1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "ci/ciReplay.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/exceptionHandlerTable.hpp"
31#include "code/nmethod.hpp"
32#include "compiler/compileBroker.hpp"
33#include "compiler/compileLog.hpp"
34#include "compiler/disassembler.hpp"
35#include "compiler/oopMap.hpp"
36#include "memory/resourceArea.hpp"
37#include "opto/addnode.hpp"
38#include "opto/block.hpp"
39#include "opto/c2compiler.hpp"
40#include "opto/callGenerator.hpp"
41#include "opto/callnode.hpp"
42#include "opto/castnode.hpp"
43#include "opto/cfgnode.hpp"
44#include "opto/chaitin.hpp"
45#include "opto/compile.hpp"
46#include "opto/connode.hpp"
47#include "opto/convertnode.hpp"
48#include "opto/divnode.hpp"
49#include "opto/escape.hpp"
50#include "opto/idealGraphPrinter.hpp"
51#include "opto/loopnode.hpp"
52#include "opto/machnode.hpp"
53#include "opto/macro.hpp"
54#include "opto/matcher.hpp"
55#include "opto/mathexactnode.hpp"
56#include "opto/memnode.hpp"
57#include "opto/mulnode.hpp"
58#include "opto/narrowptrnode.hpp"
59#include "opto/node.hpp"
60#include "opto/opcodes.hpp"
61#include "opto/output.hpp"
62#include "opto/parse.hpp"
63#include "opto/phaseX.hpp"
64#include "opto/rootnode.hpp"
65#include "opto/runtime.hpp"
66#include "opto/stringopts.hpp"
67#include "opto/type.hpp"
68#include "opto/vectornode.hpp"
69#include "runtime/arguments.hpp"
70#include "runtime/sharedRuntime.hpp"
71#include "runtime/signature.hpp"
72#include "runtime/stubRoutines.hpp"
73#include "runtime/timer.hpp"
74#include "utilities/copy.hpp"
75
76
77// -------------------- Compile::mach_constant_base_node -----------------------
78// Constant table base node singleton.
79MachConstantBaseNode* Compile::mach_constant_base_node() {
80  if (_mach_constant_base_node == NULL) {
81    _mach_constant_base_node = new MachConstantBaseNode();
82    _mach_constant_base_node->add_req(C->root());
83  }
84  return _mach_constant_base_node;
85}
86
87
88/// Support for intrinsics.
89
90// Return the index at which m must be inserted (or already exists).
91// The sort order is by the address of the ciMethod, with is_virtual as minor key.
92class IntrinsicDescPair {
93 private:
94  ciMethod* _m;
95  bool _is_virtual;
96 public:
97  IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
98  static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
99    ciMethod* m= elt->method();
100    ciMethod* key_m = key->_m;
101    if (key_m < m)      return -1;
102    else if (key_m > m) return 1;
103    else {
104      bool is_virtual = elt->is_virtual();
105      bool key_virtual = key->_is_virtual;
106      if (key_virtual < is_virtual)      return -1;
107      else if (key_virtual > is_virtual) return 1;
108      else                               return 0;
109    }
110  }
111};
112int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
113#ifdef ASSERT
114  for (int i = 1; i < _intrinsics->length(); i++) {
115    CallGenerator* cg1 = _intrinsics->at(i-1);
116    CallGenerator* cg2 = _intrinsics->at(i);
117    assert(cg1->method() != cg2->method()
118           ? cg1->method()     < cg2->method()
119           : cg1->is_virtual() < cg2->is_virtual(),
120           "compiler intrinsics list must stay sorted");
121  }
122#endif
123  IntrinsicDescPair pair(m, is_virtual);
124  return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
125}
126
127void Compile::register_intrinsic(CallGenerator* cg) {
128  if (_intrinsics == NULL) {
129    _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
130  }
131  int len = _intrinsics->length();
132  bool found = false;
133  int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
134  assert(!found, "registering twice");
135  _intrinsics->insert_before(index, cg);
136  assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
137}
138
139CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
140  assert(m->is_loaded(), "don't try this on unloaded methods");
141  if (_intrinsics != NULL) {
142    bool found = false;
143    int index = intrinsic_insertion_index(m, is_virtual, found);
144     if (found) {
145      return _intrinsics->at(index);
146    }
147  }
148  // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
149  if (m->intrinsic_id() != vmIntrinsics::_none &&
150      m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
151    CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
152    if (cg != NULL) {
153      // Save it for next time:
154      register_intrinsic(cg);
155      return cg;
156    } else {
157      gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
158    }
159  }
160  return NULL;
161}
162
163// Compile:: register_library_intrinsics and make_vm_intrinsic are defined
164// in library_call.cpp.
165
166
167#ifndef PRODUCT
168// statistics gathering...
169
170juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
171jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
172
173bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
174  assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
175  int oflags = _intrinsic_hist_flags[id];
176  assert(flags != 0, "what happened?");
177  if (is_virtual) {
178    flags |= _intrinsic_virtual;
179  }
180  bool changed = (flags != oflags);
181  if ((flags & _intrinsic_worked) != 0) {
182    juint count = (_intrinsic_hist_count[id] += 1);
183    if (count == 1) {
184      changed = true;           // first time
185    }
186    // increment the overall count also:
187    _intrinsic_hist_count[vmIntrinsics::_none] += 1;
188  }
189  if (changed) {
190    if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
191      // Something changed about the intrinsic's virtuality.
192      if ((flags & _intrinsic_virtual) != 0) {
193        // This is the first use of this intrinsic as a virtual call.
194        if (oflags != 0) {
195          // We already saw it as a non-virtual, so note both cases.
196          flags |= _intrinsic_both;
197        }
198      } else if ((oflags & _intrinsic_both) == 0) {
199        // This is the first use of this intrinsic as a non-virtual
200        flags |= _intrinsic_both;
201      }
202    }
203    _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
204  }
205  // update the overall flags also:
206  _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
207  return changed;
208}
209
210static char* format_flags(int flags, char* buf) {
211  buf[0] = 0;
212  if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
213  if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
214  if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
215  if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
216  if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
217  if (buf[0] == 0)  strcat(buf, ",");
218  assert(buf[0] == ',', "must be");
219  return &buf[1];
220}
221
222void Compile::print_intrinsic_statistics() {
223  char flagsbuf[100];
224  ttyLocker ttyl;
225  if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
226  tty->print_cr("Compiler intrinsic usage:");
227  juint total = _intrinsic_hist_count[vmIntrinsics::_none];
228  if (total == 0)  total = 1;  // avoid div0 in case of no successes
229  #define PRINT_STAT_LINE(name, c, f) \
230    tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
231  for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
232    vmIntrinsics::ID id = (vmIntrinsics::ID) index;
233    int   flags = _intrinsic_hist_flags[id];
234    juint count = _intrinsic_hist_count[id];
235    if ((flags | count) != 0) {
236      PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
237    }
238  }
239  PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
240  if (xtty != NULL)  xtty->tail("statistics");
241}
242
243void Compile::print_statistics() {
244  { ttyLocker ttyl;
245    if (xtty != NULL)  xtty->head("statistics type='opto'");
246    Parse::print_statistics();
247    PhaseCCP::print_statistics();
248    PhaseRegAlloc::print_statistics();
249    Scheduling::print_statistics();
250    PhasePeephole::print_statistics();
251    PhaseIdealLoop::print_statistics();
252    if (xtty != NULL)  xtty->tail("statistics");
253  }
254  if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
255    // put this under its own <statistics> element.
256    print_intrinsic_statistics();
257  }
258}
259#endif //PRODUCT
260
261// Support for bundling info
262Bundle* Compile::node_bundling(const Node *n) {
263  assert(valid_bundle_info(n), "oob");
264  return &_node_bundling_base[n->_idx];
265}
266
267bool Compile::valid_bundle_info(const Node *n) {
268  return (_node_bundling_limit > n->_idx);
269}
270
271
272void Compile::gvn_replace_by(Node* n, Node* nn) {
273  for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
274    Node* use = n->last_out(i);
275    bool is_in_table = initial_gvn()->hash_delete(use);
276    uint uses_found = 0;
277    for (uint j = 0; j < use->len(); j++) {
278      if (use->in(j) == n) {
279        if (j < use->req())
280          use->set_req(j, nn);
281        else
282          use->set_prec(j, nn);
283        uses_found++;
284      }
285    }
286    if (is_in_table) {
287      // reinsert into table
288      initial_gvn()->hash_find_insert(use);
289    }
290    record_for_igvn(use);
291    i -= uses_found;    // we deleted 1 or more copies of this edge
292  }
293}
294
295
296static inline bool not_a_node(const Node* n) {
297  if (n == NULL)                   return true;
298  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
299  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
300  return false;
301}
302
303// Identify all nodes that are reachable from below, useful.
304// Use breadth-first pass that records state in a Unique_Node_List,
305// recursive traversal is slower.
306void Compile::identify_useful_nodes(Unique_Node_List &useful) {
307  int estimated_worklist_size = live_nodes();
308  useful.map( estimated_worklist_size, NULL );  // preallocate space
309
310  // Initialize worklist
311  if (root() != NULL)     { useful.push(root()); }
312  // If 'top' is cached, declare it useful to preserve cached node
313  if( cached_top_node() ) { useful.push(cached_top_node()); }
314
315  // Push all useful nodes onto the list, breadthfirst
316  for( uint next = 0; next < useful.size(); ++next ) {
317    assert( next < unique(), "Unique useful nodes < total nodes");
318    Node *n  = useful.at(next);
319    uint max = n->len();
320    for( uint i = 0; i < max; ++i ) {
321      Node *m = n->in(i);
322      if (not_a_node(m))  continue;
323      useful.push(m);
324    }
325  }
326}
327
328// Update dead_node_list with any missing dead nodes using useful
329// list. Consider all non-useful nodes to be useless i.e., dead nodes.
330void Compile::update_dead_node_list(Unique_Node_List &useful) {
331  uint max_idx = unique();
332  VectorSet& useful_node_set = useful.member_set();
333
334  for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
335    // If node with index node_idx is not in useful set,
336    // mark it as dead in dead node list.
337    if (! useful_node_set.test(node_idx) ) {
338      record_dead_node(node_idx);
339    }
340  }
341}
342
343void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
344  int shift = 0;
345  for (int i = 0; i < inlines->length(); i++) {
346    CallGenerator* cg = inlines->at(i);
347    CallNode* call = cg->call_node();
348    if (shift > 0) {
349      inlines->at_put(i-shift, cg);
350    }
351    if (!useful.member(call)) {
352      shift++;
353    }
354  }
355  inlines->trunc_to(inlines->length()-shift);
356}
357
358// Disconnect all useless nodes by disconnecting those at the boundary.
359void Compile::remove_useless_nodes(Unique_Node_List &useful) {
360  uint next = 0;
361  while (next < useful.size()) {
362    Node *n = useful.at(next++);
363    if (n->is_SafePoint()) {
364      // We're done with a parsing phase. Replaced nodes are not valid
365      // beyond that point.
366      n->as_SafePoint()->delete_replaced_nodes();
367    }
368    // Use raw traversal of out edges since this code removes out edges
369    int max = n->outcnt();
370    for (int j = 0; j < max; ++j) {
371      Node* child = n->raw_out(j);
372      if (! useful.member(child)) {
373        assert(!child->is_top() || child != top(),
374               "If top is cached in Compile object it is in useful list");
375        // Only need to remove this out-edge to the useless node
376        n->raw_del_out(j);
377        --j;
378        --max;
379      }
380    }
381    if (n->outcnt() == 1 && n->has_special_unique_user()) {
382      record_for_igvn(n->unique_out());
383    }
384  }
385  // Remove useless macro and predicate opaq nodes
386  for (int i = C->macro_count()-1; i >= 0; i--) {
387    Node* n = C->macro_node(i);
388    if (!useful.member(n)) {
389      remove_macro_node(n);
390    }
391  }
392  // Remove useless CastII nodes with range check dependency
393  for (int i = range_check_cast_count() - 1; i >= 0; i--) {
394    Node* cast = range_check_cast_node(i);
395    if (!useful.member(cast)) {
396      remove_range_check_cast(cast);
397    }
398  }
399  // Remove useless expensive node
400  for (int i = C->expensive_count()-1; i >= 0; i--) {
401    Node* n = C->expensive_node(i);
402    if (!useful.member(n)) {
403      remove_expensive_node(n);
404    }
405  }
406  // clean up the late inline lists
407  remove_useless_late_inlines(&_string_late_inlines, useful);
408  remove_useless_late_inlines(&_boxing_late_inlines, useful);
409  remove_useless_late_inlines(&_late_inlines, useful);
410  debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
411}
412
413//------------------------------frame_size_in_words-----------------------------
414// frame_slots in units of words
415int Compile::frame_size_in_words() const {
416  // shift is 0 in LP32 and 1 in LP64
417  const int shift = (LogBytesPerWord - LogBytesPerInt);
418  int words = _frame_slots >> shift;
419  assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
420  return words;
421}
422
423// To bang the stack of this compiled method we use the stack size
424// that the interpreter would need in case of a deoptimization. This
425// removes the need to bang the stack in the deoptimization blob which
426// in turn simplifies stack overflow handling.
