compile.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_compile.cpp.incl"
27
28/// Support for intrinsics.
29
30// Return the index at which m must be inserted (or already exists).
31// The sort order is by the address of the ciMethod, with is_virtual as minor key.
32int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
33#ifdef ASSERT
34  for (int i = 1; i < _intrinsics->length(); i++) {
35    CallGenerator* cg1 = _intrinsics->at(i-1);
36    CallGenerator* cg2 = _intrinsics->at(i);
37    assert(cg1->method() != cg2->method()
38           ? cg1->method()     < cg2->method()
39           : cg1->is_virtual() < cg2->is_virtual(),
40           "compiler intrinsics list must stay sorted");
41  }
42#endif
43  // Binary search sorted list, in decreasing intervals [lo, hi].
44  int lo = 0, hi = _intrinsics->length()-1;
45  while (lo <= hi) {
46    int mid = (uint)(hi + lo) / 2;
47    ciMethod* mid_m = _intrinsics->at(mid)->method();
48    if (m < mid_m) {
49      hi = mid-1;
50    } else if (m > mid_m) {
51      lo = mid+1;
52    } else {
53      // look at minor sort key
54      bool mid_virt = _intrinsics->at(mid)->is_virtual();
55      if (is_virtual < mid_virt) {
56        hi = mid-1;
57      } else if (is_virtual > mid_virt) {
58        lo = mid+1;
59      } else {
60        return mid;  // exact match
61      }
62    }
63  }
64  return lo;  // inexact match
65}
66
67void Compile::register_intrinsic(CallGenerator* cg) {
68  if (_intrinsics == NULL) {
69    _intrinsics = new GrowableArray<CallGenerator*>(60);
70  }
71  // This code is stolen from ciObjectFactory::insert.
72  // Really, GrowableArray should have methods for
73  // insert_at, remove_at, and binary_search.
74  int len = _intrinsics->length();
75  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
76  if (index == len) {
77    _intrinsics->append(cg);
78  } else {
79#ifdef ASSERT
80    CallGenerator* oldcg = _intrinsics->at(index);
81    assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
82#endif
83    _intrinsics->append(_intrinsics->at(len-1));
84    int pos;
85    for (pos = len-2; pos >= index; pos--) {
86      _intrinsics->at_put(pos+1,_intrinsics->at(pos));
87    }
88    _intrinsics->at_put(index, cg);
89  }
90  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
91}
92
93CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
94  assert(m->is_loaded(), "don't try this on unloaded methods");
95  if (_intrinsics != NULL) {
96    int index = intrinsic_insertion_index(m, is_virtual);
97    if (index < _intrinsics->length()
98        && _intrinsics->at(index)->method() == m
99        && _intrinsics->at(index)->is_virtual() == is_virtual) {
100      return _intrinsics->at(index);
101    }
102  }
103  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
104  if (m->intrinsic_id() != vmIntrinsics::_none) {
105    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
106    if (cg != NULL) {
107      // Save it for next time:
108      register_intrinsic(cg);
109      return cg;
110    } else {
111      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
112    }
113  }
114  return NULL;
115}
116
117// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
118// in library_call.cpp.
119
120
121#ifndef PRODUCT
122// statistics gathering...
123
124juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
125jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
126
127bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
128  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
129  int oflags = _intrinsic_hist_flags[id];
130  assert(flags != 0, "what happened?");
131  if (is_virtual) {
132    flags |= _intrinsic_virtual;
133  }
134  bool changed = (flags != oflags);
135  if ((flags & _intrinsic_worked) != 0) {
136    juint count = (_intrinsic_hist_count[id] += 1);
137    if (count == 1) {
138      changed = true;           // first time
139    }
140    // increment the overall count also:
141    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
142  }
143  if (changed) {
144    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
145      // Something changed about the intrinsic's virtuality.
146      if ((flags & _intrinsic_virtual) != 0) {
147        // This is the first use of this intrinsic as a virtual call.
148        if (oflags != 0) {
149          // We already saw it as a non-virtual, so note both cases.
150          flags |= _intrinsic_both;
151        }
152      } else if ((oflags & _intrinsic_both) == 0) {
153        // This is the first use of this intrinsic as a non-virtual
154        flags |= _intrinsic_both;
155      }
156    }
157    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
158  }
159  // update the overall flags also:
160  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
161  return changed;
162}
163
164static char* format_flags(int flags, char* buf) {
165  buf[0] = 0;
166  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
167  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
168  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
169  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
170  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
171  if (buf[0] == 0)  strcat(buf, ",");
172  assert(buf[0] == ',', "must be");
173  return &buf[1];
174}
175
176void Compile::print_intrinsic_statistics() {
177  char flagsbuf[100];
178  ttyLocker ttyl;
179  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
180  tty->print_cr("Compiler intrinsic usage:");
181  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
182  if (total == 0)  total = 1;  // avoid div0 in case of no successes
183  #define PRINT_STAT_LINE(name, c, f) \
184    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
185  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
186    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
187    int   flags = _intrinsic_hist_flags[id];
188    juint count = _intrinsic_hist_count[id];
189    if ((flags | count) != 0) {
190      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
191    }
192  }
193  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
194  if (xtty != NULL)  xtty->tail("statistics");
195}
196
197void Compile::print_statistics() {
198  { ttyLocker ttyl;
199    if (xtty != NULL)  xtty->head("statistics type='opto'");
200    Parse::print_statistics();
201    PhaseCCP::print_statistics();
202    PhaseRegAlloc::print_statistics();
203    Scheduling::print_statistics();
204    PhasePeephole::print_statistics();
205    PhaseIdealLoop::print_statistics();
206    if (xtty != NULL)  xtty->tail("statistics");
207  }
208  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
209    // put this under its own <statistics> element.
210    print_intrinsic_statistics();
211  }
212}
213#endif //PRODUCT
214
215// Support for bundling info
216Bundle* Compile::node_bundling(const Node *n) {
217  assert(valid_bundle_info(n), "oob");
218  return &_node_bundling_base[n->_idx];
219}
220
221bool Compile::valid_bundle_info(const Node *n) {
222  return (_node_bundling_limit > n->_idx);
223}
224
225
226// Identify all nodes that are reachable from below, useful.
227// Use breadth-first pass that records state in a Unique_Node_List,
228// recursive traversal is slower.
229void Compile::identify_useful_nodes(Unique_Node_List &useful) {
230  int estimated_worklist_size = unique();
231  useful.map( estimated_worklist_size, NULL );  // preallocate space
232
233  // Initialize worklist
234  if (root() != NULL)     { useful.push(root()); }
235  // If 'top' is cached, declare it useful to preserve cached node
236  if( cached_top_node() ) { useful.push(cached_top_node()); }
237
238  // Push all useful nodes onto the list, breadthfirst
239  for( uint next = 0; next < useful.size(); ++next ) {
240    assert( next < unique(), "Unique useful nodes < total nodes");
241    Node *n  = useful.at(next);
242    uint max = n->len();
243    for( uint i = 0; i < max; ++i ) {
244      Node *m = n->in(i);
245      if( m == NULL ) continue;
246      useful.push(m);
247    }
248  }
249}
250
251// Disconnect all useless nodes by disconnecting those at the boundary.
252void Compile::remove_useless_nodes(Unique_Node_List &useful) {
253  uint next = 0;
254  while( next < useful.size() ) {
255    Node *n = useful.at(next++);
256    // Use raw traversal of out edges since this code removes out edges
257    int max = n->outcnt();
258    for (int j = 0; j < max; ++j ) {
259      Node* child = n->raw_out(j);
260      if( ! useful.member(child) ) {
261        assert( !child->is_top() || child != top(),
262                "If top is cached in Compile object it is in useful list");
263        // Only need to remove this out-edge to the useless node
264        n->raw_del_out(j);
265        --j;
266        --max;
267      }
268    }
269    if (n->outcnt() == 1 && n->has_special_unique_user()) {
270      record_for_igvn( n->unique_out() );
271    }
272  }
273  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
274}
275
276//------------------------------frame_size_in_words-----------------------------
277// frame_slots in units of words
278int Compile::frame_size_in_words() const {
279  // shift is 0 in LP32 and 1 in LP64
280  const int shift = (LogBytesPerWord - LogBytesPerInt);
281  int words = _frame_slots >> shift;
282  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
283  return words;
284}
285
286// ============================================================================
287//------------------------------CompileWrapper---------------------------------
288class CompileWrapper : public StackObj {
289  Compile *const _compile;
290 public:
291  CompileWrapper(Compile* compile);
292
293  ~CompileWrapper();
294};
295
296CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
297  // the Compile* pointer is stored in the current ciEnv:
298  ciEnv* env = compile->env();
299  assert(env == ciEnv::current(), "must already be a ciEnv active");
300  assert(env->compiler_data() == NULL, "compile already active?");
301  env->set_compiler_data(compile);
302  assert(compile == Compile::current(), "sanity");
303
304  compile->set_type_dict(NULL);
305  compile->set_type_hwm(NULL);
306  compile->set_type_last_size(0);
307  compile->set_last_tf(NULL, NULL);
308  compile->set_indexSet_arena(NULL);
309  compile->set_indexSet_free_block_list(NULL);
310  compile->init_type_arena();
311  Type::Initialize(compile);
312  _compile->set_scratch_buffer_blob(NULL);
313  _compile->begin_method();
314}
315CompileWrapper::~CompileWrapper() {
316  if (_compile->failing()) {
317    _compile->print_method("Failed");
318  }
319  _compile->end_method();
320  if (_compile->scratch_buffer_blob() != NULL)
321    BufferBlob::free(_compile->scratch_buffer_blob());
322  _compile->env()->set_compiler_data(NULL);
323}
324
325
326//----------------------------print_compile_messages---------------------------
327void Compile::print_compile_messages() {
328#ifndef PRODUCT
329  // Check if recompiling
330  if (_subsume_loads == false && PrintOpto) {
331    // Recompiling without allowing machine instructions to subsume loads
332    tty->print_cr("*********************************************************");
333    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
334    tty->print_cr("*********************************************************");
335  }
336  if (env()->break_at_compile()) {
337    // Open the debugger when compiing this method.
