1) );
232  if( t == Type::TOP ) return Type::TOP;
233  const TypeInt *ti = t->is_int();
234  const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
235  // Join my declared type against my incoming type.
236  tl = tl->filter(_type);
237  return tl;
238}
239
240#ifdef _LP64
241static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
242                                       jlong lo2, jlong hi2) {
243  // Two ranges overlap iff one range's low point falls in the other range.
244  return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
245}
246#endif
247
248//------------------------------Ideal------------------------------------------
249Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
250  const TypeLong* this_type = this->type()->is_long();
251  Node* this_changed = NULL;
252
253  // If _major_progress, then more loop optimizations follow.  Do NOT
254  // remove this node's type assertion until no more loop ops can happen.
255  // The progress bit is set in the major loop optimizations THEN comes the
256  // call to IterGVN and any chance of hitting this code.  Cf. Opaque1Node.
257  if (can_reshape && !phase->C->major_progress()) {
258    const TypeInt* in_type = phase->type(in(1))->isa_int();
259    if (in_type != NULL && this_type != NULL &&
260        (in_type->_lo != this_type->_lo ||
261         in_type->_hi != this_type->_hi)) {
262          // Although this WORSENS the type, it increases GVN opportunities,
263          // because I2L nodes with the same input will common up, regardless
264          // of slightly differing type assertions.  Such slight differences
265          // arise routinely as a result of loop unrolling, so this is a
266          // post-unrolling graph cleanup.  Choose a type which depends only
267          // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
268          jlong lo1 = this_type->_lo;
269          jlong hi1 = this_type->_hi;
270          int   w1  = this_type->_widen;
271          if (lo1 != (jint)lo1 ||
272              hi1 != (jint)hi1 ||
273              lo1 > hi1) {
274            // Overflow leads to wraparound, wraparound leads to range saturation.
275            lo1 = min_jint; hi1 = max_jint;
276          } else if (lo1 >= 0) {
277            // Keep a range assertion of >=0.
278            lo1 = 0;        hi1 = max_jint;
279          } else if (hi1 < 0) {
280            // Keep a range assertion of <0.
281            lo1 = min_jint; hi1 = -1;
282          } else {
283            lo1 = min_jint; hi1 = max_jint;
284          }
285          const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
286                                                 MIN2((jlong)in_type->_hi, hi1),
287                                                 MAX2((int)in_type->_widen, w1));
288          if (wtype != type()) {
289            set_type(wtype);
290            // Note: this_type still has old type value, for the logic below.
291            this_changed = this;
292          }
293        }
294  }
295
296#ifdef _LP64
297  // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y))
298  // but only if x and y have subranges that cannot cause 32-bit overflow,
299  // under the assumption that x+y is in my own subrange this->type().
300
301  // This assumption is based on a constraint (i.e., type assertion)
302  // established in Parse::array_addressing or perhaps elsewhere.
303  // This constraint has been adjoined to the "natural" type of
304  // the incoming argument in(0).  We know (because of runtime
305  // checks) - that the result value I2L(x+y) is in the joined range.
306  // Hence we can restrict the incoming terms (x, y) to values such
307  // that their sum also lands in that range.
308
309  // This optimization is useful only on 64-bit systems, where we hope
310  // the addition will end up subsumed in an addressing mode.
311  // It is necessary to do this when optimizing an unrolled array
312  // copy loop such as x[i++] = y[i++].
313
314  // On 32-bit systems, it's better to perform as much 32-bit math as
315  // possible before the I2L conversion, because 32-bit math is cheaper.
316  // There's no common reason to "leak" a constant offset through the I2L.
317  // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
318
319  Node* z = in(1);
320  int op = z->Opcode();
321  if (op == Op_AddI || op == Op_SubI) {
322    Node* x = z->in(1);
323    Node* y = z->in(2);
324    assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
325    if (phase->type(x) == Type::TOP)  return this_changed;
326    if (phase->type(y) == Type::TOP)  return this_changed;
327    const TypeInt*  tx = phase->type(x)->is_int();
328    const TypeInt*  ty = phase->type(y)->is_int();
329    const TypeLong* tz = this_type;
330    jlong xlo = tx->_lo;
331    jlong xhi = tx->_hi;
332    jlong ylo = ty->_lo;
333    jlong yhi = ty->_hi;
334    jlong zlo = tz->_lo;
335    jlong zhi = tz->_hi;
336    jlong vbit = CONST64(1) << BitsPerInt;
337    int widen =  MAX2(tx->_widen, ty->_widen);
338    if (op == Op_SubI) {
339      jlong ylo0 = ylo;
340      ylo = -yhi;
341      yhi = -ylo0;
342    }
343    // See if x+y can cause positive overflow into z+2**32
344    if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
345      return this_changed;
346    }
347    // See if x+y can cause negative overflow into z-2**32
348    if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
349      return this_changed;
350    }
351    // Now it's always safe to assume x+y does not overflow.
352    // This is true even if some pairs x,y might cause overflow, as long
353    // as that overflow value cannot fall into [zlo,zhi].
354
355    // Confident that the arithmetic is "as if infinite precision",
356    // we can now use z's range to put constraints on those of x and y.