427int Compile::bang_size_in_bytes() const {
428  return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
429}
430
431// ============================================================================
432//------------------------------CompileWrapper---------------------------------
433class CompileWrapper : public StackObj {
434  Compile *const _compile;
435 public:
436  CompileWrapper(Compile* compile);
437
438  ~CompileWrapper();
439};
440
441CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
442  // the Compile* pointer is stored in the current ciEnv:
443  ciEnv* env = compile->env();
444  assert(env == ciEnv::current(), "must already be a ciEnv active");
445  assert(env->compiler_data() == NULL, "compile already active?");
446  env->set_compiler_data(compile);
447  assert(compile == Compile::current(), "sanity");
448
449  compile->set_type_dict(NULL);
450  compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
451  compile->clone_map().set_clone_idx(0);
452  compile->set_type_hwm(NULL);
453  compile->set_type_last_size(0);
454  compile->set_last_tf(NULL, NULL);
455  compile->set_indexSet_arena(NULL);
456  compile->set_indexSet_free_block_list(NULL);
457  compile->init_type_arena();
458  Type::Initialize(compile);
459  _compile->set_scratch_buffer_blob(NULL);
460  _compile->begin_method();
461  _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
462}
463CompileWrapper::~CompileWrapper() {
464  _compile->end_method();
465  if (_compile->scratch_buffer_blob() != NULL)
466    BufferBlob::free(_compile->scratch_buffer_blob());
467  _compile->env()->set_compiler_data(NULL);
468}
469
470
471//----------------------------print_compile_messages---------------------------
472void Compile::print_compile_messages() {
473#ifndef PRODUCT
474  // Check if recompiling
475  if (_subsume_loads == false && PrintOpto) {
476    // Recompiling without allowing machine instructions to subsume loads
477    tty->print_cr("*********************************************************");
478    tty->print_cr("** Bailout: Recompile without subsuming loads          **");
479    tty->print_cr("*********************************************************");
480  }
481  if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
482    // Recompiling without escape analysis
483    tty->print_cr("*********************************************************");
484    tty->print_cr("** Bailout: Recompile without escape analysis          **");
485    tty->print_cr("*********************************************************");
486  }
487  if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
488    // Recompiling without boxing elimination
489    tty->print_cr("*********************************************************");
490    tty->print_cr("** Bailout: Recompile without boxing elimination       **");
491    tty->print_cr("*********************************************************");
492  }
493  if (C->directive()->BreakAtCompileOption) {
494    // Open the debugger when compiling this method.
495    tty->print("### Breaking when compiling: ");
496    method()->print_short_name();
497    tty->cr();
498    BREAKPOINT;
499  }
500
501  if( PrintOpto ) {
502    if (is_osr_compilation()) {
503      tty->print("[OSR]%3d", _compile_id);
504    } else {
505      tty->print("%3d", _compile_id);
506    }
507  }
508#endif
509}
510
511
512//-----------------------init_scratch_buffer_blob------------------------------
513// Construct a temporary BufferBlob and cache it for this compile.
514void Compile::init_scratch_buffer_blob(int const_size) {
515  // If there is already a scratch buffer blob allocated and the
516  // constant section is big enough, use it.  Otherwise free the
517  // current and allocate a new one.
518  BufferBlob* blob = scratch_buffer_blob();
519  if ((blob != NULL) && (const_size <= _scratch_const_size)) {
520    // Use the current blob.
521  } else {
522    if (blob != NULL) {
523      BufferBlob::free(blob);
524    }
525
526    ResourceMark rm;
527    _scratch_const_size = const_size;
528    int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
529    blob = BufferBlob::create("Compile::scratch_buffer", size);
530    // Record the buffer blob for next time.
531    set_scratch_buffer_blob(blob);
532    // Have we run out of code space?
533    if (scratch_buffer_blob() == NULL) {
534      // Let CompilerBroker disable further compilations.
535      record_failure("Not enough space for scratch buffer in CodeCache");
536      return;
537    }
538  }
539
540  // Initialize the relocation buffers
541  relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
542  set_scratch_locs_memory(locs_buf);
543}
544
545
546//-----------------------scratch_emit_size-------------------------------------
547// Helper function that computes size by emitting code
548uint Compile::scratch_emit_size(const Node* n) {
549  // Start scratch_emit_size section.
550  set_in_scratch_emit_size(true);
551
552  // Emit into a trash buffer and count bytes emitted.
553  // This is a pretty expensive way to compute a size,
554  // but it works well enough if seldom used.
555  // All common fixed-size instructions are given a size
556  // method by the AD file.
557  // Note that the scratch buffer blob and locs memory are
558  // allocated at the beginning of the compile task, and
559  // may be shared by several calls to scratch_emit_size.
560  // The allocation of the scratch buffer blob is particularly
561  // expensive, since it has to grab the code cache lock.
562  BufferBlob* blob = this->scratch_buffer_blob();
563  assert(blob != NULL, "Initialize BufferBlob at start");
564  assert(blob->size() > MAX_inst_size, "sanity");
565  relocInfo* locs_buf = scratch_locs_memory();
566  address blob_begin = blob->content_begin();
567  address blob_end   = (address)locs_buf;
568  assert(blob->contains(blob_end), "sanity");
569  CodeBuffer buf(blob_begin, blob_end - blob_begin);
570  buf.initialize_consts_size(_scratch_const_size);
571  buf.initialize_stubs_size(MAX_stubs_size);
572  assert(locs_buf != NULL, "sanity");
573  int lsize = MAX_locs_size / 3;
574  buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
575  buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
576  buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
577  // Mark as scratch buffer.
578  buf.consts()->set_scratch_emit();
579  buf.insts()->set_scratch_emit();
580  buf.stubs()->set_scratch_emit();
581
582  // Do the emission.
583
584  Label fakeL; // Fake label for branch instructions.
585  Label*   saveL = NULL;
586  uint save_bnum = 0;
587  bool is_branch = n->is_MachBranch();
588  if (is_branch) {
589    MacroAssembler masm(&buf);
590    masm.bind(fakeL);
591    n->as_MachBranch()->save_label(&saveL, &save_bnum);
592    n->as_MachBranch()->label_set(&fakeL, 0);
593  }
594  n->emit(buf, this->regalloc());
595
596  // Emitting into the scratch buffer should not fail
597  assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
598
599  if (is_branch) // Restore label.
600    n->as_MachBranch()->label_set(saveL, save_bnum);
601
602  // End scratch_emit_size section.
603  set_in_scratch_emit_size(false);
604
605  return buf.insts_size();
606}
607
608
609// ============================================================================
610//------------------------------Compile standard-------------------------------
611debug_only( int Compile::_debug_idx = 100000; )
612
613// Compile a method.  entry_bci is -1 for normal compilations and indicates
614// the continuation bci for on stack replacement.
615
616
617Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
618                  bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
619                : Phase(Compiler),
620                  _env(ci_env),
621                  _directive(directive),
622                  _log(ci_env->log()),
623                  _compile_id(ci_env->compile_id()),
624                  _save_argument_registers(false),
625                  _stub_name(NULL),
626                  _stub_function(NULL),
627                  _stub_entry_point(NULL),
628                  _method(target),
629                  _entry_bci(osr_bci),
630                  _initial_gvn(NULL),
631                  _for_igvn(NULL),
632                  _warm_calls(NULL),
633                  _subsume_loads(subsume_loads),
634                  _do_escape_analysis(do_escape_analysis),
635                  _eliminate_boxing(eliminate_boxing),
636                  _failure_reason(NULL),
637                  _code_buffer("Compile::Fill_buffer"),
638                  _orig_pc_slot(0),
639                  _orig_pc_slot_offset_in_bytes(0),
640                  _has_method_handle_invokes(false),
641                  _mach_constant_base_node(NULL),
642                  _node_bundling_limit(0),
643                  _node_bundling_base(NULL),
644                  _java_calls(0),
645                  _inner_loops(0),
646                  _scratch_const_size(-1),
647                  _in_scratch_emit_size(false),
648                  _dead_node_list(comp_arena()),
649                  _dead_node_count(0),
650#ifndef PRODUCT
651                  _trace_opto_output(directive->TraceOptoOutputOption),
652                  _in_dump_cnt(0),
653                  _printer(IdealGraphPrinter::printer()),
654#endif
655                  _congraph(NULL),
656                  _comp_arena(mtCompiler),
657                  _node_arena(mtCompiler),
658                  _old_arena(mtCompiler),
659                  _Compile_types(mtCompiler),
660                  _replay_inline_data(NULL),
661                  _late_inlines(comp_arena(), 2, 0, NULL),
662                  _string_late_inlines(comp_arena(), 2, 0, NULL),
663                  _boxing_late_inlines(comp_arena(), 2, 0, NULL),
664                  _late_inlines_pos(0),
665                  _number_of_mh_late_inlines(0),
666                  _inlining_progress(false),
667                  _inlining_incrementally(false),
668                  _print_inlining_list(NULL),
669                  _print_inlining_stream(NULL),
670                  _print_inlining_idx(0),
671                  _print_inlining_output(NULL),
672                  _interpreter_frame_size(0),
673                  _max_node_limit(MaxNodeLimit),
674                  _has_reserved_stack_access(target->has_reserved_stack_access()) {
675  C = this;
676#ifndef PRODUCT
677  if (_printer != NULL) {
678    _printer->set_compile(this);
679  }
680#endif
681  CompileWrapper cw(this);
682
683  if (CITimeVerbose) {
684    tty->print(" ");
685    target->holder()->name()->print();
686    tty->print(".");
687    target->print_short_name();
688    tty->print("  ");
689  }
690  TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
691  TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
692
693#ifndef PRODUCT
694  bool print_opto_assembly = directive->PrintOptoAssemblyOption;
695  if (!print_opto_assembly) {
696    bool print_assembly = directive->PrintAssemblyOption;
697    if (print_assembly && !Disassembler::can_decode()) {
698      tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
699      print_opto_assembly = true;
700    }
701  }
702  set_print_assembly(print_opto_assembly);
703  set_parsed_irreducible_loop(false);
704
705  if (directive->ReplayInlineOption) {
706    _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
707  }
708#endif
709  set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
710  set_print_intrinsics(directive->PrintIntrinsicsOption);
711  set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
712
713  if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
714    // Make sure the method being compiled gets its own MDO,
715    // so we can at least track the decompile_count().
716    // Need MDO to record RTM code generation state.
717    method()->ensure_method_data();
718  }
719
720  Init(::AliasLevel);
721
722
723  print_compile_messages();
724
725  _ilt = InlineTree::build_inline_tree_root();
726
727  // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
728  assert(num_alias_types() >= AliasIdxRaw, "");
729
730#define MINIMUM_NODE_HASH  1023
731  // Node list that Iterative GVN will start with
732  Unique_Node_List for_igvn(comp_arena());
733  set_for_igvn(&for_igvn);
734
735  // GVN that will be run immediately on new nodes
736  uint estimated_size = method()->code_size()*4+64;
737  estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
738  PhaseGVN gvn(node_arena(), estimated_size);
739  set_initial_gvn(&gvn);
740
741  print_inlining_init();
742  { // Scope for timing the parser
743    TracePhase tp("parse", &timers[_t_parser]);
744
745    // Put top into the hash table ASAP.
746    initial_gvn()->transform_no_reclaim(top());
747
748    // Set up tf(), start(), and find a CallGenerator.