338    tty->print("### Breaking when compiling: ");
339    method()->print_short_name();
340    tty->cr();
341    BREAKPOINT;
342  }
343
344  if( PrintOpto ) {
345    if (is_osr_compilation()) {
346      tty->print("[OSR]%3d", _compile_id);
347    } else {
348      tty->print("%3d", _compile_id);
349    }
350  }
351#endif
352}
353
354
355void Compile::init_scratch_buffer_blob() {
356  if( scratch_buffer_blob() != NULL )  return;
357
358  // Construct a temporary CodeBuffer to have it construct a BufferBlob
359  // Cache this BufferBlob for this compile.
360  ResourceMark rm;
361  int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
362  BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
363  // Record the buffer blob for next time.
364  set_scratch_buffer_blob(blob);
365  guarantee(scratch_buffer_blob() != NULL, "Need BufferBlob for code generation");
366
367  // Initialize the relocation buffers
368  relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
369  set_scratch_locs_memory(locs_buf);
370}
371
372
373//-----------------------scratch_emit_size-------------------------------------
374// Helper function that computes size by emitting code
375uint Compile::scratch_emit_size(const Node* n) {
376  // Emit into a trash buffer and count bytes emitted.
377  // This is a pretty expensive way to compute a size,
378  // but it works well enough if seldom used.
379  // All common fixed-size instructions are given a size
380  // method by the AD file.
381  // Note that the scratch buffer blob and locs memory are
382  // allocated at the beginning of the compile task, and
383  // may be shared by several calls to scratch_emit_size.
384  // The allocation of the scratch buffer blob is particularly
385  // expensive, since it has to grab the code cache lock.
386  BufferBlob* blob = this->scratch_buffer_blob();
387  assert(blob != NULL, "Initialize BufferBlob at start");
388  assert(blob->size() > MAX_inst_size, "sanity");
389  relocInfo* locs_buf = scratch_locs_memory();
390  address blob_begin = blob->instructions_begin();
391  address blob_end   = (address)locs_buf;
392  assert(blob->instructions_contains(blob_end), "sanity");
393  CodeBuffer buf(blob_begin, blob_end - blob_begin);
394  buf.initialize_consts_size(MAX_const_size);
395  buf.initialize_stubs_size(MAX_stubs_size);
396  assert(locs_buf != NULL, "sanity");
397  int lsize = MAX_locs_size / 2;
398  buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
399  buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
400  n->emit(buf, this->regalloc());
401  return buf.code_size();
402}
403
404void  Compile::record_for_escape_analysis(Node* n) {
405  if (_congraph != NULL)
406    _congraph->record_for_escape_analysis(n);
407}
408
409
410// ============================================================================
411//------------------------------Compile standard-------------------------------
412debug_only( int Compile::_debug_idx = 100000; )
413
414// Compile a method.  entry_bci is -1 for normal compilations and indicates
415// the continuation bci for on stack replacement.
416
417
418Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads )
419                : Phase(Compiler),
420                  _env(ci_env),
421                  _log(ci_env->log()),
422                  _compile_id(ci_env->compile_id()),
423                  _save_argument_registers(false),
424                  _stub_name(NULL),
425                  _stub_function(NULL),
426                  _stub_entry_point(NULL),
427                  _method(target),
428                  _entry_bci(osr_bci),
429                  _initial_gvn(NULL),
430                  _for_igvn(NULL),
431                  _warm_calls(NULL),
432                  _subsume_loads(subsume_loads),
433                  _failure_reason(NULL),
434                  _code_buffer("Compile::Fill_buffer"),
435                  _orig_pc_slot(0),
436                  _orig_pc_slot_offset_in_bytes(0),
437                  _node_bundling_limit(0),
438                  _node_bundling_base(NULL),
439#ifndef PRODUCT
440                  _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
441                  _printer(IdealGraphPrinter::printer()),
442#endif
443                  _congraph(NULL) {
444  C = this;
445
446  CompileWrapper cw(this);
447#ifndef PRODUCT
448  if (TimeCompiler2) {
449    tty->print(" ");
450    target->holder()->name()->print();
451    tty->print(".");
452    target->print_short_name();
453    tty->print("  ");
454  }
455  TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
456  TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
457  set_print_assembly(PrintOptoAssembly || _method->should_print_assembly());
458#endif
459
460  if (ProfileTraps) {
461    // Make sure the method being compiled gets its own MDO,
462    // so we can at least track the decompile_count().
463    method()->build_method_data();
464  }
465
466  Init(::AliasLevel);
467
468
469  print_compile_messages();
470
471  if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
472    _ilt = InlineTree::build_inline_tree_root();
473  else
474    _ilt = NULL;
475
476  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
477  assert(num_alias_types() >= AliasIdxRaw, "");
478
479#define MINIMUM_NODE_HASH  1023
480  // Node list that Iterative GVN will start with
481  Unique_Node_List for_igvn(comp_arena());
482  set_for_igvn(&for_igvn);
483
484  // GVN that will be run immediately on new nodes
485  uint estimated_size = method()->code_size()*4+64;
486  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
487  PhaseGVN gvn(node_arena(), estimated_size);
488  set_initial_gvn(&gvn);
489
490  if (DoEscapeAnalysis)
491    _congraph = new ConnectionGraph(this);
492
493  { // Scope for timing the parser
494    TracePhase t3("parse", &_t_parser, true);
495
496    // Put top into the hash table ASAP.
497    initial_gvn()->transform_no_reclaim(top());
498
499    // Set up tf(), start(), and find a CallGenerator.
500    CallGenerator* cg;
501    if (is_osr_compilation()) {
502      const TypeTuple *domain = StartOSRNode::osr_domain();
503      const TypeTuple *range = TypeTuple::make_range(method()->signature());
504      init_tf(TypeFunc::make(domain, range));
505      StartNode* s = new (this, 2) StartOSRNode(root(), domain);
506      initial_gvn()->set_type_bottom(s);
507      init_start(s);
508      cg = CallGenerator::for_osr(method(), entry_bci());
509    } else {
510      // Normal case.
511      init_tf(TypeFunc::make(method()));
512      StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
513      initial_gvn()->set_type_bottom(s);
514      init_start(s);
515      float past_uses = method()->interpreter_invocation_count();
516      float expected_uses = past_uses;
517      cg = CallGenerator::for_inline(method(), expected_uses);
518    }
519    if (failing())  return;
520    if (cg == NULL) {
521      record_method_not_compilable_all_tiers("cannot parse method");
522      return;
523    }
524    JVMState* jvms = build_start_state(start(), tf());
525    if ((jvms = cg->generate(jvms)) == NULL) {
526      record_method_not_compilable("method parse failed");
527      return;
528    }
529    GraphKit kit(jvms);
530
531    if (!kit.stopped()) {
532      // Accept return values, and transfer control we know not where.
533      // This is done by a special, unique ReturnNode bound to root.
534      return_values(kit.jvms());
535    }
536
537    if (kit.has_exceptions()) {
538      // Any exceptions that escape from this call must be rethrown
539      // to whatever caller is dynamically above us on the stack.
540      // This is done by a special, unique RethrowNode bound to root.
541      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
542    }
543
544    // Remove clutter produced by parsing.
545    if (!failing()) {
546      ResourceMark rm;
547      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
548    }
549  }
550
551  // Note:  Large methods are capped off in do_one_bytecode().
552  if (failing())  return;
553
554  // After parsing, node notes are no longer automagic.
555  // They must be propagated by register_new_node_with_optimizer(),
556  // clone(), or the like.
557  set_default_node_notes(NULL);
558
559  for (;;) {
560    int successes = Inline_Warm();
561    if (failing())  return;
562    if (successes == 0)  break;
563  }
564
565  // Drain the list.
566  Finish_Warm();
567#ifndef PRODUCT
568  if (_printer) {
569    _printer->print_inlining(this);
570  }
571#endif
572
573  if (failing())  return;
574  NOT_PRODUCT( verify_graph_edges(); )
575
576  // Perform escape analysis
577  if (_congraph != NULL) {
578    NOT_PRODUCT( TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, TimeCompiler); )
579    _congraph->compute_escape();
580#ifndef PRODUCT
581    if (PrintEscapeAnalysis) {
582      _congraph->dump();
583    }
584#endif
585  }
586  // Now optimize
587  Optimize();
588  if (failing())  return;
589  NOT_PRODUCT( verify_graph_edges(); )
590
591#ifndef PRODUCT
592  if (PrintIdeal) {
593    ttyLocker ttyl;  // keep the following output all in one block
594    // This output goes directly to the tty, not the compiler log.
595    // To enable tools to match it up with the compilation activity,
596    // be sure to tag this tty output with the compile ID.
597    if (xtty != NULL) {
598      xtty->head("ideal compile_id='%d'%s", compile_id(),
599                 is_osr_compilation()    ? " compile_kind='osr'" :
600                 "");
601    }
602    root()->dump(9999);
603    if (xtty != NULL) {
604      xtty->tail("ideal");
605    }
606  }
607#endif
608
609  // Now that we know the size of all the monitors we can add a fixed slot
610  // for the original deopt pc.
611
612  _orig_pc_slot =  fixed_slots();
613  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
614  set_fixed_slots(next_slot);
615
616  // Now generate code
617  Code_Gen();
618  if (failing())  return;
619
620  // Check if we want to skip execution of all compiled code.