357    // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
358    // more "restricted" range by intersecting [xlo,xhi] with the
359    // range obtained by subtracting y's range from the asserted range
360    // of the I2L conversion.  Here's the interval arithmetic algebra:
361    //    x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
362    //    => x in [zlo-yhi, zhi-ylo]
363    //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
364    //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
365    jlong rxlo = MAX2(xlo, zlo - yhi);
366    jlong rxhi = MIN2(xhi, zhi - ylo);
367    // And similarly, x changing place with y:
368    jlong rylo = MAX2(ylo, zlo - xhi);
369    jlong ryhi = MIN2(yhi, zhi - xlo);
370    if (rxlo > rxhi || rylo > ryhi) {
371      return this_changed;  // x or y is dying; don't mess w/ it
372    }
373    if (op == Op_SubI) {
374      jlong rylo0 = rylo;
375      rylo = -ryhi;
376      ryhi = -rylo0;
377    }
378    assert(rxlo == (int)rxlo && rxhi == (int)rxhi, "x should not overflow");
379    assert(rylo == (int)rylo && ryhi == (int)ryhi, "y should not overflow");
380    Node* cx = phase->C->constrained_convI2L(phase, x, TypeInt::make(rxlo, rxhi, widen), NULL);
381    Node* cy = phase->C->constrained_convI2L(phase, y, TypeInt::make(rylo, ryhi, widen), NULL);
382    switch (op) {
383      case Op_AddI:  return new AddLNode(cx, cy);
384      case Op_SubI:  return new SubLNode(cx, cy);
385      default:       ShouldNotReachHere();
386    }
387  }
388#endif //_LP64
389
390  return this_changed;
391}
392
393//=============================================================================
394//------------------------------Value------------------------------------------
395const Type* ConvL2DNode::Value(PhaseGVN* phase) const {
396  const Type *t = phase->type( in(1) );
397  if( t == Type::TOP ) return Type::TOP;
398  const TypeLong *tl = t->is_long();
399  if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
400  return bottom_type();
401}
402
403//=============================================================================
404//------------------------------Value------------------------------------------
405const Type* ConvL2FNode::Value(PhaseGVN* phase) const {
406  const Type *t = phase->type( in(1) );
407  if( t == Type::TOP ) return Type::TOP;
408  const TypeLong *tl = t->is_long();
409  if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
410  return bottom_type();
411}
412
413//=============================================================================
414//----------------------------Identity-----------------------------------------
415Node* ConvL2INode::Identity(PhaseGVN* phase) {
416  // Convert L2I(I2L(x)) => x
417  if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
418  return this;
419}
420
421//------------------------------Value------------------------------------------
422const Type* ConvL2INode::Value(PhaseGVN* phase) const {
423  const Type *t = phase->type( in(1) );
424  if( t == Type::TOP ) return Type::TOP;
425  const TypeLong *tl = t->is_long();
426  if (tl->is_con())
427  // Easy case.
428  return TypeInt::make((jint)tl->get_con());
429  return bottom_type();
430}
431
432//------------------------------Ideal------------------------------------------
433// Return a node which is more "ideal" than the current node.
434// Blow off prior masking to int
435Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
436  Node *andl = in(1);
437  uint andl_op = andl->Opcode();
438  if( andl_op == Op_AndL ) {
439    // Blow off prior masking to int
440    if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
441      set_req(1,andl->in(1));
442      return this;
443    }
444  }
445
446  // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
447  // This replaces an 'AddL' with an 'AddI'.
448  if( andl_op == Op_AddL ) {
449    // Don't do this for nodes which have more than one user since
450    // we'll end up computing the long add anyway.
451    if (andl->outcnt() > 1) return NULL;
452
453    Node* x = andl->in(1);
454    Node* y = andl->in(2);
455    assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
456    if (phase->type(x) == Type::TOP)  return NULL;
457    if (phase->type(y) == Type::TOP)  return NULL;
458    Node *add1 = phase->transform(new ConvL2INode(x));
459    Node *add2 = phase->transform(new ConvL2INode(y));
460    return new AddINode(add1,add2);
461  }
462
463  // Disable optimization: LoadL->ConvL2I ==> LoadI.
464  // It causes problems (sizes of Load and Store nodes do not match)
465  // in objects initialization code and Escape Analysis.
466  return NULL;
467}
468
469
470
471//=============================================================================
472//------------------------------Identity---------------------------------------
473// Remove redundant roundings
474Node* RoundFloatNode::Identity(PhaseGVN* phase) {
475  assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
476  // Do not round constants
477  if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
478  int op = in(1)->Opcode();
479  // Redundant rounding
480  if( op == Op_RoundFloat ) return in(1);
481  // Already rounded
482  if( op == Op_Parm ) return in(1);
483  if( op == Op_LoadF ) return in(1);
484  return this;
485}
486
487//------------------------------Value------------------------------------------
488const Type* RoundFloatNode::Value(PhaseGVN* phase) const {
489  return phase->type( in(1) );
490}
491
492//=============================================================================
493//------------------------------Identity---------------------------------------
494// Remove redundant roundings.  Incoming arguments are already rounded.
495Node* RoundDoubleNode::Identity(PhaseGVN* phase) {
496  assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
497  // Do not round constants
498  if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
499  int op = in(1)->Opcode();
500  // Redundant rounding
501  if( op == Op_RoundDouble ) return in(1);
502  // Already rounded
503  if( op == Op_Parm ) return in(1);
504  if( op == Op_LoadD ) return in(1);
505  if( op == Op_ConvF2D ) return in(1);
506  if( op == Op_ConvI2D ) return in(1);
507  return this;
508}
509
510//------------------------------Value------------------------------------------
511const Type* RoundDoubleNode::Value(PhaseGVN* phase) const {
512  return phase->type( in(1) );
513}
514
515
516