749    CallGenerator* cg = NULL;
750    if (is_osr_compilation()) {
751      const TypeTuple *domain = StartOSRNode::osr_domain();
752      const TypeTuple *range = TypeTuple::make_range(method()->signature());
753      init_tf(TypeFunc::make(domain, range));
754      StartNode* s = new StartOSRNode(root(), domain);
755      initial_gvn()->set_type_bottom(s);
756      init_start(s);
757      cg = CallGenerator::for_osr(method(), entry_bci());
758    } else {
759      // Normal case.
760      init_tf(TypeFunc::make(method()));
761      StartNode* s = new StartNode(root(), tf()->domain());
762      initial_gvn()->set_type_bottom(s);
763      init_start(s);
764      if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
765        // With java.lang.ref.reference.get() we must go through the
766        // intrinsic when G1 is enabled - even when get() is the root
767        // method of the compile - so that, if necessary, the value in
768        // the referent field of the reference object gets recorded by
769        // the pre-barrier code.
770        // Specifically, if G1 is enabled, the value in the referent
771        // field is recorded by the G1 SATB pre barrier. This will
772        // result in the referent being marked live and the reference
773        // object removed from the list of discovered references during
774        // reference processing.
775        cg = find_intrinsic(method(), false);
776      }
777      if (cg == NULL) {
778        float past_uses = method()->interpreter_invocation_count();
779        float expected_uses = past_uses;
780        cg = CallGenerator::for_inline(method(), expected_uses);
781      }
782    }
783    if (failing())  return;
784    if (cg == NULL) {
785      record_method_not_compilable("cannot parse method");
786      return;
787    }
788    JVMState* jvms = build_start_state(start(), tf());
789    if ((jvms = cg->generate(jvms)) == NULL) {
790      if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
791        record_method_not_compilable("method parse failed");
792      }
793      return;
794    }
795    GraphKit kit(jvms);
796
797    if (!kit.stopped()) {
798      // Accept return values, and transfer control we know not where.
799      // This is done by a special, unique ReturnNode bound to root.
800      return_values(kit.jvms());
801    }
802
803    if (kit.has_exceptions()) {
804      // Any exceptions that escape from this call must be rethrown
805      // to whatever caller is dynamically above us on the stack.
806      // This is done by a special, unique RethrowNode bound to root.
807      rethrow_exceptions(kit.transfer_exceptions_into_jvms());
808    }
809
810    assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
811
812    if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
813      inline_string_calls(true);
814    }
815
816    if (failing())  return;
817
818    print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
819
820    // Remove clutter produced by parsing.
821    if (!failing()) {
822      ResourceMark rm;
823      PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
824    }
825  }
826
827  // Note:  Large methods are capped off in do_one_bytecode().
828  if (failing())  return;
829
830  // After parsing, node notes are no longer automagic.
831  // They must be propagated by register_new_node_with_optimizer(),
832  // clone(), or the like.
833  set_default_node_notes(NULL);
834
835  for (;;) {
836    int successes = Inline_Warm();
837    if (failing())  return;
838    if (successes == 0)  break;
839  }
840
841  // Drain the list.
842  Finish_Warm();
843#ifndef PRODUCT
844  if (_printer && _printer->should_print(1)) {
845    _printer->print_inlining();
846  }
847#endif
848
849  if (failing())  return;
850  NOT_PRODUCT( verify_graph_edges(); )
851
852  // Now optimize
853  Optimize();
854  if (failing())  return;
855  NOT_PRODUCT( verify_graph_edges(); )
856
857#ifndef PRODUCT
858  if (PrintIdeal) {
859    ttyLocker ttyl;  // keep the following output all in one block
860    // This output goes directly to the tty, not the compiler log.
861    // To enable tools to match it up with the compilation activity,
862    // be sure to tag this tty output with the compile ID.
863    if (xtty != NULL) {
864      xtty->head("ideal compile_id='%d'%s", compile_id(),
865                 is_osr_compilation()    ? " compile_kind='osr'" :
866                 "");
867    }
868    root()->dump(9999);
869    if (xtty != NULL) {
870      xtty->tail("ideal");
871    }
872  }
873#endif
874
875  NOT_PRODUCT( verify_barriers(); )
876
877  // Dump compilation data to replay it.
878  if (directive->DumpReplayOption) {
879    env()->dump_replay_data(_compile_id);
880  }
881  if (directive->DumpInlineOption && (ilt() != NULL)) {
882    env()->dump_inline_data(_compile_id);
883  }
884
885  // Now that we know the size of all the monitors we can add a fixed slot
886  // for the original deopt pc.
887
888  _orig_pc_slot =  fixed_slots();
889  int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
890  set_fixed_slots(next_slot);
891
892  // Compute when to use implicit null checks. Used by matching trap based
893  // nodes and NullCheck optimization.
894  set_allowed_deopt_reasons();
895
896  // Now generate code
897  Code_Gen();
898  if (failing())  return;
899
900  // Check if we want to skip execution of all compiled code.
901  {
902#ifndef PRODUCT
903    if (OptoNoExecute) {
904      record_method_not_compilable("+OptoNoExecute");  // Flag as failed
905      return;
906    }
907#endif
908    TracePhase tp("install_code", &timers[_t_registerMethod]);
909
910    if (is_osr_compilation()) {
911      _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
912      _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
913    } else {
914      _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
915      _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
916    }
917
918    env()->register_method(_method, _entry_bci,
919                           &_code_offsets,
920                           _orig_pc_slot_offset_in_bytes,
921                           code_buffer(),
922                           frame_size_in_words(), _oop_map_set,
923                           &_handler_table, &_inc_table,
924                           compiler,
925                           has_unsafe_access(),
926                           SharedRuntime::is_wide_vector(max_vector_size()),
927                           rtm_state()
928                           );
929
930    if (log() != NULL) // Print code cache state into compiler log
931      log()->code_cache_state();
932  }
933}
934
935//------------------------------Compile----------------------------------------
936// Compile a runtime stub
937Compile::Compile( ciEnv* ci_env,
938                  TypeFunc_generator generator,
939                  address stub_function,
940                  const char *stub_name,
941                  int is_fancy_jump,
942                  bool pass_tls,
943                  bool save_arg_registers,
944                  bool return_pc,
945                  DirectiveSet* directive)
946  : Phase(Compiler),
947    _env(ci_env),
948    _directive(directive),
949    _log(ci_env->log()),
950    _compile_id(0),
951    _save_argument_registers(save_arg_registers),
952    _method(NULL),
953    _stub_name(stub_name),
954    _stub_function(stub_function),
955    _stub_entry_point(NULL),
956    _entry_bci(InvocationEntryBci),
957    _initial_gvn(NULL),
958    _for_igvn(NULL),
959    _warm_calls(NULL),
960    _orig_pc_slot(0),
961    _orig_pc_slot_offset_in_bytes(0),
962    _subsume_loads(true),
963    _do_escape_analysis(false),
964    _eliminate_boxing(false),
965    _failure_reason(NULL),
966    _code_buffer("Compile::Fill_buffer"),
967    _has_method_handle_invokes(false),
968    _mach_constant_base_node(NULL),
969    _node_bundling_limit(0),
970    _node_bundling_base(NULL),
971    _java_calls(0),
972    _inner_loops(0),
973#ifndef PRODUCT
974    _trace_opto_output(directive->TraceOptoOutputOption),
975    _in_dump_cnt(0),
976    _printer(NULL),
977#endif
978    _comp_arena(mtCompiler),
979    _node_arena(mtCompiler),
980    _old_arena(mtCompiler),
981    _Compile_types(mtCompiler),
982    _dead_node_list(comp_arena()),
983    _dead_node_count(0),
984    _congraph(NULL),
985    _replay_inline_data(NULL),
986    _number_of_mh_late_inlines(0),
987    _inlining_progress(false),
988    _inlining_incrementally(false),
989    _print_inlining_list(NULL),
990    _print_inlining_stream(NULL),
991    _print_inlining_idx(0),
992    _print_inlining_output(NULL),
993    _allowed_reasons(0),
994    _interpreter_frame_size(0),
995    _max_node_limit(MaxNodeLimit) {
996  C = this;
997
998  TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
999  TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1000
1001#ifndef PRODUCT
1002  set_print_assembly(PrintFrameConverterAssembly);
1003  set_parsed_irreducible_loop(false);
1004#endif
1005  set_has_irreducible_loop(false); // no loops
1006
1007  CompileWrapper cw(this);
1008  Init(/*AliasLevel=*/ 0);
1009  init_tf((*generator)());
1010
1011  {
1012    // The following is a dummy for the sake of GraphKit::gen_stub
1013    Unique_Node_List for_igvn(comp_arena());
1014    set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1015    PhaseGVN gvn(Thread::current()->resource_area(),255);
1016    set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1017    gvn.transform_no_reclaim(top());
1018
1019    GraphKit kit;
1020    kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1021  }
1022
1023  NOT_PRODUCT( verify_graph_edges(); )
1024  Code_Gen();
1025  if (failing())  return;
1026
1027
1028  // Entry point will be accessed using compile->stub_entry_point();
1029  if (code_buffer() == NULL) {
1030    Matcher::soft_match_failure();
1031  } else {
1032    if (PrintAssembly && (WizardMode || Verbose))
1033      tty->print_cr("### Stub::%s", stub_name);
1034
1035    if (!failing()) {
1036      assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1037
1038      // Make the NMethod
1039      // For now we mark the frame as never safe for profile stackwalking
1040      RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1041                                                      code_buffer(),
1042                                                      CodeOffsets::frame_never_safe,
1043                                                      // _code_offsets.value(CodeOffsets::Frame_Complete),
1044                                                      frame_size_in_words(),
1045                                                      _oop_map_set,
1046                                                      save_arg_registers);
1047      assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1048
1049      _stub_entry_point = rs->entry_point();
1050    }
1051  }
1052}
1053
1054//------------------------------Init-------------------------------------------
1055// Prepare for a single compilation
1056void Compile::Init(int aliaslevel) {
1057  _unique  = 0;
1058  _regalloc = NULL;
1059
1060  _tf      = NULL;  // filled in later
1061  _top     = NULL;  // cached later
1062  _matcher = NULL;  // filled in later
1063  _cfg     = NULL;  // filled in later
1064
1065  set_24_bit_selection_and_mode(Use24BitFP, false);
1066
1067  _node_note_array = NULL;
1068  _default_node_notes = NULL;
1069  DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1070
1071  _immutable_memory = NULL; // filled in at first inquiry
1072
1073  // Globally visible Nodes
1074  // First set TOP to NULL to give safe behavior during creation of RootNode
1075  set_cached_top_node(NULL);
1076  set_root(new RootNode());
1077  // Now that you have a Root to point to, create the real TOP
1078  set_cached_top_node( new ConNode(Type::TOP) );
1079  set_recent_alloc(NULL, NULL);
1080
1081  // Create Debug Information Recorder to record scopes, oopmaps, etc.
1082  env()->set_oop_recorder(new OopRecorder(env()->arena()));
1083  env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1084  env()->set_dependencies(new Dependencies(env()));
1085
1086  _fixed_slots = 0;
1087  set_has_split_ifs(false);
1088  set_has_loops(has_method() && method()->has_loops()); // first approximation
1089  set_has_stringbuilder(false);
1090  set_has_boxed_value(false);
1091  _trap_can_recompile = false;  // no traps emitted yet
1092  _major_progress = true; // start out assuming good things will happen
1093  set_has_unsafe_access(false);
1094  set_max_vector_size(0);
1095  Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1096  set_decompile_count(0);
1097
1098  set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1099  set_num_loop_opts(LoopOptsCount);
1100  set_do_inlining(Inline);
1101  set_max_inline_size(MaxInlineSize);
1102  set_freq_inline_size(FreqInlineSize);
1103  set_do_scheduling(OptoScheduling);
1104  set_do_count_invocations(false);
1105  set_do_method_data_update(false);
1106
1107  set_do_vector_loop(false);
1108
1109  if (AllowVectorizeOnDemand) {
1110    if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1111      set_do_vector_loop(true);
1112      NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1113    } else if (has_method() && method()->name() != 0 &&
1114               method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1115      set_do_vector_loop(true);
1116    }
1117  }
1118  set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1119  NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1120
1121  set_age_code(has_method() && method()->profile_aging());
1122  set_rtm_state(NoRTM); // No RTM lock eliding by default
1123  _max_node_limit = _directive->MaxNodeLimitOption;
1124
1125#if INCLUDE_RTM_OPT
1126  if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1127    int rtm_state = method()->method_data()->rtm_state();
1128    if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1129      // Don't generate RTM lock eliding code.