621  {
622#ifndef PRODUCT
623    if (OptoNoExecute) {
624      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
625      return;
626    }
627    TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
628#endif
629
630    if (is_osr_compilation()) {
631      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
632      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
633    } else {
634      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
635      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
636    }
637
638    env()->register_method(_method, _entry_bci,
639                           &_code_offsets,
640                           _orig_pc_slot_offset_in_bytes,
641                           code_buffer(),
642                           frame_size_in_words(), _oop_map_set,
643                           &_handler_table, &_inc_table,
644                           compiler,
645                           env()->comp_level(),
646                           true, /*has_debug_info*/
647                           has_unsafe_access()
648                           );
649  }
650}
651
652//------------------------------Compile----------------------------------------
653// Compile a runtime stub
654Compile::Compile( ciEnv* ci_env,
655                  TypeFunc_generator generator,
656                  address stub_function,
657                  const char *stub_name,
658                  int is_fancy_jump,
659                  bool pass_tls,
660                  bool save_arg_registers,
661                  bool return_pc )
662  : Phase(Compiler),
663    _env(ci_env),
664    _log(ci_env->log()),
665    _compile_id(-1),
666    _save_argument_registers(save_arg_registers),
667    _method(NULL),
668    _stub_name(stub_name),
669    _stub_function(stub_function),
670    _stub_entry_point(NULL),
671    _entry_bci(InvocationEntryBci),
672    _initial_gvn(NULL),
673    _for_igvn(NULL),
674    _warm_calls(NULL),
675    _orig_pc_slot(0),
676    _orig_pc_slot_offset_in_bytes(0),
677    _subsume_loads(true),
678    _failure_reason(NULL),
679    _code_buffer("Compile::Fill_buffer"),
680    _node_bundling_limit(0),
681    _node_bundling_base(NULL),
682#ifndef PRODUCT
683    _trace_opto_output(TraceOptoOutput),
684    _printer(NULL),
685#endif
686    _congraph(NULL) {
687  C = this;
688
689#ifndef PRODUCT
690  TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
691  TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
692  set_print_assembly(PrintFrameConverterAssembly);
693#endif
694  CompileWrapper cw(this);
695  Init(/*AliasLevel=*/ 0);
696  init_tf((*generator)());
697
698  {
699    // The following is a dummy for the sake of GraphKit::gen_stub
700    Unique_Node_List for_igvn(comp_arena());
701    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
702    PhaseGVN gvn(Thread::current()->resource_area(),255);
703    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
704    gvn.transform_no_reclaim(top());
705
706    GraphKit kit;
707    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
708  }
709
710  NOT_PRODUCT( verify_graph_edges(); )
711  Code_Gen();
712  if (failing())  return;
713
714
715  // Entry point will be accessed using compile->stub_entry_point();
716  if (code_buffer() == NULL) {
717    Matcher::soft_match_failure();
718  } else {
719    if (PrintAssembly && (WizardMode || Verbose))
720      tty->print_cr("### Stub::%s", stub_name);
721
722    if (!failing()) {
723      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
724
725      // Make the NMethod
726      // For now we mark the frame as never safe for profile stackwalking
727      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
728                                                      code_buffer(),
729                                                      CodeOffsets::frame_never_safe,
730                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
731                                                      frame_size_in_words(),
732                                                      _oop_map_set,
733                                                      save_arg_registers);
734      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
735
736      _stub_entry_point = rs->entry_point();
737    }
738  }
739}
740
741#ifndef PRODUCT
742void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
743  if(PrintOpto && Verbose) {
744    tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
745  }
746}
747#endif
748
749void Compile::print_codes() {
750}
751
752//------------------------------Init-------------------------------------------
753// Prepare for a single compilation
754void Compile::Init(int aliaslevel) {
755  _unique  = 0;
756  _regalloc = NULL;
757
758  _tf      = NULL;  // filled in later
759  _top     = NULL;  // cached later
760  _matcher = NULL;  // filled in later
761  _cfg     = NULL;  // filled in later
762
763  set_24_bit_selection_and_mode(Use24BitFP, false);
764
765  _node_note_array = NULL;
766  _default_node_notes = NULL;
767
768  _immutable_memory = NULL; // filled in at first inquiry
769
770  // Globally visible Nodes
771  // First set TOP to NULL to give safe behavior during creation of RootNode
772  set_cached_top_node(NULL);
773  set_root(new (this, 3) RootNode());
774  // Now that you have a Root to point to, create the real TOP
775  set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
776  set_recent_alloc(NULL, NULL);
777
778  // Create Debug Information Recorder to record scopes, oopmaps, etc.
779  env()->set_oop_recorder(new OopRecorder(comp_arena()));
780  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
781  env()->set_dependencies(new Dependencies(env()));
782
783  _fixed_slots = 0;
784  set_has_split_ifs(false);
785  set_has_loops(has_method() && method()->has_loops()); // first approximation
786  _deopt_happens = true;  // start out assuming the worst
787  _trap_can_recompile = false;  // no traps emitted yet
788  _major_progress = true; // start out assuming good things will happen
789  set_has_unsafe_access(false);
790  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
791  set_decompile_count(0);
792
793  // Compilation level related initialization
794  if (env()->comp_level() == CompLevel_fast_compile) {
795    set_num_loop_opts(Tier1LoopOptsCount);
796    set_do_inlining(Tier1Inline != 0);
797    set_max_inline_size(Tier1MaxInlineSize);
798    set_freq_inline_size(Tier1FreqInlineSize);
799    set_do_scheduling(false);
800    set_do_count_invocations(Tier1CountInvocations);
801    set_do_method_data_update(Tier1UpdateMethodData);
802  } else {
803    assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
804    set_num_loop_opts(LoopOptsCount);
805    set_do_inlining(Inline);
806    set_max_inline_size(MaxInlineSize);
807    set_freq_inline_size(FreqInlineSize);
808    set_do_scheduling(OptoScheduling);
809    set_do_count_invocations(false);
810    set_do_method_data_update(false);
811  }
812
813  if (debug_info()->recording_non_safepoints()) {
814    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
815                        (comp_arena(), 8, 0, NULL));
816    set_default_node_notes(Node_Notes::make(this));
817  }
818
819  // // -- Initialize types before each compile --
820  // // Update cached type information
821  // if( _method && _method->constants() )
822  //   Type::update_loaded_types(_method, _method->constants());
823
824  // Init alias_type map.
825  if (!DoEscapeAnalysis && aliaslevel == 3)
826    aliaslevel = 2;  // No unique types without escape analysis
827  _AliasLevel = aliaslevel;
828  const int grow_ats = 16;
829  _max_alias_types = grow_ats;
830  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
831  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
832  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
833  {
834    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
835  }
836  // Initialize the first few types.
837  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
838  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
839  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
840  _num_alias_types = AliasIdxRaw+1;
841  // Zero out the alias type cache.
842  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
843  // A NULL adr_type hits in the cache right away.  Preload the right answer.
844  probe_alias_cache(NULL)->_index = AliasIdxTop;
845
846  _intrinsics = NULL;
847  _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
848  register_library_intrinsics();
849}
850
851//---------------------------init_start----------------------------------------
852// Install the StartNode on this compile object.
853void Compile::init_start(StartNode* s) {
854  if (failing())
855    return; // already failing
856  assert(s == start(), "");
857}
858
859StartNode* Compile::start() const {
860  assert(!failing(), "");
861  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
862    Node* start = root()->fast_out(i);
863    if( start->is_Start() )
864      return start->as_Start();
865  }
866  ShouldNotReachHere();
867  return NULL;
868}
869
870//-------------------------------immutable_memory-------------------------------------
871// Access immutable memory
872Node* Compile::immutable_memory() {
873  if (_immutable_memory != NULL) {
874    return _immutable_memory;
875  }
876  StartNode* s = start();
877  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
878    Node *p = s->fast_out(i);
879    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
880      _immutable_memory = p;
881      return _immutable_memory;
882    }
883  }
884  ShouldNotReachHere();
885  return NULL;
886}
887
888//----------------------set_cached_top_node------------------------------------
889// Install the cached top node, and make sure Node::is_top works correctly.
890void Compile::set_cached_top_node(Node* tn) {
891  if (tn != NULL)  verify_top(tn);
892  Node* old_top = _top;
893  _top = tn;
894  // Calling Node::setup_is_top allows the nodes the chance to adjust
895  // their _out arrays.
896  if (_top != NULL)     _top->setup_is_top();
897  if (old_top != NULL)  old_top->setup_is_top();
898  assert(_top == NULL || top()->is_top(), "");
899}
900
901#ifndef PRODUCT
902void Compile::verify_top(Node* tn) const {
903  if (tn != NULL) {
904    assert(tn->is_Con(), "top node must be a constant");
905    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
906    assert(tn->in(0) != NULL, "must have live top node");
907  }
908}
909#endif
910
911
912///-------------------Managing Per-Node Debug & Profile Info-------------------
913
914void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
915  guarantee(arr != NULL, "");
916  int num_blocks = arr->length();
917  if (grow_by < num_blocks)  grow_by = num_blocks;
918  int num_notes = grow_by * _node_notes_block_size;
919  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
920  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
921  while (num_notes > 0) {
922    arr->append(notes);
923    notes     += _node_notes_block_size;
924    num_notes -= _node_notes_block_size;
925  }
926  assert(num_notes == 0, "exact multiple, please");
927}
928
929bool Compile::copy_node_notes_to(Node* dest, Node* source) {
930  if (source == NULL || dest == NULL)  return false;
931
932  if (dest->is_Con())
933    return false;               // Do not push debug info onto constants.
934
935#ifdef ASSERT
936  // Leave a bread crumb trail pointing to the original node:
937  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
938    dest->set_debug_orig(source);
939  }
940#endif
941
942  if (node_note_array() == NULL)
943    return false;               // Not collecting any notes now.
944
945  // This is a copy onto a pre-existing node, which may already have notes.
946  // If both nodes have notes, do not overwrite any pre-existing notes.
947  Node_Notes* source_notes = node_notes_at(source->_idx);
948  if (source_notes == NULL || source_notes->is_clear())  return false;
949  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
950  if (dest_notes == NULL || dest_notes->is_clear()) {
951    return set_node_notes_at(dest->_idx, source_notes);
952  }
953
954  Node_Notes merged_notes = (*source_notes);
955  // The order of operations here ensures that dest notes will win...
956  merged_notes.update_from(dest_notes);
957  return set_node_notes_at(dest->_idx, &merged_notes);
958}
959
960
961//--------------------------allow_range_check_smearing-------------------------
962// Gating condition for coalescing similar range checks.