1130      set_rtm_state(NoRTM);
1131    } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1132      // Generate RTM lock eliding code without abort ratio calculation code.
1133      set_rtm_state(UseRTM);
1134    } else if (UseRTMDeopt) {
1135      // Generate RTM lock eliding code and include abort ratio calculation
1136      // code if UseRTMDeopt is on.
1137      set_rtm_state(ProfileRTM);
1138    }
1139  }
1140#endif
1141  if (debug_info()->recording_non_safepoints()) {
1142    set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1143                        (comp_arena(), 8, 0, NULL));
1144    set_default_node_notes(Node_Notes::make(this));
1145  }
1146
1147  // // -- Initialize types before each compile --
1148  // // Update cached type information
1149  // if( _method && _method->constants() )
1150  //   Type::update_loaded_types(_method, _method->constants());
1151
1152  // Init alias_type map.
1153  if (!_do_escape_analysis && aliaslevel == 3)
1154    aliaslevel = 2;  // No unique types without escape analysis
1155  _AliasLevel = aliaslevel;
1156  const int grow_ats = 16;
1157  _max_alias_types = grow_ats;
1158  _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1159  AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1160  Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1161  {
1162    for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1163  }
1164  // Initialize the first few types.
1165  _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1166  _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1167  _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1168  _num_alias_types = AliasIdxRaw+1;
1169  // Zero out the alias type cache.
1170  Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1171  // A NULL adr_type hits in the cache right away.  Preload the right answer.
1172  probe_alias_cache(NULL)->_index = AliasIdxTop;
1173
1174  _intrinsics = NULL;
1175  _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1176  _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1177  _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1178  _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1179  register_library_intrinsics();
1180}
1181
1182//---------------------------init_start----------------------------------------
1183// Install the StartNode on this compile object.
1184void Compile::init_start(StartNode* s) {
1185  if (failing())
1186    return; // already failing
1187  assert(s == start(), "");
1188}
1189
1190/**
1191 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1192 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1193 * the ideal graph.
1194 */
1195StartNode* Compile::start() const {
1196  assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1197  for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1198    Node* start = root()->fast_out(i);
1199    if (start->is_Start()) {
1200      return start->as_Start();
1201    }
1202  }
1203  fatal("Did not find Start node!");
1204  return NULL;
1205}
1206
1207//-------------------------------immutable_memory-------------------------------------
1208// Access immutable memory
1209Node* Compile::immutable_memory() {
1210  if (_immutable_memory != NULL) {
1211    return _immutable_memory;
1212  }
1213  StartNode* s = start();
1214  for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1215    Node *p = s->fast_out(i);
1216    if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1217      _immutable_memory = p;
1218      return _immutable_memory;
1219    }
1220  }
1221  ShouldNotReachHere();
1222  return NULL;
1223}
1224
1225//----------------------set_cached_top_node------------------------------------
1226// Install the cached top node, and make sure Node::is_top works correctly.
1227void Compile::set_cached_top_node(Node* tn) {
1228  if (tn != NULL)  verify_top(tn);
1229  Node* old_top = _top;
1230  _top = tn;
1231  // Calling Node::setup_is_top allows the nodes the chance to adjust
1232  // their _out arrays.
1233  if (_top != NULL)     _top->setup_is_top();
1234  if (old_top != NULL)  old_top->setup_is_top();
1235  assert(_top == NULL || top()->is_top(), "");
1236}
1237
1238#ifdef ASSERT
1239uint Compile::count_live_nodes_by_graph_walk() {
1240  Unique_Node_List useful(comp_arena());
1241  // Get useful node list by walking the graph.
1242  identify_useful_nodes(useful);
1243  return useful.size();
1244}
1245
1246void Compile::print_missing_nodes() {
1247
1248  // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1249  if ((_log == NULL) && (! PrintIdealNodeCount)) {
1250    return;
1251  }
1252
1253  // This is an expensive function. It is executed only when the user
1254  // specifies VerifyIdealNodeCount option or otherwise knows the
1255  // additional work that needs to be done to identify reachable nodes
1256  // by walking the flow graph and find the missing ones using
1257  // _dead_node_list.
1258
1259  Unique_Node_List useful(comp_arena());
1260  // Get useful node list by walking the graph.
1261  identify_useful_nodes(useful);
1262
1263  uint l_nodes = C->live_nodes();
1264  uint l_nodes_by_walk = useful.size();
1265
1266  if (l_nodes != l_nodes_by_walk) {
1267    if (_log != NULL) {
1268      _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1269      _log->stamp();
1270      _log->end_head();
1271    }
1272    VectorSet& useful_member_set = useful.member_set();
1273    int last_idx = l_nodes_by_walk;
1274    for (int i = 0; i < last_idx; i++) {
1275      if (useful_member_set.test(i)) {
1276        if (_dead_node_list.test(i)) {
1277          if (_log != NULL) {
1278            _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1279          }
1280          if (PrintIdealNodeCount) {
1281            // Print the log message to tty
1282              tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1283              useful.at(i)->dump();
1284          }
1285        }
1286      }
1287      else if (! _dead_node_list.test(i)) {
1288        if (_log != NULL) {
1289          _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1290        }
1291        if (PrintIdealNodeCount) {
1292          // Print the log message to tty
1293          tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1294        }
1295      }
1296    }
1297    if (_log != NULL) {
1298      _log->tail("mismatched_nodes");
1299    }
1300  }
1301}
1302void Compile::record_modified_node(Node* n) {
1303  if (_modified_nodes != NULL && !_inlining_incrementally &&
1304      n->outcnt() != 0 && !n->is_Con()) {
1305    _modified_nodes->push(n);
1306  }
1307}
1308
1309void Compile::remove_modified_node(Node* n) {
1310  if (_modified_nodes != NULL) {
1311    _modified_nodes->remove(n);
1312  }
1313}
1314#endif
1315
1316#ifndef PRODUCT
1317void Compile::verify_top(Node* tn) const {
1318  if (tn != NULL) {
1319    assert(tn->is_Con(), "top node must be a constant");
1320    assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1321    assert(tn->in(0) != NULL, "must have live top node");
1322  }
1323}
1324#endif
1325
1326
1327///-------------------Managing Per-Node Debug & Profile Info-------------------
1328
1329void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1330  guarantee(arr != NULL, "");
1331  int num_blocks = arr->length();
1332  if (grow_by < num_blocks)  grow_by = num_blocks;
1333  int num_notes = grow_by * _node_notes_block_size;
1334  Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1335  Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1336  while (num_notes > 0) {
1337    arr->append(notes);
1338    notes     += _node_notes_block_size;
1339    num_notes -= _node_notes_block_size;
1340  }
1341  assert(num_notes == 0, "exact multiple, please");
1342}
1343
1344bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1345  if (source == NULL || dest == NULL)  return false;
1346
1347  if (dest->is_Con())
1348    return false;               // Do not push debug info onto constants.
1349
1350#ifdef ASSERT
1351  // Leave a bread crumb trail pointing to the original node:
1352  if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1353    dest->set_debug_orig(source);
1354  }
1355#endif
1356
1357  if (node_note_array() == NULL)
1358    return false;               // Not collecting any notes now.
1359
1360  // This is a copy onto a pre-existing node, which may already have notes.
1361  // If both nodes have notes, do not overwrite any pre-existing notes.
1362  Node_Notes* source_notes = node_notes_at(source->_idx);
1363  if (source_notes == NULL || source_notes->is_clear())  return false;
1364  Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1365  if (dest_notes == NULL || dest_notes->is_clear()) {
1366    return set_node_notes_at(dest->_idx, source_notes);
1367  }
1368
1369  Node_Notes merged_notes = (*source_notes);
1370  // The order of operations here ensures that dest notes will win...
1371  merged_notes.update_from(dest_notes);
1372  return set_node_notes_at(dest->_idx, &merged_notes);
1373}
1374
1375
1376//--------------------------allow_range_check_smearing-------------------------
1377// Gating condition for coalescing similar range checks.
1378// Sometimes we try 'speculatively' replacing a series of a range checks by a
1379// single covering check that is at least as strong as any of them.
1380// If the optimization succeeds, the simplified (strengthened) range check
1381// will always succeed.  If it fails, we will deopt, and then give up
1382// on the optimization.
1383bool Compile::allow_range_check_smearing() const {
1384  // If this method has already thrown a range-check,
1385  // assume it was because we already tried range smearing
1386  // and it failed.
1387  uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1388  return !already_trapped;
1389}
1390
1391
1392//------------------------------flatten_alias_type-----------------------------
1393const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1394  int offset = tj->offset();
1395  TypePtr::PTR ptr = tj->ptr();
1396
1397  // Known instance (scalarizable allocation) alias only with itself.
1398  bool is_known_inst = tj->isa_oopptr() != NULL &&
1399                       tj->is_oopptr()->is_known_instance();
1400
1401  // Process weird unsafe references.
1402  if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1403    assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1404    assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1405    tj = TypeOopPtr::BOTTOM;
1406    ptr = tj->ptr();
1407    offset = tj->offset();
1408  }
1409
1410  // Array pointers need some flattening
1411  const TypeAryPtr *ta = tj->isa_aryptr();
1412  if (ta && ta->is_stable()) {
1413    // Erase stability property for alias analysis.
1414    tj = ta = ta->cast_to_stable(false);
1415  }
1416  if( ta && is_known_inst ) {
1417    if ( offset != Type::OffsetBot &&
1418         offset > arrayOopDesc::length_offset_in_bytes() ) {
1419      offset = Type::OffsetBot; // Flatten constant access into array body only
1420      tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1421    }
1422  } else if( ta && _AliasLevel >= 2 ) {
1423    // For arrays indexed by constant indices, we flatten the alias
1424    // space to include all of the array body.  Only the header, klass
1425    // and array length can be accessed un-aliased.
1426    if( offset != Type::OffsetBot ) {
1427      if( ta->const_oop() ) { // MethodData* or Method*
1428        offset = Type::OffsetBot;   // Flatten constant access into array body
1429        tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1430      } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1431        // range is OK as-is.
1432        tj = ta = TypeAryPtr::RANGE;
1433      } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1434        tj = TypeInstPtr::KLASS; // all klass loads look alike
1435        ta = TypeAryPtr::RANGE; // generic ignored junk
1436        ptr = TypePtr::BotPTR;
1437      } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1438        tj = TypeInstPtr::MARK;
1439        ta = TypeAryPtr::RANGE; // generic ignored junk
1440        ptr = TypePtr::BotPTR;
1441      } else {                  // Random constant offset into array body
1442        offset = Type::OffsetBot;   // Flatten constant access into array body
1443        tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1444      }
1445    }
1446    // Arrays of fixed size alias with arrays of unknown size.
1447    if (ta->size() != TypeInt::POS) {
1448      const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1449      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1450    }
1451    // Arrays of known objects become arrays of unknown objects.
1452    if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1453      const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1454      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1455    }
1456    if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1457      const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1458      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1459    }
1460    // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1461    // cannot be distinguished by bytecode alone.
1462    if (ta->elem() == TypeInt::BOOL) {
1463      const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1464      ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1465      tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1466    }
1467    // During the 2nd round of IterGVN, NotNull castings are removed.
1468    // Make sure the Bottom and NotNull variants alias the same.
1469    // Also, make sure exact and non-exact variants alias the same.
1470    if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1471      tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1472    }
1473  }
1474
1475  // Oop pointers need some flattening
1476  const TypeInstPtr *to = tj->isa_instptr();
1477  if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1478    ciInstanceKlass *k = to->klass()->as_instance_klass();
1479    if( ptr == TypePtr::Constant ) {
1480      if (to->klass() != ciEnv::current()->Class_klass() ||
1481          offset < k->size_helper() * wordSize) {
1482        // No constant oop pointers (such as Strings); they alias with
1483        // unknown strings.
1484        assert(!is_known_inst, "not scalarizable allocation");
1485        tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1486      }
1487    } else if( is_known_inst ) {
1488      tj = to; // Keep NotNull and klass_is_exact for instance type
1489    } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1490      // During the 2nd round of IterGVN, NotNull castings are removed.
1491      // Make sure the Bottom and NotNull variants alias the same.
1492      // Also, make sure exact and non-exact variants alias the same.
1493      tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1494    }
1495    if (to->speculative() != NULL) {
1496      tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1497    }
1498    // Canonicalize the holder of this field
1499    if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1500      // First handle header references such as a LoadKlassNode, even if the
1501      // object's klass is unloaded at compile time (4965979).
1502      if (!is_known_inst) { // Do it only for non-instance types
1503        tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1504      }
1505    } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1506      // Static fields are in the space above the normal instance
1507      // fields in the java.lang.Class instance.
1508      if (to->klass() != ciEnv::current()->Class_klass()) {
1509        to = NULL;
1510        tj = TypeOopPtr::BOTTOM;
1511        offset = tj->offset();
1512      }
1513    } else {
1514      ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1515      if (!k->equals(canonical_holder) || tj->offset() != offset) {
1516        if( is_known_inst ) {
1517          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1518        } else {
1519          tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1520        }
1521      }
1522    }
1523  }
1524
1525  // Klass pointers to object array klasses need some flattening
1526  const TypeKlassPtr *tk = tj->isa_klassptr();
1527  if( tk ) {
1528    // If we are referencing a field within a Klass, we need
1529    // to assume the worst case of an Object.  Both exact and
1530    // inexact types must flatten to the same alias class so
1531    // use NotNull as the PTR.
1532    if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1533
1534      tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1535                                   TypeKlassPtr::OBJECT->klass(),
1536                                   offset);
1537    }
1538
1539    ciKlass* klass = tk->klass();
1540    if( klass->is_obj_array_klass() ) {
1541      ciKlass* k = TypeAryPtr::OOPS->klass();
1542      if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1543        k = TypeInstPtr::BOTTOM->klass();
1544      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1545    }
1546
1547    // Check for precise loads from the primary supertype array and force them
1548    // to the supertype cache alias index.  Check for generic array loads from
1549    // the primary supertype array and also force them to the supertype cache
1550    // alias index.  Since the same load can reach both, we need to merge
1551    // these 2 disparate memories into the same alias class.  Since the
1552    // primary supertype array is read-only, there's no chance of confusion
1553    // where we bypass an array load and an array store.
1554    int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1555    if (offset == Type::OffsetBot ||
1556        (offset >= primary_supers_offset &&
1557         offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1558        offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1559      offset = in_bytes(Klass::secondary_super_cache_offset());
1560      tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1561    }
1562  }
1563
1564  // Flatten all Raw pointers together.
1565  if (tj->base() == Type::RawPtr)
1566    tj = TypeRawPtr::BOTTOM;
1567
1568  if (tj->base() == Type::AnyPtr)
1569    tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1570
1571  // Flatten all to bottom for now
1572  switch( _AliasLevel ) {
1573  case 0:
1574    tj = TypePtr::BOTTOM;
1575    break;
1576  case 1:                       // Flatten to: oop, static, field or array
1577    switch (tj->base()) {
1578    //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1579    case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1580    case Type::AryPtr:   // do not distinguish arrays at all
1581    case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1582    case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1583    case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1584    default: ShouldNotReachHere();
1585    }
1586    break;
1587  case 2:                       // No collapsing at level 2; keep all splits
1588  case 3:                       // No collapsing at level 3; keep all splits
1589    break;
1590  default:
1591    Unimplemented();
1592  }
1593
1594  offset = tj->offset();
1595  assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1596
1597  assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1598          (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1599          (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1600          (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1601          (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1602          (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1603          (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1604          "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1605  assert( tj->ptr() != TypePtr::TopPTR &&
1606          tj->ptr() != TypePtr::AnyNull &&
1607          tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1608//    assert( tj->ptr() != TypePtr::Constant ||
1609//            tj->base() == Type::RawPtr ||
1610//            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1611
1612  return tj;
1613}
1614
1615void Compile::AliasType::Init(int i, const TypePtr* at) {
1616  _index = i;
1617  _adr_type = at;
1618  _field = NULL;
1619  _element = NULL;
1620  _is_rewritable = true; // default
1621  const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1622  if (atoop != NULL && atoop->is_known_instance()) {
1623    const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1624    _general_index = Compile::current()->get_alias_index(gt);
1625  } else {
1626    _general_index = 0;
1627  }
1628}
1629
1630BasicType Compile::AliasType::basic_type() const {
1631  if (element() != NULL) {
1632    const Type* element = adr_type()->is_aryptr()->elem();
1633    return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1634  } if (field() != NULL) {
1635    return field()->layout_type();
1636  } else {
1637    return T_ILLEGAL; // unknown
1638  }
1639}
1640
1641//---------------------------------print_on------------------------------------
1642#ifndef PRODUCT
1643void Compile::AliasType::print_on(outputStream* st) {
1644  if (index() < 10)
1645        st->print("@ <%d> ", index());
1646  else  st->print("@ <%d>",  index());
1647  st->print(is_rewritable() ? "   " : " RO");
1648  int offset = adr_type()->offset();
1649  if (offset == Type::OffsetBot)
1650        st->print(" +any");
1651  else  st->print(" +%-3d", offset);
1652  st->print(" in ");
1653  adr_type()->dump_on(st);
1654  const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1655  if (field() != NULL && tjp) {
1656    if (tjp->klass()  != field()->holder() ||
1657        tjp->offset() != field()->offset_in_bytes()) {
1658      st->print(" != ");
1659      field()->print();
1660      st->print(" ***");
1661    }
1662  }
1663}
1664
1665void print_alias_types() {
1666  Compile* C = Compile::current();
1667  tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1668  for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1669    C->alias_type(idx)->print_on(tty);
1670    tty->cr();
1671  }
1672}
1673#endif
1674
1675
1676//----------------------------probe_alias_cache--------------------------------
1677Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1678  intptr_t key = (intptr_t) adr_type;
1679  key ^= key >> logAliasCacheSize;
1680  return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1681}
1682
1683
1684//-----------------------------grow_alias_types--------------------------------
1685void Compile::grow_alias_types() {
1686  const int old_ats  = _max_alias_types; // how many before?
1687  const int new_ats  = old_ats;          // how many more?
1688  const int grow_ats = old_ats+new_ats;  // how many now?
1689  _max_alias_types = grow_ats;
1690  _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1691  AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1692  Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1693  for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1694}
1695
1696
1697//--------------------------------find_alias_type------------------------------
1698Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1699  if (_AliasLevel == 0)
1700    return alias_type(AliasIdxBot);
1701
1702  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1703  if (ace->_adr_type == adr_type) {
1704    return alias_type(ace->_index);
1705  }
1706
1707  // Handle special cases.
1708  if (adr_type == NULL)             return alias_type(AliasIdxTop);
1709  if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1710
1711  // Do it the slow way.
1712  const TypePtr* flat = flatten_alias_type(adr_type);
1713
1714#ifdef ASSERT
1715  {
1716    ResourceMark rm;
1717    assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1718           Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1719    assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1720           Type::str(adr_type));
1721    if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1722      const TypeOopPtr* foop = flat->is_oopptr();
1723      // Scalarizable allocations have exact klass always.
1724      bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1725      const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1726      assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1727             Type::str(foop), Type::str(xoop));
1728    }
1729  }
1730#endif
1731
1732  int idx = AliasIdxTop;
1733  for (int i = 0; i < num_alias_types(); i++) {
1734    if (alias_type(i)->adr_type() == flat) {
1735      idx = i;
1736      break;
1737    }
1738  }
1739
1740  if (idx == AliasIdxTop) {
1741    if (no_create)  return NULL;
1742    // Grow the array if necessary.
1743    if (_num_alias_types == _max_alias_types)  grow_alias_types();
1744    // Add a new alias type.
1745    idx = _num_alias_types++;
1746    _alias_types[idx]->Init(idx, flat);
1747    if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1748    if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1749    if (flat->isa_instptr()) {
1750      if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1751          && flat->is_instptr()->klass() == env()->Class_klass())
1752        alias_type(idx)->set_rewritable(false);
1753    }
1754    if (flat->isa_aryptr()) {
1755#ifdef ASSERT
1756      const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1757      // (T_BYTE has the weakest alignment and size restrictions...)
1758      assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1759#endif
1760      if (flat->offset() == TypePtr::OffsetBot) {
1761        alias_type(idx)->set_element(flat->is_aryptr()->elem());
1762      }
1763    }
1764    if (flat->isa_klassptr()) {
1765      if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1766        alias_type(idx)->set_rewritable(false);
1767      if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1768        alias_type(idx)->set_rewritable(false);
1769      if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1770        alias_type(idx)->set_rewritable(false);
1771      if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1772        alias_type(idx)->set_rewritable(false);
1773    }
1774    // %%% (We would like to finalize JavaThread::threadObj_offset(),
1775    // but the base pointer type is not distinctive enough to identify
1776    // references into JavaThread.)
1777
1778    // Check for final fields.
1779    const TypeInstPtr* tinst = flat->isa_instptr();
1780    if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1781      ciField* field;
1782      if (tinst->const_oop() != NULL &&
1783          tinst->klass() == ciEnv::current()->Class_klass() &&
1784          tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1785        // static field
1786        ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1787        field = k->get_field_by_offset(tinst->offset(), true);
1788      } else {
1789        ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1790        field = k->get_field_by_offset(tinst->offset(), false);
1791      }
1792      assert(field == NULL ||
1793             original_field == NULL ||
1794             (field->holder() == original_field->holder() &&
1795              field->offset() == original_field->offset() &&
1796              field->is_static() == original_field->is_static()), "wrong field?");
1797      // Set field() and is_rewritable() attributes.
1798      if (field != NULL)  alias_type(idx)->set_field(field);
1799    }
1800  }
1801
1802  // Fill the cache for next time.
1803  ace->_adr_type = adr_type;
1804  ace->_index    = idx;
1805  assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1806
1807  // Might as well try to fill the cache for the flattened version, too.
1808  AliasCacheEntry* face = probe_alias_cache(flat);
1809  if (face->_adr_type == NULL) {
1810    face->_adr_type = flat;
1811    face->_index    = idx;
1812    assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1813  }
1814
1815  return alias_type(idx);
1816}
1817
1818
1819Compile::AliasType* Compile::alias_type(ciField* field) {
1820  const TypeOopPtr* t;
1821  if (field->is_static())
1822    t = TypeInstPtr::make(field->holder()->java_mirror());
1823  else
1824    t = TypeOopPtr::make_from_klass_raw(field->holder());
1825  AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1826  assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1827  return atp;
1828}
1829
1830
1831//------------------------------have_alias_type--------------------------------
1832bool Compile::have_alias_type(const TypePtr* adr_type) {
1833  AliasCacheEntry* ace = probe_alias_cache(adr_type);
1834  if (ace->_adr_type == adr_type) {
1835    return true;
1836  }
1837
1838  // Handle special cases.
1839  if (adr_type == NULL)             return true;
1840  if (adr_type == TypePtr::BOTTOM)  return true;
1841
1842  return find_alias_type(adr_type, true, NULL) != NULL;
1843}
1844
1845//-----------------------------must_alias--------------------------------------
1846// True if all values of the given address type are in the given alias category.
1847bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1848  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1849  if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1850  if (alias_idx == AliasIdxTop)         return false; // the empty category
1851  if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1852
1853  // the only remaining possible overlap is identity
1854  int adr_idx = get_alias_index(adr_type);
1855  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1856  assert(adr_idx == alias_idx ||
1857         (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1858          && adr_type                       != TypeOopPtr::BOTTOM),
1859         "should not be testing for overlap with an unsafe pointer");
1860  return adr_idx == alias_idx;
1861}
1862
1863//------------------------------can_alias--------------------------------------
1864// True if any values of the given address type are in the given alias category.
1865bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1866  if (alias_idx == AliasIdxTop)         return false; // the empty category
1867  if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1868  if (alias_idx == AliasIdxBot)         return true;  // the universal category
1869  if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1870
1871  // the only remaining possible overlap is identity
1872  int adr_idx = get_alias_index(adr_type);
1873  assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1874  return adr_idx == alias_idx;
1875}
1876
1877
1878
1879//---------------------------pop_warm_call-------------------------------------
1880WarmCallInfo* Compile::pop_warm_call() {
1881  WarmCallInfo* wci = _warm_calls;
1882  if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1883  return wci;
1884}
1885
1886//----------------------------Inline_Warm--------------------------------------
1887int Compile::Inline_Warm() {
1888  // If there is room, try to inline some more warm call sites.
1889  // %%% Do a graph index compaction pass when we think we're out of space?