963// Sometimes we try 'speculatively' replacing a series of a range checks by a
964// single covering check that is at least as strong as any of them.
965// If the optimization succeeds, the simplified (strengthened) range check
966// will always succeed.  If it fails, we will deopt, and then give up
967// on the optimization.
968bool Compile::allow_range_check_smearing() const {
969  // If this method has already thrown a range-check,
970  // assume it was because we already tried range smearing
971  // and it failed.
972  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
973  return !already_trapped;
974}
975
976
977//------------------------------flatten_alias_type-----------------------------
978const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
979  int offset = tj->offset();
980  TypePtr::PTR ptr = tj->ptr();
981
982  // Process weird unsafe references.
983  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
984    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
985    tj = TypeOopPtr::BOTTOM;
986    ptr = tj->ptr();
987    offset = tj->offset();
988  }
989
990  // Array pointers need some flattening
991  const TypeAryPtr *ta = tj->isa_aryptr();
992  if( ta && _AliasLevel >= 2 ) {
993    // For arrays indexed by constant indices, we flatten the alias
994    // space to include all of the array body.  Only the header, klass
995    // and array length can be accessed un-aliased.
996    if( offset != Type::OffsetBot ) {
997      if( ta->const_oop() ) { // methodDataOop or methodOop
998        offset = Type::OffsetBot;   // Flatten constant access into array body
999        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
1000      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1001        // range is OK as-is.
1002        tj = ta = TypeAryPtr::RANGE;
1003      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1004        tj = TypeInstPtr::KLASS; // all klass loads look alike
1005        ta = TypeAryPtr::RANGE; // generic ignored junk
1006        ptr = TypePtr::BotPTR;
1007      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1008        tj = TypeInstPtr::MARK;
1009        ta = TypeAryPtr::RANGE; // generic ignored junk
1010        ptr = TypePtr::BotPTR;
1011      } else {                  // Random constant offset into array body
1012        offset = Type::OffsetBot;   // Flatten constant access into array body
1013        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
1014      }
1015    }
1016    // Arrays of fixed size alias with arrays of unknown size.
1017    if (ta->size() != TypeInt::POS) {
1018      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1019      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset, ta->instance_id());
1020    }
1021    // Arrays of known objects become arrays of unknown objects.
1022    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1023      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1024      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset, ta->instance_id());
1025    }
1026    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1027    // cannot be distinguished by bytecode alone.
1028    if (ta->elem() == TypeInt::BOOL) {
1029      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1030      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1031      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset, ta->instance_id());
1032    }
1033    // During the 2nd round of IterGVN, NotNull castings are removed.
1034    // Make sure the Bottom and NotNull variants alias the same.
1035    // Also, make sure exact and non-exact variants alias the same.
1036    if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1037      if (ta->const_oop()) {
1038        tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1039      } else {
1040        tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1041      }
1042    }
1043  }
1044
1045  // Oop pointers need some flattening
1046  const TypeInstPtr *to = tj->isa_instptr();
1047  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1048    if( ptr == TypePtr::Constant ) {
1049      // No constant oop pointers (such as Strings); they alias with
1050      // unknown strings.
1051      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1052    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1053      // During the 2nd round of IterGVN, NotNull castings are removed.
1054      // Make sure the Bottom and NotNull variants alias the same.
1055      // Also, make sure exact and non-exact variants alias the same.
1056      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset, to->instance_id());
1057    }
1058    // Canonicalize the holder of this field
1059    ciInstanceKlass *k = to->klass()->as_instance_klass();
1060    if (offset >= 0 && offset < oopDesc::header_size() * wordSize) {
1061      // First handle header references such as a LoadKlassNode, even if the
1062      // object's klass is unloaded at compile time (4965979).
1063      tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset, to->instance_id());
1064    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1065      to = NULL;
1066      tj = TypeOopPtr::BOTTOM;
1067      offset = tj->offset();
1068    } else {
1069      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1070      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1071        tj = to = TypeInstPtr::make(TypePtr::BotPTR, canonical_holder, false, NULL, offset, to->instance_id());
1072      }
1073    }
1074  }
1075
1076  // Klass pointers to object array klasses need some flattening
1077  const TypeKlassPtr *tk = tj->isa_klassptr();
1078  if( tk ) {
1079    // If we are referencing a field within a Klass, we need
1080    // to assume the worst case of an Object.  Both exact and
1081    // inexact types must flatten to the same alias class.
1082    // Since the flattened result for a klass is defined to be
1083    // precisely java.lang.Object, use a constant ptr.
1084    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1085
1086      tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1087                                   TypeKlassPtr::OBJECT->klass(),
1088                                   offset);
1089    }
1090
1091    ciKlass* klass = tk->klass();
1092    if( klass->is_obj_array_klass() ) {
1093      ciKlass* k = TypeAryPtr::OOPS->klass();
1094      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1095        k = TypeInstPtr::BOTTOM->klass();
1096      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1097    }
1098
1099    // Check for precise loads from the primary supertype array and force them
1100    // to the supertype cache alias index.  Check for generic array loads from
1101    // the primary supertype array and also force them to the supertype cache
1102    // alias index.  Since the same load can reach both, we need to merge
1103    // these 2 disparate memories into the same alias class.  Since the
1104    // primary supertype array is read-only, there's no chance of confusion
1105    // where we bypass an array load and an array store.
1106    uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1107    if( offset == Type::OffsetBot ||
1108        off2 < Klass::primary_super_limit()*wordSize ) {
1109      offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1110      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1111    }
1112  }
1113
1114  // Flatten all Raw pointers together.
1115  if (tj->base() == Type::RawPtr)
1116    tj = TypeRawPtr::BOTTOM;
1117
1118  if (tj->base() == Type::AnyPtr)
1119    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1120
1121  // Flatten all to bottom for now
1122  switch( _AliasLevel ) {
1123  case 0:
1124    tj = TypePtr::BOTTOM;
1125    break;
1126  case 1:                       // Flatten to: oop, static, field or array
1127    switch (tj->base()) {
1128    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1129    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1130    case Type::AryPtr:   // do not distinguish arrays at all
1131    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1132    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1133    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1134    default: ShouldNotReachHere();
1135    }
1136    break;
1137  case 2:                       // No collasping at level 2; keep all splits
1138  case 3:                       // No collasping at level 3; keep all splits
1139    break;
1140  default:
1141    Unimplemented();
1142  }
1143
1144  offset = tj->offset();
1145  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1146
1147  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1148          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1149          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1150          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1151          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1152          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1153          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1154          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1155  assert( tj->ptr() != TypePtr::TopPTR &&
1156          tj->ptr() != TypePtr::AnyNull &&
1157          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1158//    assert( tj->ptr() != TypePtr::Constant ||
1159//            tj->base() == Type::RawPtr ||
1160//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1161
1162  return tj;
1163}
1164
1165void Compile::AliasType::Init(int i, const TypePtr* at) {
1166  _index = i;
1167  _adr_type = at;
1168  _field = NULL;
1169  _is_rewritable = true; // default
1170  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1171  if (atoop != NULL && atoop->is_instance()) {
1172    const TypeOopPtr *gt = atoop->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
1173    _general_index = Compile::current()->get_alias_index(gt);
1174  } else {
1175    _general_index = 0;
1176  }
1177}
1178
1179//---------------------------------print_on------------------------------------
1180#ifndef PRODUCT
1181void Compile::AliasType::print_on(outputStream* st) {
1182  if (index() < 10)
1183        st->print("@ <%d> ", index());
1184  else  st->print("@ <%d>",  index());
1185  st->print(is_rewritable() ? "   " : " RO");
1186  int offset = adr_type()->offset();
1187  if (offset == Type::OffsetBot)
1188        st->print(" +any");
1189  else  st->print(" +%-3d", offset);
1190  st->print(" in ");
1191  adr_type()->dump_on(st);
1192  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1193  if (field() != NULL && tjp) {
1194    if (tjp->klass()  != field()->holder() ||
1195        tjp->offset() != field()->offset_in_bytes()) {
1196      st->print(" != ");
1197      field()->print();
1198      st->print(" ***");
1199    }
1200  }
1201}
1202
1203void print_alias_types() {
1204  Compile* C = Compile::current();
1205  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1206  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1207    C->alias_type(idx)->print_on(tty);
1208    tty->cr();
1209  }
1210}
1211#endif
1212
1213
1214//----------------------------probe_alias_cache--------------------------------
1215Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1216  intptr_t key = (intptr_t) adr_type;
1217  key ^= key >> logAliasCacheSize;
1218  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1219}
1220
1221
1222//-----------------------------grow_alias_types--------------------------------
1223void Compile::grow_alias_types() {
1224  const int old_ats  = _max_alias_types; // how many before?
1225  const int new_ats  = old_ats;          // how many more?
1226  const int grow_ats = old_ats+new_ats;  // how many now?
1227  _max_alias_types = grow_ats;
1228  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1229  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1230  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1231  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1232}
1233
1234
1235//--------------------------------find_alias_type------------------------------
1236Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
1237  if (_AliasLevel == 0)
1238    return alias_type(AliasIdxBot);
1239
1240  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1241  if (ace->_adr_type == adr_type) {
1242    return alias_type(ace->_index);
1243  }
1244
1245  // Handle special cases.
1246  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1247  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1248
1249  // Do it the slow way.
1250  const TypePtr* flat = flatten_alias_type(adr_type);
1251
1252#ifdef ASSERT
1253  assert(flat == flatten_alias_type(flat), "idempotent");
1254  assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1255  if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1256    const TypeOopPtr* foop = flat->is_oopptr();
1257    const TypePtr* xoop = foop->cast_to_exactness(!foop->klass_is_exact())->is_ptr();
1258    assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1259  }
1260  assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1261#endif
1262
1263  int idx = AliasIdxTop;
1264  for (int i = 0; i < num_alias_types(); i++) {
1265    if (alias_type(i)->adr_type() == flat) {
1266      idx = i;
1267      break;
1268    }
1269  }
1270
1271  if (idx == AliasIdxTop) {
1272    if (no_create)  return NULL;
1273    // Grow the array if necessary.
1274    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1275    // Add a new alias type.
1276    idx = _num_alias_types++;
1277    _alias_types[idx]->Init(idx, flat);
1278    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1279    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1280    if (flat->isa_instptr()) {
1281      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1282          && flat->is_instptr()->klass() == env()->Class_klass())
1283        alias_type(idx)->set_rewritable(false);
1284    }
1285    if (flat->isa_klassptr()) {
1286      if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1287        alias_type(idx)->set_rewritable(false);
1288      if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1289        alias_type(idx)->set_rewritable(false);
1290      if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1291        alias_type(idx)->set_rewritable(false);
1292      if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1293        alias_type(idx)->set_rewritable(false);
1294    }
1295    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1296    // but the base pointer type is not distinctive enough to identify
1297    // references into JavaThread.)
1298
1299    // Check for final instance fields.
1300    const TypeInstPtr* tinst = flat->isa_instptr();
1301    if (tinst && tinst->offset() >= oopDesc::header_size() * wordSize) {
1302      ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1303      ciField* field = k->get_field_by_offset(tinst->offset(), false);
1304      // Set field() and is_rewritable() attributes.
1305      if (field != NULL)  alias_type(idx)->set_field(field);
1306    }
1307    const TypeKlassPtr* tklass = flat->isa_klassptr();
1308    // Check for final static fields.
1309    if (tklass && tklass->klass()->is_instance_klass()) {
1310      ciInstanceKlass *k = tklass->klass()->as_instance_klass();
1311      ciField* field = k->get_field_by_offset(tklass->offset(), true);
1312      // Set field() and is_rewritable() attributes.
1313      if (field != NULL)   alias_type(idx)->set_field(field);
1314    }
1315  }
1316
1317  // Fill the cache for next time.
1318  ace->_adr_type = adr_type;
1319  ace->_index    = idx;
1320  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1321
1322  // Might as well try to fill the cache for the flattened version, too.
1323  AliasCacheEntry* face = probe_alias_cache(flat);
1324  if (face->_adr_type == NULL) {
1325    face->_adr_type = flat;
1326    face->_index    = idx;
1327    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1328  }
1329
1330  return alias_type(idx);
1331}
1332
1333
1334Compile::AliasType* Compile::alias_type(ciField* field) {
1335  const TypeOopPtr* t;
1336  if (field->is_static())
1337    t = TypeKlassPtr::make(field->holder());
1338  else
1339    t = TypeOopPtr::make_from_klass_raw(field->holder());
1340  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
1341  assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1342  return atp;
1343}
1344
1345
1346//------------------------------have_alias_type--------------------------------
1347bool Compile::have_alias_type(const TypePtr* adr_type) {
1348  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1349  if (ace->_adr_type == adr_type) {
1350    return true;
1351  }
1352
1353  // Handle special cases.
1354  if (adr_type == NULL)             return true;
1355  if (adr_type == TypePtr::BOTTOM)  return true;
1356
1357  return find_alias_type(adr_type, true) != NULL;
1358}
1359
1360//-----------------------------must_alias--------------------------------------
1361// True if all values of the given address type are in the given alias category.
1362bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1363  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1364  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1365  if (alias_idx == AliasIdxTop)         return false; // the empty category
1366  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1367
1368  // the only remaining possible overlap is identity
1369  int adr_idx = get_alias_index(adr_type);
1370  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1371  assert(adr_idx == alias_idx ||
1372         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1373          && adr_type                       != TypeOopPtr::BOTTOM),
1374         "should not be testing for overlap with an unsafe pointer");
1375  return adr_idx == alias_idx;
1376}
1377
1378//------------------------------can_alias--------------------------------------
1379// True if any values of the given address type are in the given alias category.
1380bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1381  if (alias_idx == AliasIdxTop)         return false; // the empty category
1382  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1383  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1384  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1385
1386  // the only remaining possible overlap is identity
1387  int adr_idx = get_alias_index(adr_type);
1388  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1389  return adr_idx == alias_idx;
1390}
1391
1392
1393
1394//---------------------------pop_warm_call-------------------------------------
1395WarmCallInfo* Compile::pop_warm_call() {
1396  WarmCallInfo* wci = _warm_calls;
1397  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1398  return wci;
1399}
1400
1401//----------------------------Inline_Warm--------------------------------------
1402int Compile::Inline_Warm() {
1403  // If there is room, try to inline some more warm call sites.
1404  // %%% Do a graph index compaction pass when we think we're out of space?
1405  if (!InlineWarmCalls)  return 0;
1406
1407  int calls_made_hot = 0;
1408  int room_to_grow   = NodeCountInliningCutoff - unique();
1409  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1410  int amount_grown   = 0;
1411  WarmCallInfo* call;
1412  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1413    int est_size = (int)call->size();
1414    if (est_size > (room_to_grow - amount_grown)) {
1415      // This one won't fit anyway.  Get rid of it.
1416      call->make_cold();
1417      continue;
1418    }
1419    call->make_hot();
1420    calls_made_hot++;
1421    amount_grown   += est_size;
1422    amount_to_grow -= est_size;
1423  }
1424
1425  if (calls_made_hot > 0)  set_major_progress();
1426  return calls_made_hot;
1427}
1428
1429
1430//----------------------------Finish_Warm--------------------------------------
1431void Compile::Finish_Warm() {
1432  if (!InlineWarmCalls)  return;
1433  if (failing())  return;
1434  if (warm_calls() == NULL)  return;
1435
1436  // Clean up loose ends, if we are out of space for inlining.
1437  WarmCallInfo* call;
1438  while ((call = pop_warm_call()) != NULL) {
1439    call->make_cold();
1440  }
1441}
1442
1443
1444//------------------------------Optimize---------------------------------------
1445// Given a graph, optimize it.
1446void Compile::Optimize() {
1447  TracePhase t1("optimizer", &_t_optimizer, true);
1448
1449#ifndef PRODUCT
1450  if (env()->break_at_compile()) {
1451    BREAKPOINT;
1452  }
1453
1454#endif
1455
1456  ResourceMark rm;
1457  int          loop_opts_cnt;
1458
1459  NOT_PRODUCT( verify_graph_edges(); )
1460
1461  print_method("Start");
1462
1463 {
1464  // Iterative Global Value Numbering, including ideal transforms
1465  // Initialize IterGVN with types and values from parse-time GVN
1466  PhaseIterGVN igvn(initial_gvn());
1467  {
1468    NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1469    igvn.optimize();
1470  }
1471
1472  print_method("Iter GVN 1", 2);
1473
1474  if (failing())  return;
1475
1476  // get rid of the connection graph since it's information is not
1477  // updated by optimizations
1478  _congraph = NULL;
1479
1480
1481  // Loop transforms on the ideal graph.  Range Check Elimination,
1482  // peeling, unrolling, etc.
1483
1484  // Set loop opts counter
1485  loop_opts_cnt = num_loop_opts();
1486  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1487    {
1488      TracePhase t2("idealLoop", &_t_idealLoop, true);
1489      PhaseIdealLoop ideal_loop( igvn, NULL, true );
1490      loop_opts_cnt--;
1491      if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1492      if (failing())  return;
1493    }
1494    // Loop opts pass if partial peeling occurred in previous pass
1495    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1496      TracePhase t3("idealLoop", &_t_idealLoop, true);
1497      PhaseIdealLoop ideal_loop( igvn, NULL, false );
1498      loop_opts_cnt--;
1499      if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1500      if (failing())  return;
1501    }
1502    // Loop opts pass for loop-unrolling before CCP
1503    if(major_progress() && (loop_opts_cnt > 0)) {
1504      TracePhase t4("idealLoop", &_t_idealLoop, true);
1505      PhaseIdealLoop ideal_loop( igvn, NULL, false );
1506      loop_opts_cnt--;
1507      if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1508    }
1509  }
1510  if (failing())  return;
1511
1512  // Conditional Constant Propagation;
1513  PhaseCCP ccp( &igvn );
1514  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1515  {
1516    TracePhase t2("ccp", &_t_ccp, true);
1517    ccp.do_transform();
1518  }
1519  print_method("PhaseCPP 1", 2);
1520
1521  assert( true, "Break here to ccp.dump_old2new_map()");
1522
1523  // Iterative Global Value Numbering, including ideal transforms
1524  {
1525    NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1526    igvn = ccp;
1527    igvn.optimize();
1528  }
1529
1530  print_method("Iter GVN 2", 2);
1531
1532  if (failing())  return;
1533
1534  // Loop transforms on the ideal graph.  Range Check Elimination,
1535  // peeling, unrolling, etc.
1536  if(loop_opts_cnt > 0) {
1537    debug_only( int cnt = 0; );
1538    while(major_progress() && (loop_opts_cnt > 0)) {
1539      TracePhase t2("idealLoop", &_t_idealLoop, true);
1540      assert( cnt++ < 40, "infinite cycle in loop optimization" );
1541      PhaseIdealLoop ideal_loop( igvn, NULL, true );
1542      loop_opts_cnt--;
1543      if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1544      if (failing())  return;
1545    }
1546  }
1547  {
1548    NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1549    PhaseMacroExpand  mex(igvn);
1550    if (mex.expand_macro_nodes()) {
1551      assert(failing(), "must bail out w/ explicit message");
1552      return;
1553    }
1554  }
1555
1556 } // (End scope of igvn; run destructor if necessary for asserts.)
1557
1558  // A method with only infinite loops has no edges entering loops from root
1559  {
1560    NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1561    if (final_graph_reshaping()) {
1562      assert(failing(), "must bail out w/ explicit message");
1563      return;
1564    }
1565  }
1566
1567  print_method("Optimize finished", 2);
1568}
1569
1570
1571//------------------------------Code_Gen---------------------------------------
1572// Given a graph, generate code for it
1573void Compile::Code_Gen() {
1574  if (failing())  return;
1575
1576  // Perform instruction selection.  You might think we could reclaim Matcher
1577  // memory PDQ, but actually the Matcher is used in generating spill code.