1890  if (!InlineWarmCalls)  return 0;
1891
1892  int calls_made_hot = 0;
1893  int room_to_grow   = NodeCountInliningCutoff - unique();
1894  int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1895  int amount_grown   = 0;
1896  WarmCallInfo* call;
1897  while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1898    int est_size = (int)call->size();
1899    if (est_size > (room_to_grow - amount_grown)) {
1900      // This one won't fit anyway.  Get rid of it.
1901      call->make_cold();
1902      continue;
1903    }
1904    call->make_hot();
1905    calls_made_hot++;
1906    amount_grown   += est_size;
1907    amount_to_grow -= est_size;
1908  }
1909
1910  if (calls_made_hot > 0)  set_major_progress();
1911  return calls_made_hot;
1912}
1913
1914
1915//----------------------------Finish_Warm--------------------------------------
1916void Compile::Finish_Warm() {
1917  if (!InlineWarmCalls)  return;
1918  if (failing())  return;
1919  if (warm_calls() == NULL)  return;
1920
1921  // Clean up loose ends, if we are out of space for inlining.
1922  WarmCallInfo* call;
1923  while ((call = pop_warm_call()) != NULL) {
1924    call->make_cold();
1925  }
1926}
1927
1928//---------------------cleanup_loop_predicates-----------------------
1929// Remove the opaque nodes that protect the predicates so that all unused
1930// checks and uncommon_traps will be eliminated from the ideal graph
1931void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1932  if (predicate_count()==0) return;
1933  for (int i = predicate_count(); i > 0; i--) {
1934    Node * n = predicate_opaque1_node(i-1);
1935    assert(n->Opcode() == Op_Opaque1, "must be");
1936    igvn.replace_node(n, n->in(1));
1937  }
1938  assert(predicate_count()==0, "should be clean!");
1939}
1940
1941void Compile::add_range_check_cast(Node* n) {
1942  assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1943  assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1944  _range_check_casts->append(n);
1945}
1946
1947// Remove all range check dependent CastIINodes.
1948void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1949  for (int i = range_check_cast_count(); i > 0; i--) {
1950    Node* cast = range_check_cast_node(i-1);
1951    assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1952    igvn.replace_node(cast, cast->in(1));
1953  }
1954  assert(range_check_cast_count() == 0, "should be empty");
1955}
1956
1957// StringOpts and late inlining of string methods
1958void Compile::inline_string_calls(bool parse_time) {
1959  {
1960    // remove useless nodes to make the usage analysis simpler
1961    ResourceMark rm;
1962    PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1963  }
1964
1965  {
1966    ResourceMark rm;
1967    print_method(PHASE_BEFORE_STRINGOPTS, 3);
1968    PhaseStringOpts pso(initial_gvn(), for_igvn());
1969    print_method(PHASE_AFTER_STRINGOPTS, 3);
1970  }
1971
1972  // now inline anything that we skipped the first time around
1973  if (!parse_time) {
1974    _late_inlines_pos = _late_inlines.length();
1975  }
1976
1977  while (_string_late_inlines.length() > 0) {
1978    CallGenerator* cg = _string_late_inlines.pop();
1979    cg->do_late_inline();
1980    if (failing())  return;
1981  }
1982  _string_late_inlines.trunc_to(0);
1983}
1984
1985// Late inlining of boxing methods
1986void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1987  if (_boxing_late_inlines.length() > 0) {
1988    assert(has_boxed_value(), "inconsistent");
1989
1990    PhaseGVN* gvn = initial_gvn();
1991    set_inlining_incrementally(true);
1992
1993    assert( igvn._worklist.size() == 0, "should be done with igvn" );
1994    for_igvn()->clear();
1995    gvn->replace_with(&igvn);
1996
1997    _late_inlines_pos = _late_inlines.length();
1998
1999    while (_boxing_late_inlines.length() > 0) {
2000      CallGenerator* cg = _boxing_late_inlines.pop();
2001      cg->do_late_inline();
2002      if (failing())  return;
2003    }
2004    _boxing_late_inlines.trunc_to(0);
2005
2006    {
2007      ResourceMark rm;
2008      PhaseRemoveUseless pru(gvn, for_igvn());
2009    }
2010
2011    igvn = PhaseIterGVN(gvn);
2012    igvn.optimize();
2013
2014    set_inlining_progress(false);
2015    set_inlining_incrementally(false);
2016  }
2017}
2018
2019void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2020  assert(IncrementalInline, "incremental inlining should be on");
2021  PhaseGVN* gvn = initial_gvn();
2022
2023  set_inlining_progress(false);
2024  for_igvn()->clear();
2025  gvn->replace_with(&igvn);
2026
2027  {
2028    TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2029    int i = 0;
2030    for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2031      CallGenerator* cg = _late_inlines.at(i);
2032      _late_inlines_pos = i+1;
2033      cg->do_late_inline();
2034      if (failing())  return;
2035    }
2036    int j = 0;
2037    for (; i < _late_inlines.length(); i++, j++) {
2038      _late_inlines.at_put(j, _late_inlines.at(i));
2039    }
2040    _late_inlines.trunc_to(j);
2041  }
2042
2043  {
2044    TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2045    ResourceMark rm;
2046    PhaseRemoveUseless pru(gvn, for_igvn());
2047  }
2048
2049  {
2050    TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2051    igvn = PhaseIterGVN(gvn);
2052  }
2053}
2054
2055// Perform incremental inlining until bound on number of live nodes is reached
2056void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2057  TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2058
2059  PhaseGVN* gvn = initial_gvn();
2060
2061  set_inlining_incrementally(true);
2062  set_inlining_progress(true);
2063  uint low_live_nodes = 0;
2064
2065  while(inlining_progress() && _late_inlines.length() > 0) {
2066
2067    if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2068      if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2069        TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2070        // PhaseIdealLoop is expensive so we only try it once we are
2071        // out of live nodes and we only try it again if the previous
2072        // helped got the number of nodes down significantly
2073        PhaseIdealLoop ideal_loop( igvn, false, true );
2074        if (failing())  return;
2075        low_live_nodes = live_nodes();
2076        _major_progress = true;
2077      }
2078
2079      if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2080        break;
2081      }
2082    }
2083
2084    inline_incrementally_one(igvn);
2085
2086    if (failing())  return;
2087
2088    {
2089      TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2090      igvn.optimize();
2091    }
2092
2093    if (failing())  return;
2094  }
2095
2096  assert( igvn._worklist.size() == 0, "should be done with igvn" );
2097
2098  if (_string_late_inlines.length() > 0) {
2099    assert(has_stringbuilder(), "inconsistent");
2100    for_igvn()->clear();
2101    initial_gvn()->replace_with(&igvn);
2102
2103    inline_string_calls(false);
2104
2105    if (failing())  return;
2106
2107    {
2108      TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2109      ResourceMark rm;
2110      PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2111    }
2112
2113    {
2114      TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2115      igvn = PhaseIterGVN(gvn);
2116      igvn.optimize();
2117    }
2118  }
2119
2120  set_inlining_incrementally(false);
2121}
2122
2123
2124//------------------------------Optimize---------------------------------------
2125// Given a graph, optimize it.
2126void Compile::Optimize() {
2127  TracePhase tp("optimizer", &timers[_t_optimizer]);
2128
2129#ifndef PRODUCT
2130  if (_directive->BreakAtCompileOption) {
2131    BREAKPOINT;
2132  }
2133
2134#endif
2135
2136  ResourceMark rm;
2137  int          loop_opts_cnt;
2138
2139  print_inlining_reinit();
2140
2141  NOT_PRODUCT( verify_graph_edges(); )
2142
2143  print_method(PHASE_AFTER_PARSING);
2144
2145 {
2146  // Iterative Global Value Numbering, including ideal transforms
2147  // Initialize IterGVN with types and values from parse-time GVN
2148  PhaseIterGVN igvn(initial_gvn());
2149#ifdef ASSERT
2150  _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2151#endif
2152  {
2153    TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2154    igvn.optimize();
2155  }
2156
2157  print_method(PHASE_ITER_GVN1, 2);
2158
2159  if (failing())  return;
2160
2161  inline_incrementally(igvn);
2162
2163  print_method(PHASE_INCREMENTAL_INLINE, 2);
2164
2165  if (failing())  return;
2166
2167  if (eliminate_boxing()) {
2168    // Inline valueOf() methods now.
2169    inline_boxing_calls(igvn);
2170
2171    if (AlwaysIncrementalInline) {
2172      inline_incrementally(igvn);
2173    }
2174
2175    print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2176
2177    if (failing())  return;
2178  }
2179
2180  // Remove the speculative part of types and clean up the graph from
2181  // the extra CastPP nodes whose only purpose is to carry them. Do
2182  // that early so that optimizations are not disrupted by the extra
2183  // CastPP nodes.
2184  remove_speculative_types(igvn);
2185
2186  // No more new expensive nodes will be added to the list from here
2187  // so keep only the actual candidates for optimizations.
2188  cleanup_expensive_nodes(igvn);
2189
2190  if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2191    Compile::TracePhase tp("", &timers[_t_renumberLive]);
2192    initial_gvn()->replace_with(&igvn);
2193    for_igvn()->clear();
2194    Unique_Node_List new_worklist(C->comp_arena());
2195    {
2196      ResourceMark rm;
2197      PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2198    }
2199    set_for_igvn(&new_worklist);
2200    igvn = PhaseIterGVN(initial_gvn());
2201    igvn.optimize();
2202  }
2203
2204  // Perform escape analysis
2205  if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2206    if (has_loops()) {
2207      // Cleanup graph (remove dead nodes).
2208      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2209      PhaseIdealLoop ideal_loop( igvn, false, true );
2210      if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2211      if (failing())  return;
2212    }
2213    ConnectionGraph::do_analysis(this, &igvn);
2214
2215    if (failing())  return;
2216
2217    // Optimize out fields loads from scalar replaceable allocations.
2218    igvn.optimize();
2219    print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2220
2221    if (failing())  return;
2222
2223    if (congraph() != NULL && macro_count() > 0) {
2224      TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2225      PhaseMacroExpand mexp(igvn);
2226      mexp.eliminate_macro_nodes();
2227      igvn.set_delay_transform(false);
2228
2229      igvn.optimize();
2230      print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2231
2232      if (failing())  return;
2233    }
2234  }
2235
2236  // Loop transforms on the ideal graph.  Range Check Elimination,
2237  // peeling, unrolling, etc.
2238
2239  // Set loop opts counter
2240  loop_opts_cnt = num_loop_opts();
2241  if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2242    {
2243      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2244      PhaseIdealLoop ideal_loop( igvn, true );
2245      loop_opts_cnt--;
2246      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2247      if (failing())  return;
2248    }
2249    // Loop opts pass if partial peeling occurred in previous pass
2250    if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2251      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2252      PhaseIdealLoop ideal_loop( igvn, false );
2253      loop_opts_cnt--;
2254      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2255      if (failing())  return;
2256    }
2257    // Loop opts pass for loop-unrolling before CCP
2258    if(major_progress() && (loop_opts_cnt > 0)) {
2259      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2260      PhaseIdealLoop ideal_loop( igvn, false );
2261      loop_opts_cnt--;
2262      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2263    }
2264    if (!failing()) {
2265      // Verify that last round of loop opts produced a valid graph
2266      TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2267      PhaseIdealLoop::verify(igvn);
2268    }
2269  }
2270  if (failing())  return;
2271
2272  // Conditional Constant Propagation;
2273  PhaseCCP ccp( &igvn );
2274  assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2275  {
2276    TracePhase tp("ccp", &timers[_t_ccp]);
2277    ccp.do_transform();
2278  }
2279  print_method(PHASE_CPP1, 2);
2280
2281  assert( true, "Break here to ccp.dump_old2new_map()");
2282
2283  // Iterative Global Value Numbering, including ideal transforms
2284  {
2285    TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2286    igvn = ccp;
2287    igvn.optimize();
2288  }
2289
2290  print_method(PHASE_ITER_GVN2, 2);
2291
2292  if (failing())  return;
2293
2294  // Loop transforms on the ideal graph.  Range Check Elimination,
2295  // peeling, unrolling, etc.
2296  if(loop_opts_cnt > 0) {
2297    debug_only( int cnt = 0; );
2298    while(major_progress() && (loop_opts_cnt > 0)) {
2299      TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2300      assert( cnt++ < 40, "infinite cycle in loop optimization" );
2301      PhaseIdealLoop ideal_loop( igvn, true);
2302      loop_opts_cnt--;
2303      if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2304      if (failing())  return;
2305    }
2306  }
2307  // Ensure that major progress is now clear
2308  C->clear_major_progress();
2309
2310  {
2311    // Verify that all previous optimizations produced a valid graph
2312    // at least to this point, even if no loop optimizations were done.