1578  // Internals of the Matcher (including some VectorSets) must remain live
1579  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1580  // set a bit in reclaimed memory.
1581
1582  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1583  // nodes.  Mapping is only valid at the root of each matched subtree.
1584  NOT_PRODUCT( verify_graph_edges(); )
1585
1586  Node_List proj_list;
1587  Matcher m(proj_list);
1588  _matcher = &m;
1589  {
1590    TracePhase t2("matcher", &_t_matcher, true);
1591    m.match();
1592  }
1593  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1594  // nodes.  Mapping is only valid at the root of each matched subtree.
1595  NOT_PRODUCT( verify_graph_edges(); )
1596
1597  // If you have too many nodes, or if matching has failed, bail out
1598  check_node_count(0, "out of nodes matching instructions");
1599  if (failing())  return;
1600
1601  // Build a proper-looking CFG
1602  PhaseCFG cfg(node_arena(), root(), m);
1603  _cfg = &cfg;
1604  {
1605    NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1606    cfg.Dominators();
1607    if (failing())  return;
1608
1609    NOT_PRODUCT( verify_graph_edges(); )
1610
1611    cfg.Estimate_Block_Frequency();
1612    cfg.GlobalCodeMotion(m,unique(),proj_list);
1613
1614    print_method("Global code motion", 2);
1615
1616    if (failing())  return;
1617    NOT_PRODUCT( verify_graph_edges(); )
1618
1619    debug_only( cfg.verify(); )
1620  }
1621  NOT_PRODUCT( verify_graph_edges(); )
1622
1623  PhaseChaitin regalloc(unique(),cfg,m);
1624  _regalloc = &regalloc;
1625  {
1626    TracePhase t2("regalloc", &_t_registerAllocation, true);
1627    // Perform any platform dependent preallocation actions.  This is used,
1628    // for example, to avoid taking an implicit null pointer exception
1629    // using the frame pointer on win95.
1630    _regalloc->pd_preallocate_hook();
1631
1632    // Perform register allocation.  After Chaitin, use-def chains are
1633    // no longer accurate (at spill code) and so must be ignored.
1634    // Node->LRG->reg mappings are still accurate.
1635    _regalloc->Register_Allocate();
1636
1637    // Bail out if the allocator builds too many nodes
1638    if (failing())  return;
1639  }
1640
1641  // Prior to register allocation we kept empty basic blocks in case the
1642  // the allocator needed a place to spill.  After register allocation we
1643  // are not adding any new instructions.  If any basic block is empty, we
1644  // can now safely remove it.
1645  {
1646    NOT_PRODUCT( TracePhase t2("removeEmpty", &_t_removeEmptyBlocks, TimeCompiler); )
1647    cfg.RemoveEmpty();
1648  }
1649
1650  // Perform any platform dependent postallocation verifications.
1651  debug_only( _regalloc->pd_postallocate_verify_hook(); )
1652
1653  // Apply peephole optimizations
1654  if( OptoPeephole ) {
1655    NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1656    PhasePeephole peep( _regalloc, cfg);
1657    peep.do_transform();
1658  }
1659
1660  // Convert Nodes to instruction bits in a buffer
1661  {
1662    // %%%% workspace merge brought two timers together for one job
1663    TracePhase t2a("output", &_t_output, true);
1664    NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1665    Output();
1666  }
1667
1668  print_method("End");
1669
1670  // He's dead, Jim.
1671  _cfg     = (PhaseCFG*)0xdeadbeef;
1672  _regalloc = (PhaseChaitin*)0xdeadbeef;
1673}
1674
1675
1676//------------------------------dump_asm---------------------------------------
1677// Dump formatted assembly
1678#ifndef PRODUCT
1679void Compile::dump_asm(int *pcs, uint pc_limit) {
1680  bool cut_short = false;
1681  tty->print_cr("#");
1682  tty->print("#  ");  _tf->dump();  tty->cr();
1683  tty->print_cr("#");
1684
1685  // For all blocks
1686  int pc = 0x0;                 // Program counter
1687  char starts_bundle = ' ';
1688  _regalloc->dump_frame();
1689
1690  Node *n = NULL;
1691  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1692    if (VMThread::should_terminate()) { cut_short = true; break; }
1693    Block *b = _cfg->_blocks[i];
1694    if (b->is_connector() && !Verbose) continue;
1695    n = b->_nodes[0];
1696    if (pcs && n->_idx < pc_limit)
1697      tty->print("%3.3x   ", pcs[n->_idx]);
1698    else
1699      tty->print("      ");
1700    b->dump_head( &_cfg->_bbs );
1701    if (b->is_connector()) {
1702      tty->print_cr("        # Empty connector block");
1703    } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1704      tty->print_cr("        # Block is sole successor of call");
1705    }
1706
1707    // For all instructions
1708    Node *delay = NULL;
1709    for( uint j = 0; j<b->_nodes.size(); j++ ) {
1710      if (VMThread::should_terminate()) { cut_short = true; break; }
1711      n = b->_nodes[j];
1712      if (valid_bundle_info(n)) {
1713        Bundle *bundle = node_bundling(n);
1714        if (bundle->used_in_unconditional_delay()) {
1715          delay = n;
1716          continue;
1717        }
1718        if (bundle->starts_bundle())
1719          starts_bundle = '+';
1720      }
1721
1722      if( !n->is_Region() &&    // Dont print in the Assembly
1723          !n->is_Phi() &&       // a few noisely useless nodes
1724          !n->is_Proj() &&
1725          !n->is_MachTemp() &&
1726          !n->is_Catch() &&     // Would be nice to print exception table targets
1727          !n->is_MergeMem() &&  // Not very interesting
1728          !n->is_top() &&       // Debug info table constants
1729          !(n->is_Con() && !n->is_Mach())// Debug info table constants
1730          ) {
1731        if (pcs && n->_idx < pc_limit)
1732          tty->print("%3.3x", pcs[n->_idx]);
1733        else
1734          tty->print("   ");
1735        tty->print(" %c ", starts_bundle);
1736        starts_bundle = ' ';
1737        tty->print("\t");
1738        n->format(_regalloc, tty);
1739        tty->cr();
1740      }
1741
1742      // If we have an instruction with a delay slot, and have seen a delay,
1743      // then back up and print it
1744      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1745        assert(delay != NULL, "no unconditional delay instruction");
1746        if (node_bundling(delay)->starts_bundle())
1747          starts_bundle = '+';
1748        if (pcs && n->_idx < pc_limit)
1749          tty->print("%3.3x", pcs[n->_idx]);
1750        else
1751          tty->print("   ");
1752        tty->print(" %c ", starts_bundle);
1753        starts_bundle = ' ';
1754        tty->print("\t");
1755        delay->format(_regalloc, tty);
1756        tty->print_cr("");
1757        delay = NULL;
1758      }
1759
1760      // Dump the exception table as well
1761      if( n->is_Catch() && (Verbose || WizardMode) ) {
1762        // Print the exception table for this offset
1763        _handler_table.print_subtable_for(pc);
1764      }
1765    }
1766
1767    if (pcs && n->_idx < pc_limit)
1768      tty->print_cr("%3.3x", pcs[n->_idx]);
1769    else
1770      tty->print_cr("");
1771
1772    assert(cut_short || delay == NULL, "no unconditional delay branch");
1773
1774  } // End of per-block dump
1775  tty->print_cr("");
1776
1777  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
1778}
1779#endif
1780
1781//------------------------------Final_Reshape_Counts---------------------------
1782// This class defines counters to help identify when a method
1783// may/must be executed using hardware with only 24-bit precision.
1784struct Final_Reshape_Counts : public StackObj {
1785  int  _call_count;             // count non-inlined 'common' calls
1786  int  _float_count;            // count float ops requiring 24-bit precision
1787  int  _double_count;           // count double ops requiring more precision
1788  int  _java_call_count;        // count non-inlined 'java' calls
1789  VectorSet _visited;           // Visitation flags
1790  Node_List _tests;             // Set of IfNodes & PCTableNodes
1791
1792  Final_Reshape_Counts() :
1793    _call_count(0), _float_count(0), _double_count(0), _java_call_count(0),
1794    _visited( Thread::current()->resource_area() ) { }
1795
1796  void inc_call_count  () { _call_count  ++; }
1797  void inc_float_count () { _float_count ++; }
1798  void inc_double_count() { _double_count++; }
1799  void inc_java_call_count() { _java_call_count++; }
1800
1801  int  get_call_count  () const { return _call_count  ; }
1802  int  get_float_count () const { return _float_count ; }
1803  int  get_double_count() const { return _double_count; }
1804  int  get_java_call_count() const { return _java_call_count; }
1805};
1806
1807static bool oop_offset_is_sane(const TypeInstPtr* tp) {
1808  ciInstanceKlass *k = tp->klass()->as_instance_klass();
1809  // Make sure the offset goes inside the instance layout.
1810  return (uint)tp->offset() < (uint)(oopDesc::header_size() + k->nonstatic_field_size())*wordSize;
1811  // Note that OffsetBot and OffsetTop are very negative.
1812}
1813
1814//------------------------------final_graph_reshaping_impl----------------------
1815// Implement items 1-5 from final_graph_reshaping below.
1816static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &fpu ) {
1817
1818  uint nop = n->Opcode();
1819
1820  // Check for 2-input instruction with "last use" on right input.
1821  // Swap to left input.  Implements item (2).
1822  if( n->req() == 3 &&          // two-input instruction
1823      n->in(1)->outcnt() > 1 && // left use is NOT a last use
1824      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
1825      n->in(2)->outcnt() == 1 &&// right use IS a last use
1826      !n->in(2)->is_Con() ) {   // right use is not a constant
1827    // Check for commutative opcode
1828    switch( nop ) {
1829    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
1830    case Op_MaxI:  case Op_MinI:
1831    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
1832    case Op_AndL:  case Op_XorL:  case Op_OrL:
1833    case Op_AndI:  case Op_XorI:  case Op_OrI: {
1834      // Move "last use" input to left by swapping inputs
1835      n->swap_edges(1, 2);
1836      break;
1837    }
1838    default:
1839      break;
1840    }
1841  }
1842
1843  // Count FPU ops and common calls, implements item (3)
1844  switch( nop ) {
1845  // Count all float operations that may use FPU
1846  case Op_AddF:
1847  case Op_SubF:
1848  case Op_MulF:
1849  case Op_DivF:
1850  case Op_NegF:
1851  case Op_ModF:
1852  case Op_ConvI2F:
1853  case Op_ConF:
1854  case Op_CmpF:
1855  case Op_CmpF3:
1856  // case Op_ConvL2F: // longs are split into 32-bit halves
1857    fpu.inc_float_count();
1858    break;
1859
1860  case Op_ConvF2D:
1861  case Op_ConvD2F:
1862    fpu.inc_float_count();
1863    fpu.inc_double_count();
1864    break;
1865
1866  // Count all double operations that may use FPU
1867  case Op_AddD:
1868  case Op_SubD:
1869  case Op_MulD:
1870  case Op_DivD:
1871  case Op_NegD:
1872  case Op_ModD:
1873  case Op_ConvI2D:
1874  case Op_ConvD2I:
1875  // case Op_ConvL2D: // handled by leaf call
1876  // case Op_ConvD2L: // handled by leaf call
1877  case Op_ConD:
1878  case Op_CmpD:
1879  case Op_CmpD3:
1880    fpu.inc_double_count();
1881    break;
1882  case Op_Opaque1:              // Remove Opaque Nodes before matching
1883  case Op_Opaque2:              // Remove Opaque Nodes before matching
1884    n->replace_by(n->in(1));
1885    break;
1886  case Op_CallStaticJava:
1887  case Op_CallJava:
1888  case Op_CallDynamicJava:
1889    fpu.inc_java_call_count(); // Count java call site;
1890  case Op_CallRuntime:
1891  case Op_CallLeaf:
1892  case Op_CallLeafNoFP: {
1893    assert( n->is_Call(), "" );
1894    CallNode *call = n->as_Call();
1895    // Count call sites where the FP mode bit would have to be flipped.
1896    // Do not count uncommon runtime calls:
1897    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
1898    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
1899    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
1900      fpu.inc_call_count();   // Count the call site
1901    } else {                  // See if uncommon argument is shared
1902      Node *n = call->in(TypeFunc::Parms);
1903      int nop = n->Opcode();
1904      // Clone shared simple arguments to uncommon calls, item (1).
1905      if( n->outcnt() > 1 &&
1906          !n->is_Proj() &&
1907          nop != Op_CreateEx &&
1908          nop != Op_CheckCastPP &&
1909          !n->is_Mem() ) {
1910        Node *x = n->clone();
1911        call->set_req( TypeFunc::Parms, x );
1912      }
1913    }
1914    break;
1915  }
1916
1917  case Op_StoreD:
1918  case Op_LoadD:
1919  case Op_LoadD_unaligned:
1920    fpu.inc_double_count();
1921    goto handle_mem;
1922  case Op_StoreF:
1923  case Op_LoadF:
1924    fpu.inc_float_count();
1925    goto handle_mem;
1926
1927  case Op_StoreB:
1928  case Op_StoreC:
1929  case Op_StoreCM:
1930  case Op_StorePConditional:
1931  case Op_StoreI:
1932  case Op_StoreL:
1933  case Op_StoreLConditional:
1934  case Op_CompareAndSwapI:
1935  case Op_CompareAndSwapL:
1936  case Op_CompareAndSwapP:
1937  case Op_StoreP:
1938  case Op_LoadB:
1939  case Op_LoadC:
1940  case Op_LoadI:
1941  case Op_LoadKlass:
1942  case Op_LoadL:
1943  case Op_LoadL_unaligned:
1944  case Op_LoadPLocked:
1945  case Op_LoadLLocked:
1946  case Op_LoadP:
1947  case Op_LoadRange:
1948  case Op_LoadS: {
1949  handle_mem:
1950#ifdef ASSERT
1951    if( VerifyOptoOopOffsets ) {
1952      assert( n->is_Mem(), "" );
1953      MemNode *mem  = (MemNode*)n;
1954      // Check to see if address types have grounded out somehow.
1955      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
1956      assert( !tp || oop_offset_is_sane(tp), "" );
1957    }
1958#endif
1959    break;
1960  }
1961  case Op_If:
1962  case Op_CountedLoopEnd:
1963    fpu._tests.push(n);         // Collect CFG split points
1964    break;
1965
1966  case Op_AddP: {               // Assert sane base pointers
1967    const Node *addp = n->in(AddPNode::Address);
1968    assert( !addp->is_AddP() ||
1969            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
1970            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
1971            "Base pointers must match" );
1972    break;
1973  }
1974
1975  case Op_ModI:
1976    if (UseDivMod) {
1977      // Check if a%b and a/b both exist
1978      Node* d = n->find_similar(Op_DivI);
1979      if (d) {
1980        // Replace them with a fused divmod if supported
1981        Compile* C = Compile::current();
1982        if (Matcher::has_match_rule(Op_DivModI)) {
1983          DivModINode* divmod = DivModINode::make(C, n);
1984          d->replace_by(divmod->div_proj());
1985          n->replace_by(divmod->mod_proj());
1986        } else {
1987          // replace a%b with a-((a/b)*b)
1988          Node* mult = new (C, 3) MulINode(d, d->in(2));
1989          Node* sub  = new (C, 3) SubINode(d->in(1), mult);
1990          n->replace_by( sub );
1991        }
1992      }
1993    }
1994    break;
1995
1996  case Op_ModL:
1997    if (UseDivMod) {
1998      // Check if a%b and a/b both exist
1999      Node* d = n->find_similar(Op_DivL);
2000      if (d) {
2001        // Replace them with a fused divmod if supported
2002        Compile* C = Compile::current();
2003        if (Matcher::has_match_rule(Op_DivModL)) {
2004          DivModLNode* divmod = DivModLNode::make(C, n);
2005          d->replace_by(divmod->div_proj());
2006          n->replace_by(divmod->mod_proj());
2007        } else {
2008          // replace a%b with a-((a/b)*b)
2009          Node* mult = new (C, 3) MulLNode(d, d->in(2));
2010          Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2011          n->replace_by( sub );
2012        }
2013      }
2014    }
2015    break;
2016
2017  case Op_Load16B:
2018  case Op_Load8B:
2019  case Op_Load4B:
2020  case Op_Load8S:
2021  case Op_Load4S:
2022  case Op_Load2S:
2023  case Op_Load8C:
2024  case Op_Load4C:
2025  case Op_Load2C:
2026  case Op_Load4I:
2027  case Op_Load2I:
2028  case Op_Load2L:
2029  case Op_Load4F:
2030  case Op_Load2F:
2031  case Op_Load2D:
2032  case Op_Store16B:
2033  case Op_Store8B:
2034  case Op_Store4B:
2035  case Op_Store8C:
2036  case Op_Store4C:
2037  case Op_Store2C:
2038  case Op_Store4I:
2039  case Op_Store2I:
2040  case Op_Store2L:
2041  case Op_Store4F:
2042  case Op_Store2F:
2043  case Op_Store2D:
2044    break;
2045
2046  case Op_PackB:
2047  case Op_PackS:
2048  case Op_PackC:
2049  case Op_PackI:
2050  case Op_PackF:
2051  case Op_PackL:
2052  case Op_PackD:
2053    if (n->req()-1 > 2) {
2054      // Replace many operand PackNodes with a binary tree for matching
2055      PackNode* p = (PackNode*) n;
2056      Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2057      n->replace_by(btp);
2058    }
2059    break;
2060  default:
2061    assert( !n->is_Call(), "" );
2062    assert( !n->is_Mem(), "" );
2063    if( n->is_If() || n->is_PCTable() )
2064      fpu._tests.push(n);       // Collect CFG split points
2065    break;
2066  }
2067}
2068
2069//------------------------------final_graph_reshaping_walk---------------------
2070// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2071// requires that the walk visits a node's inputs before visiting the node.
2072static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &fpu ) {
2073  fpu._visited.set(root->_idx); // first, mark node as visited
2074  uint cnt = root->req();
2075  Node *n = root;
2076  uint  i = 0;
2077  while (true) {
2078    if (i < cnt) {
2079      // Place all non-visited non-null inputs onto stack
2080      Node* m = n->in(i);
2081      ++i;
2082      if (m != NULL && !fpu._visited.test_set(m->_idx)) {
2083        cnt = m->req();
2084        nstack.push(n, i); // put on stack parent and next input's index
2085        n = m;
2086        i = 0;
2087      }
2088    } else {
2089      // Now do post-visit work
2090      final_graph_reshaping_impl( n, fpu );
2091      if (nstack.is_empty())
2092        break;             // finished
2093      n = nstack.node();   // Get node from stack
2094      cnt = n->req();
2095      i = nstack.index();
2096      nstack.pop();        // Shift to the next node on stack
2097    }
2098  }
2099}
2100
2101//------------------------------final_graph_reshaping--------------------------
2102// Final Graph Reshaping.
2103//
2104// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2105//     and not commoned up and forced early.  Must come after regular
2106//     optimizations to avoid GVN undoing the cloning.  Clone constant
2107//     inputs to Loop Phis; these will be split by the allocator anyways.
2108//     Remove Opaque nodes.
2109// (2) Move last-uses by commutative operations to the left input to encourage
2110//     Intel update-in-place two-address operations and better register usage
2111//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2112//     calls canonicalizing them back.
2113// (3) Count the number of double-precision FP ops, single-precision FP ops
2114//     and call sites.  On Intel, we can get correct rounding either by
2115//     forcing singles to memory (requires extra stores and loads after each
2116//     FP bytecode) or we can set a rounding mode bit (requires setting and
2117//     clearing the mode bit around call sites).  The mode bit is only used
2118//     if the relative frequency of single FP ops to calls is low enough.
2119//     This is a key transform for SPEC mpeg_audio.