2313    TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2314    PhaseIdealLoop::verify(igvn);
2315  }
2316
2317  if (range_check_cast_count() > 0) {
2318    // No more loop optimizations. Remove all range check dependent CastIINodes.
2319    C->remove_range_check_casts(igvn);
2320    igvn.optimize();
2321  }
2322
2323  {
2324    TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2325    PhaseMacroExpand  mex(igvn);
2326    if (mex.expand_macro_nodes()) {
2327      assert(failing(), "must bail out w/ explicit message");
2328      return;
2329    }
2330  }
2331
2332  DEBUG_ONLY( _modified_nodes = NULL; )
2333 } // (End scope of igvn; run destructor if necessary for asserts.)
2334
2335 process_print_inlining();
2336 // A method with only infinite loops has no edges entering loops from root
2337 {
2338   TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2339   if (final_graph_reshaping()) {
2340     assert(failing(), "must bail out w/ explicit message");
2341     return;
2342   }
2343 }
2344
2345 print_method(PHASE_OPTIMIZE_FINISHED, 2);
2346}
2347
2348
2349//------------------------------Code_Gen---------------------------------------
2350// Given a graph, generate code for it
2351void Compile::Code_Gen() {
2352  if (failing()) {
2353    return;
2354  }
2355
2356  // Perform instruction selection.  You might think we could reclaim Matcher
2357  // memory PDQ, but actually the Matcher is used in generating spill code.
2358  // Internals of the Matcher (including some VectorSets) must remain live
2359  // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2360  // set a bit in reclaimed memory.
2361
2362  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2363  // nodes.  Mapping is only valid at the root of each matched subtree.
2364  NOT_PRODUCT( verify_graph_edges(); )
2365
2366  Matcher matcher;
2367  _matcher = &matcher;
2368  {
2369    TracePhase tp("matcher", &timers[_t_matcher]);
2370    matcher.match();
2371  }
2372  // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2373  // nodes.  Mapping is only valid at the root of each matched subtree.
2374  NOT_PRODUCT( verify_graph_edges(); )
2375
2376  // If you have too many nodes, or if matching has failed, bail out
2377  check_node_count(0, "out of nodes matching instructions");
2378  if (failing()) {
2379    return;
2380  }
2381
2382  // Build a proper-looking CFG
2383  PhaseCFG cfg(node_arena(), root(), matcher);
2384  _cfg = &cfg;
2385  {
2386    TracePhase tp("scheduler", &timers[_t_scheduler]);
2387    bool success = cfg.do_global_code_motion();
2388    if (!success) {
2389      return;
2390    }
2391
2392    print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2393    NOT_PRODUCT( verify_graph_edges(); )
2394    debug_only( cfg.verify(); )
2395  }
2396
2397  PhaseChaitin regalloc(unique(), cfg, matcher, false);
2398  _regalloc = &regalloc;
2399  {
2400    TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2401    // Perform register allocation.  After Chaitin, use-def chains are
2402    // no longer accurate (at spill code) and so must be ignored.
2403    // Node->LRG->reg mappings are still accurate.
2404    _regalloc->Register_Allocate();
2405
2406    // Bail out if the allocator builds too many nodes
2407    if (failing()) {
2408      return;
2409    }
2410  }
2411
2412  // Prior to register allocation we kept empty basic blocks in case the
2413  // the allocator needed a place to spill.  After register allocation we
2414  // are not adding any new instructions.  If any basic block is empty, we
2415  // can now safely remove it.
2416  {
2417    TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2418    cfg.remove_empty_blocks();
2419    if (do_freq_based_layout()) {
2420      PhaseBlockLayout layout(cfg);
2421    } else {
2422      cfg.set_loop_alignment();
2423    }
2424    cfg.fixup_flow();
2425  }
2426
2427  // Apply peephole optimizations
2428  if( OptoPeephole ) {
2429    TracePhase tp("peephole", &timers[_t_peephole]);
2430    PhasePeephole peep( _regalloc, cfg);
2431    peep.do_transform();
2432  }
2433
2434  // Do late expand if CPU requires this.
2435  if (Matcher::require_postalloc_expand) {
2436    TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2437    cfg.postalloc_expand(_regalloc);
2438  }
2439
2440  // Convert Nodes to instruction bits in a buffer
2441  {
2442    TraceTime tp("output", &timers[_t_output], CITime);
2443    Output();
2444  }
2445
2446  print_method(PHASE_FINAL_CODE);
2447
2448  // He's dead, Jim.
2449  _cfg     = (PhaseCFG*)0xdeadbeef;
2450  _regalloc = (PhaseChaitin*)0xdeadbeef;
2451}
2452
2453
2454//------------------------------dump_asm---------------------------------------
2455// Dump formatted assembly
2456#ifndef PRODUCT
2457void Compile::dump_asm(int *pcs, uint pc_limit) {
2458  bool cut_short = false;
2459  tty->print_cr("#");
2460  tty->print("#  ");  _tf->dump();  tty->cr();
2461  tty->print_cr("#");
2462
2463  // For all blocks
2464  int pc = 0x0;                 // Program counter
2465  char starts_bundle = ' ';
2466  _regalloc->dump_frame();
2467
2468  Node *n = NULL;
2469  for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2470    if (VMThread::should_terminate()) {
2471      cut_short = true;
2472      break;
2473    }
2474    Block* block = _cfg->get_block(i);
2475    if (block->is_connector() && !Verbose) {
2476      continue;
2477    }
2478    n = block->head();
2479    if (pcs && n->_idx < pc_limit) {
2480      tty->print("%3.3x   ", pcs[n->_idx]);
2481    } else {
2482      tty->print("      ");
2483    }
2484    block->dump_head(_cfg);
2485    if (block->is_connector()) {
2486      tty->print_cr("        # Empty connector block");
2487    } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2488      tty->print_cr("        # Block is sole successor of call");
2489    }
2490
2491    // For all instructions
2492    Node *delay = NULL;
2493    for (uint j = 0; j < block->number_of_nodes(); j++) {
2494      if (VMThread::should_terminate()) {
2495        cut_short = true;
2496        break;
2497      }
2498      n = block->get_node(j);
2499      if (valid_bundle_info(n)) {
2500        Bundle* bundle = node_bundling(n);
2501        if (bundle->used_in_unconditional_delay()) {
2502          delay = n;
2503          continue;
2504        }
2505        if (bundle->starts_bundle()) {
2506          starts_bundle = '+';
2507        }
2508      }
2509
2510      if (WizardMode) {
2511        n->dump();
2512      }
2513
2514      if( !n->is_Region() &&    // Dont print in the Assembly
2515          !n->is_Phi() &&       // a few noisely useless nodes
2516          !n->is_Proj() &&
2517          !n->is_MachTemp() &&
2518          !n->is_SafePointScalarObject() &&
2519          !n->is_Catch() &&     // Would be nice to print exception table targets
2520          !n->is_MergeMem() &&  // Not very interesting
2521          !n->is_top() &&       // Debug info table constants
2522          !(n->is_Con() && !n->is_Mach())// Debug info table constants
2523          ) {
2524        if (pcs && n->_idx < pc_limit)
2525          tty->print("%3.3x", pcs[n->_idx]);
2526        else
2527          tty->print("   ");
2528        tty->print(" %c ", starts_bundle);
2529        starts_bundle = ' ';
2530        tty->print("\t");
2531        n->format(_regalloc, tty);
2532        tty->cr();
2533      }
2534
2535      // If we have an instruction with a delay slot, and have seen a delay,
2536      // then back up and print it
2537      if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2538        assert(delay != NULL, "no unconditional delay instruction");
2539        if (WizardMode) delay->dump();
2540
2541        if (node_bundling(delay)->starts_bundle())
2542          starts_bundle = '+';
2543        if (pcs && n->_idx < pc_limit)
2544          tty->print("%3.3x", pcs[n->_idx]);
2545        else
2546          tty->print("   ");
2547        tty->print(" %c ", starts_bundle);
2548        starts_bundle = ' ';
2549        tty->print("\t");
2550        delay->format(_regalloc, tty);
2551        tty->cr();
2552        delay = NULL;
2553      }
2554
2555      // Dump the exception table as well
2556      if( n->is_Catch() && (Verbose || WizardMode) ) {
2557        // Print the exception table for this offset
2558        _handler_table.print_subtable_for(pc);
2559      }
2560    }
2561
2562    if (pcs && n->_idx < pc_limit)
2563      tty->print_cr("%3.3x", pcs[n->_idx]);
2564    else
2565      tty->cr();
2566
2567    assert(cut_short || delay == NULL, "no unconditional delay branch");
2568
2569  } // End of per-block dump
2570  tty->cr();
2571
2572  if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2573}
2574#endif
2575
2576//------------------------------Final_Reshape_Counts---------------------------
2577// This class defines counters to help identify when a method
2578// may/must be executed using hardware with only 24-bit precision.
2579struct Final_Reshape_Counts : public StackObj {
2580  int  _call_count;             // count non-inlined 'common' calls
2581  int  _float_count;            // count float ops requiring 24-bit precision
2582  int  _double_count;           // count double ops requiring more precision
2583  int  _java_call_count;        // count non-inlined 'java' calls
2584  int  _inner_loop_count;       // count loops which need alignment
2585  VectorSet _visited;           // Visitation flags
2586  Node_List _tests;             // Set of IfNodes & PCTableNodes
2587
2588  Final_Reshape_Counts() :
2589    _call_count(0), _float_count(0), _double_count(0),
2590    _java_call_count(0), _inner_loop_count(0),
2591    _visited( Thread::current()->resource_area() ) { }
2592
2593  void inc_call_count  () { _call_count  ++; }
2594  void inc_float_count () { _float_count ++; }
2595  void inc_double_count() { _double_count++; }
2596  void inc_java_call_count() { _java_call_count++; }
2597  void inc_inner_loop_count() { _inner_loop_count++; }
2598
2599  int  get_call_count  () const { return _call_count  ; }
2600  int  get_float_count () const { return _float_count ; }
2601  int  get_double_count() const { return _double_count; }
2602  int  get_java_call_count() const { return _java_call_count; }
2603  int  get_inner_loop_count() const { return _inner_loop_count; }
2604};
2605
2606#ifdef ASSERT
2607static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2608  ciInstanceKlass *k = tp->klass()->as_instance_klass();
2609  // Make sure the offset goes inside the instance layout.
2610  return k->contains_field_offset(tp->offset());
2611  // Note that OffsetBot and OffsetTop are very negative.
2612}
2613#endif
2614
2615// Eliminate trivially redundant StoreCMs and accumulate their
2616// precedence edges.
2617void Compile::eliminate_redundant_card_marks(Node* n) {
2618  assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2619  if (n->in(MemNode::Address)->outcnt() > 1) {
2620    // There are multiple users of the same address so it might be
2621    // possible to eliminate some of the StoreCMs
2622    Node* mem = n->in(MemNode::Memory);
2623    Node* adr = n->in(MemNode::Address);
2624    Node* val = n->in(MemNode::ValueIn);
2625    Node* prev = n;
2626    bool done = false;
2627    // Walk the chain of StoreCMs eliminating ones that match.  As
2628    // long as it's a chain of single users then the optimization is
2629    // safe.  Eliminating partially redundant StoreCMs would require
2630    // cloning copies down the other paths.
2631    while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2632      if (adr == mem->in(MemNode::Address) &&
2633          val == mem->in(MemNode::ValueIn)) {
2634        // redundant StoreCM
2635        if (mem->req() > MemNode::OopStore) {
2636          // Hasn't been processed by this code yet.
2637          n->add_prec(mem->in(MemNode::OopStore));
2638        } else {
2639          // Already converted to precedence edge
2640          for (uint i = mem->req(); i < mem->len(); i++) {
2641            // Accumulate any precedence edges
2642            if (mem->in(i) != NULL) {
2643              n->add_prec(mem->in(i));
2644            }
2645          }
2646          // Everything above this point has been processed.