2120// (4) Detect infinite loops; blobs of code reachable from above but not
2121//     below.  Several of the Code_Gen algorithms fail on such code shapes,
2122//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2123//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2124//     Detection is by looking for IfNodes where only 1 projection is
2125//     reachable from below or CatchNodes missing some targets.
2126// (5) Assert for insane oop offsets in debug mode.
2127
2128bool Compile::final_graph_reshaping() {
2129  // an infinite loop may have been eliminated by the optimizer,
2130  // in which case the graph will be empty.
2131  if (root()->req() == 1) {
2132    record_method_not_compilable("trivial infinite loop");
2133    return true;
2134  }
2135
2136  Final_Reshape_Counts fpu;
2137
2138  // Visit everybody reachable!
2139  // Allocate stack of size C->unique()/2 to avoid frequent realloc
2140  Node_Stack nstack(unique() >> 1);
2141  final_graph_reshaping_walk(nstack, root(), fpu);
2142
2143  // Check for unreachable (from below) code (i.e., infinite loops).
2144  for( uint i = 0; i < fpu._tests.size(); i++ ) {
2145    Node *n = fpu._tests[i];
2146    assert( n->is_PCTable() || n->is_If(), "either PCTables or IfNodes" );
2147    // Get number of CFG targets; 2 for IfNodes or _size for PCTables.
2148    // Note that PCTables include exception targets after calls.
2149    uint expected_kids = n->is_PCTable() ? n->as_PCTable()->_size : 2;
2150    if (n->outcnt() != expected_kids) {
2151      // Check for a few special cases.  Rethrow Nodes never take the
2152      // 'fall-thru' path, so expected kids is 1 less.
2153      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2154        if (n->in(0)->in(0)->is_Call()) {
2155          CallNode *call = n->in(0)->in(0)->as_Call();
2156          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2157            expected_kids--;      // Rethrow always has 1 less kid
2158          } else if (call->req() > TypeFunc::Parms &&
2159                     call->is_CallDynamicJava()) {
2160            // Check for null receiver. In such case, the optimizer has
2161            // detected that the virtual call will always result in a null
2162            // pointer exception. The fall-through projection of this CatchNode
2163            // will not be populated.
2164            Node *arg0 = call->in(TypeFunc::Parms);
2165            if (arg0->is_Type() &&
2166                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2167              expected_kids--;
2168            }
2169          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2170                     call->req() > TypeFunc::Parms+1 &&
2171                     call->is_CallStaticJava()) {
2172            // Check for negative array length. In such case, the optimizer has
2173            // detected that the allocation attempt will always result in an
2174            // exception. There is no fall-through projection of this CatchNode .
2175            Node *arg1 = call->in(TypeFunc::Parms+1);
2176            if (arg1->is_Type() &&
2177                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2178              expected_kids--;
2179            }
2180          }
2181        }
2182      }
2183      // Recheck with a better notion of 'expected_kids'
2184      if (n->outcnt() != expected_kids) {
2185        record_method_not_compilable("malformed control flow");
2186        return true;            // Not all targets reachable!
2187      }
2188    }
2189    // Check that I actually visited all kids.  Unreached kids
2190    // must be infinite loops.
2191    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2192      if (!fpu._visited.test(n->fast_out(j)->_idx)) {
2193        record_method_not_compilable("infinite loop");
2194        return true;            // Found unvisited kid; must be unreach
2195      }
2196  }
2197
2198  // If original bytecodes contained a mixture of floats and doubles
2199  // check if the optimizer has made it homogenous, item (3).
2200  if( Use24BitFPMode && Use24BitFP &&
2201      fpu.get_float_count() > 32 &&
2202      fpu.get_double_count() == 0 &&
2203      (10 * fpu.get_call_count() < fpu.get_float_count()) ) {
2204    set_24_bit_selection_and_mode( false,  true );
2205  }
2206
2207  set_has_java_calls(fpu.get_java_call_count() > 0);
2208
2209  // No infinite loops, no reason to bail out.
2210  return false;
2211}
2212
2213//-----------------------------too_many_traps----------------------------------
2214// Report if there are too many traps at the current method and bci.
2215// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2216bool Compile::too_many_traps(ciMethod* method,
2217                             int bci,
2218                             Deoptimization::DeoptReason reason) {
2219  ciMethodData* md = method->method_data();
2220  if (md->is_empty()) {
2221    // Assume the trap has not occurred, or that it occurred only
2222    // because of a transient condition during start-up in the interpreter.
2223    return false;
2224  }
2225  if (md->has_trap_at(bci, reason) != 0) {
2226    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2227    // Also, if there are multiple reasons, or if there is no per-BCI record,
2228    // assume the worst.
2229    if (log())
2230      log()->elem("observe trap='%s' count='%d'",
2231                  Deoptimization::trap_reason_name(reason),
2232                  md->trap_count(reason));
2233    return true;
2234  } else {
2235    // Ignore method/bci and see if there have been too many globally.
2236    return too_many_traps(reason, md);
2237  }
2238}
2239
2240// Less-accurate variant which does not require a method and bci.
2241bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2242                             ciMethodData* logmd) {
2243 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2244    // Too many traps globally.
2245    // Note that we use cumulative trap_count, not just md->trap_count.
2246    if (log()) {
2247      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2248      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2249                  Deoptimization::trap_reason_name(reason),
2250                  mcount, trap_count(reason));
2251    }
2252    return true;
2253  } else {
2254    // The coast is clear.
2255    return false;
2256  }
2257}
2258
2259//--------------------------too_many_recompiles--------------------------------
2260// Report if there are too many recompiles at the current method and bci.
2261// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2262// Is not eager to return true, since this will cause the compiler to use
2263// Action_none for a trap point, to avoid too many recompilations.
2264bool Compile::too_many_recompiles(ciMethod* method,
2265                                  int bci,
2266                                  Deoptimization::DeoptReason reason) {
2267  ciMethodData* md = method->method_data();
2268  if (md->is_empty()) {
2269    // Assume the trap has not occurred, or that it occurred only
2270    // because of a transient condition during start-up in the interpreter.
2271    return false;
2272  }
2273  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2274  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2275  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2276  Deoptimization::DeoptReason per_bc_reason
2277    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2278  if ((per_bc_reason == Deoptimization::Reason_none
2279       || md->has_trap_at(bci, reason) != 0)
2280      // The trap frequency measure we care about is the recompile count:
2281      && md->trap_recompiled_at(bci)
2282      && md->overflow_recompile_count() >= bc_cutoff) {
2283    // Do not emit a trap here if it has already caused recompilations.
2284    // Also, if there are multiple reasons, or if there is no per-BCI record,
2285    // assume the worst.
2286    if (log())
2287      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2288                  Deoptimization::trap_reason_name(reason),
2289                  md->trap_count(reason),
2290                  md->overflow_recompile_count());
2291    return true;
2292  } else if (trap_count(reason) != 0
2293             && decompile_count() >= m_cutoff) {
2294    // Too many recompiles globally, and we have seen this sort of trap.
2295    // Use cumulative decompile_count, not just md->decompile_count.
2296    if (log())
2297      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2298                  Deoptimization::trap_reason_name(reason),
2299                  md->trap_count(reason), trap_count(reason),
2300                  md->decompile_count(), decompile_count());
2301    return true;
2302  } else {
2303    // The coast is clear.
2304    return false;
2305  }
2306}
2307
2308
2309#ifndef PRODUCT
2310//------------------------------verify_graph_edges---------------------------
2311// Walk the Graph and verify that there is a one-to-one correspondence
2312// between Use-Def edges and Def-Use edges in the graph.
2313void Compile::verify_graph_edges(bool no_dead_code) {
2314  if (VerifyGraphEdges) {
2315    ResourceArea *area = Thread::current()->resource_area();
2316    Unique_Node_List visited(area);
2317    // Call recursive graph walk to check edges
2318    _root->verify_edges(visited);
2319    if (no_dead_code) {
2320      // Now make sure that no visited node is used by an unvisited node.
2321      bool dead_nodes = 0;
2322      Unique_Node_List checked(area);
2323      while (visited.size() > 0) {
2324        Node* n = visited.pop();
2325        checked.push(n);
2326        for (uint i = 0; i < n->outcnt(); i++) {
2327          Node* use = n->raw_out(i);
2328          if (checked.member(use))  continue;  // already checked
2329          if (visited.member(use))  continue;  // already in the graph
2330          if (use->is_Con())        continue;  // a dead ConNode is OK
2331          // At this point, we have found a dead node which is DU-reachable.
2332          if (dead_nodes++ == 0)
2333            tty->print_cr("*** Dead nodes reachable via DU edges:");
2334          use->dump(2);
2335          tty->print_cr("---");
2336          checked.push(use);  // No repeats; pretend it is now checked.
2337        }
2338      }
2339      assert(dead_nodes == 0, "using nodes must be reachable from root");
2340    }
2341  }
2342}
2343#endif
2344
2345// The Compile object keeps track of failure reasons separately from the ciEnv.
2346// This is required because there is not quite a 1-1 relation between the
2347// ciEnv and its compilation task and the Compile object.  Note that one
2348// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2349// to backtrack and retry without subsuming loads.  Other than this backtracking
2350// behavior, the Compile's failure reason is quietly copied up to the ciEnv
2351// by the logic in C2Compiler.
2352void Compile::record_failure(const char* reason) {
2353  if (log() != NULL) {
2354    log()->elem("failure reason='%s' phase='compile'", reason);
2355  }
2356  if (_failure_reason == NULL) {
2357    // Record the first failure reason.
2358    _failure_reason = reason;
2359  }
2360  _root = NULL;  // flush the graph, too
2361}
2362
2363Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2364  : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2365{
2366  if (dolog) {
2367    C = Compile::current();
2368    _log = C->log();
2369  } else {
2370    C = NULL;
2371    _log = NULL;
2372  }
2373  if (_log != NULL) {
2374    _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2375    _log->stamp();
2376    _log->end_head();
2377  }
2378}
2379
2380Compile::TracePhase::~TracePhase() {
2381  if (_log != NULL) {
2382    _log->done("phase nodes='%d'", C->unique());
2383  }
2384}
2385