2647          done = true;
2648        }
2649        // Eliminate the previous StoreCM
2650        prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2651        assert(mem->outcnt() == 0, "should be dead");
2652        mem->disconnect_inputs(NULL, this);
2653      } else {
2654        prev = mem;
2655      }
2656      mem = prev->in(MemNode::Memory);
2657    }
2658  }
2659}
2660
2661//------------------------------final_graph_reshaping_impl----------------------
2662// Implement items 1-5 from final_graph_reshaping below.
2663void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2664
2665  if ( n->outcnt() == 0 ) return; // dead node
2666  uint nop = n->Opcode();
2667
2668  // Check for 2-input instruction with "last use" on right input.
2669  // Swap to left input.  Implements item (2).
2670  if( n->req() == 3 &&          // two-input instruction
2671      n->in(1)->outcnt() > 1 && // left use is NOT a last use
2672      (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2673      n->in(2)->outcnt() == 1 &&// right use IS a last use
2674      !n->in(2)->is_Con() ) {   // right use is not a constant
2675    // Check for commutative opcode
2676    switch( nop ) {
2677    case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2678    case Op_MaxI:  case Op_MinI:
2679    case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2680    case Op_AndL:  case Op_XorL:  case Op_OrL:
2681    case Op_AndI:  case Op_XorI:  case Op_OrI: {
2682      // Move "last use" input to left by swapping inputs
2683      n->swap_edges(1, 2);
2684      break;
2685    }
2686    default:
2687      break;
2688    }
2689  }
2690
2691#ifdef ASSERT
2692  if( n->is_Mem() ) {
2693    int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2694    assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2695            // oop will be recorded in oop map if load crosses safepoint
2696            n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2697                             LoadNode::is_immutable_value(n->in(MemNode::Address))),
2698            "raw memory operations should have control edge");
2699  }
2700#endif
2701  // Count FPU ops and common calls, implements item (3)
2702  switch( nop ) {
2703  // Count all float operations that may use FPU
2704  case Op_AddF:
2705  case Op_SubF:
2706  case Op_MulF:
2707  case Op_DivF:
2708  case Op_NegF:
2709  case Op_ModF:
2710  case Op_ConvI2F:
2711  case Op_ConF:
2712  case Op_CmpF:
2713  case Op_CmpF3:
2714  // case Op_ConvL2F: // longs are split into 32-bit halves
2715    frc.inc_float_count();
2716    break;
2717
2718  case Op_ConvF2D:
2719  case Op_ConvD2F:
2720    frc.inc_float_count();
2721    frc.inc_double_count();
2722    break;
2723
2724  // Count all double operations that may use FPU
2725  case Op_AddD:
2726  case Op_SubD:
2727  case Op_MulD:
2728  case Op_DivD:
2729  case Op_NegD:
2730  case Op_ModD:
2731  case Op_ConvI2D:
2732  case Op_ConvD2I:
2733  // case Op_ConvL2D: // handled by leaf call
2734  // case Op_ConvD2L: // handled by leaf call
2735  case Op_ConD:
2736  case Op_CmpD:
2737  case Op_CmpD3:
2738    frc.inc_double_count();
2739    break;
2740  case Op_Opaque1:              // Remove Opaque Nodes before matching
2741  case Op_Opaque2:              // Remove Opaque Nodes before matching
2742  case Op_Opaque3:
2743    n->subsume_by(n->in(1), this);
2744    break;
2745  case Op_CallStaticJava:
2746  case Op_CallJava:
2747  case Op_CallDynamicJava:
2748    frc.inc_java_call_count(); // Count java call site;
2749  case Op_CallRuntime:
2750  case Op_CallLeaf:
2751  case Op_CallLeafNoFP: {
2752    assert( n->is_Call(), "" );
2753    CallNode *call = n->as_Call();
2754    // Count call sites where the FP mode bit would have to be flipped.
2755    // Do not count uncommon runtime calls:
2756    // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2757    // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2758    if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2759      frc.inc_call_count();   // Count the call site
2760    } else {                  // See if uncommon argument is shared
2761      Node *n = call->in(TypeFunc::Parms);
2762      int nop = n->Opcode();
2763      // Clone shared simple arguments to uncommon calls, item (1).
2764      if( n->outcnt() > 1 &&
2765          !n->is_Proj() &&
2766          nop != Op_CreateEx &&
2767          nop != Op_CheckCastPP &&
2768          nop != Op_DecodeN &&
2769          nop != Op_DecodeNKlass &&
2770          !n->is_Mem() ) {
2771        Node *x = n->clone();
2772        call->set_req( TypeFunc::Parms, x );
2773      }
2774    }
2775    break;
2776  }
2777
2778  case Op_StoreD:
2779  case Op_LoadD:
2780  case Op_LoadD_unaligned:
2781    frc.inc_double_count();
2782    goto handle_mem;
2783  case Op_StoreF:
2784  case Op_LoadF:
2785    frc.inc_float_count();
2786    goto handle_mem;
2787
2788  case Op_StoreCM:
2789    {
2790      // Convert OopStore dependence into precedence edge
2791      Node* prec = n->in(MemNode::OopStore);
2792      n->del_req(MemNode::OopStore);
2793      n->add_prec(prec);
2794      eliminate_redundant_card_marks(n);
2795    }
2796
2797    // fall through
2798
2799  case Op_StoreB:
2800  case Op_StoreC:
2801  case Op_StorePConditional:
2802  case Op_StoreI:
2803  case Op_StoreL:
2804  case Op_StoreIConditional:
2805  case Op_StoreLConditional:
2806  case Op_CompareAndSwapB:
2807  case Op_CompareAndSwapS:
2808  case Op_CompareAndSwapI:
2809  case Op_CompareAndSwapL:
2810  case Op_CompareAndSwapP:
2811  case Op_CompareAndSwapN:
2812  case Op_WeakCompareAndSwapB:
2813  case Op_WeakCompareAndSwapS:
2814  case Op_WeakCompareAndSwapI:
2815  case Op_WeakCompareAndSwapL:
2816  case Op_WeakCompareAndSwapP:
2817  case Op_WeakCompareAndSwapN:
2818  case Op_CompareAndExchangeB:
2819  case Op_CompareAndExchangeS:
2820  case Op_CompareAndExchangeI:
2821  case Op_CompareAndExchangeL:
2822  case Op_CompareAndExchangeP:
2823  case Op_CompareAndExchangeN:
2824  case Op_GetAndAddS:
2825  case Op_GetAndAddB:
2826  case Op_GetAndAddI:
2827  case Op_GetAndAddL:
2828  case Op_GetAndSetS:
2829  case Op_GetAndSetB:
2830  case Op_GetAndSetI:
2831  case Op_GetAndSetL:
2832  case Op_GetAndSetP:
2833  case Op_GetAndSetN:
2834  case Op_StoreP:
2835  case Op_StoreN:
2836  case Op_StoreNKlass:
2837  case Op_LoadB:
2838  case Op_LoadUB:
2839  case Op_LoadUS:
2840  case Op_LoadI:
2841  case Op_LoadKlass:
2842  case Op_LoadNKlass:
2843  case Op_LoadL:
2844  case Op_LoadL_unaligned:
2845  case Op_LoadPLocked:
2846  case Op_LoadP:
2847  case Op_LoadN:
2848  case Op_LoadRange:
2849  case Op_LoadS: {
2850  handle_mem:
2851#ifdef ASSERT
2852    if( VerifyOptoOopOffsets ) {
2853      assert( n->is_Mem(), "" );
2854      MemNode *mem  = (MemNode*)n;
2855      // Check to see if address types have grounded out somehow.
2856      const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2857      assert( !tp || oop_offset_is_sane(tp), "" );
2858    }
2859#endif
2860    break;
2861  }
2862
2863  case Op_AddP: {               // Assert sane base pointers
2864    Node *addp = n->in(AddPNode::Address);
2865    assert( !addp->is_AddP() ||
2866            addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2867            addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2868            "Base pointers must match (addp %u)", addp->_idx );
2869#ifdef _LP64
2870    if ((UseCompressedOops || UseCompressedClassPointers) &&
2871        addp->Opcode() == Op_ConP &&
2872        addp == n->in(AddPNode::Base) &&
2873        n->in(AddPNode::Offset)->is_Con()) {
2874      // If the transformation of ConP to ConN+DecodeN is beneficial depends
2875      // on the platform and on the compressed oops mode.
2876      // Use addressing with narrow klass to load with offset on x86.
2877      // Some platforms can use the constant pool to load ConP.
2878      // Do this transformation here since IGVN will convert ConN back to ConP.
2879      const Type* t = addp->bottom_type();
2880      bool is_oop   = t->isa_oopptr() != NULL;
2881      bool is_klass = t->isa_klassptr() != NULL;
2882
2883      if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2884          (is_klass && Matcher::const_klass_prefer_decode())) {
2885        Node* nn = NULL;
2886
2887        int op = is_oop ? Op_ConN : Op_ConNKlass;
2888
2889        // Look for existing ConN node of the same exact type.
2890        Node* r  = root();
2891        uint cnt = r->outcnt();
2892        for (uint i = 0; i < cnt; i++) {
2893          Node* m = r->raw_out(i);
2894          if (m!= NULL && m->Opcode() == op &&
2895              m->bottom_type()->make_ptr() == t) {
2896            nn = m;
2897            break;
2898          }
2899        }
2900        if (nn != NULL) {
2901          // Decode a narrow oop to match address
2902          // [R12 + narrow_oop_reg<<3 + offset]
2903          if (is_oop) {
2904            nn = new DecodeNNode(nn, t);
2905          } else {
2906            nn = new DecodeNKlassNode(nn, t);
2907          }
2908          // Check for succeeding AddP which uses the same Base.
2909          // Otherwise we will run into the assertion above when visiting that guy.
2910          for (uint i = 0; i < n->outcnt(); ++i) {
2911            Node *out_i = n->raw_out(i);
2912            if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
2913              out_i->set_req(AddPNode::Base, nn);
2914#ifdef ASSERT
2915              for (uint j = 0; j < out_i->outcnt(); ++j) {
2916                Node *out_j = out_i->raw_out(j);
2917                assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
2918                       "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
2919              }
2920#endif
2921            }
2922          }
2923          n->set_req(AddPNode::Base, nn);
2924          n->set_req(AddPNode::Address, nn);
2925          if (addp->outcnt() == 0) {
2926            addp->disconnect_inputs(NULL, this);
2927          }
2928        }
2929      }
2930    }
2931#endif
2932    // platform dependent reshaping of the address expression
2933    reshape_address(n->as_AddP());
2934    break;
2935  }
2936
2937  case Op_CastPP: {
2938    // Remove CastPP nodes to gain more freedom during scheduling but
2939    // keep the dependency they encode as control or precedence edges
2940    // (if control is set already) on memory operations. Some CastPP
2941    // nodes don't have a control (don't carry a dependency): skip
2942    // those.
2943    if (n->in(0) != NULL) {
2944      ResourceMark rm;
2945      Unique_Node_List wq;
2946      wq.push(n);
2947      for (uint next = 0; next < wq.size(); ++next) {
2948        Node *m = wq.at(next);
2949        for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2950          Node* use = m->fast_out(i);
2951          if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2952            use->ensure_control_or_add_prec(n->in(0));
2953          } else {
2954            switch(use->Opcode()) {
2955            case Op_AddP:
2956            case Op_DecodeN:
2957            case Op_DecodeNKlass:
2958            case Op_CheckCastPP:
2959            case Op_CastPP:
2960              wq.push(use);
2961              break;
2962            }
2963          }
2964        }
2965      }
2966    }
2967    const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2968    if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2969      Node* in1 = n->in(1);
2970      const Type* t = n->bottom_type();
2971      Node* new_in1 = in1->clone();
2972      new_in1->as_DecodeN()->set_type(t);
2973
2974      if (!Matcher::narrow_oop_use_complex_address()) {
2975        //
2976        // x86, ARM and friends can handle 2 adds in addressing mode
2977        // and Matcher can fold a DecodeN node into address by using
2978        // a narrow oop directly and do implicit NULL check in address:
2979        //
2980        // [R12 + narrow_oop_reg<<3 + offset]
2981        // NullCheck narrow_oop_reg
2982        //
2983        // On other platforms (Sparc) we have to keep new DecodeN node and
2984        // use it to do implicit NULL check in address:
2985        //
2986        // decode_not_null narrow_oop_reg, base_reg
2987        // [base_reg + offset]
2988        // NullCheck base_reg
2989        //
2990        // Pin the new DecodeN node to non-null path on these platform (Sparc)
2991        // to keep the information to which NULL check the new DecodeN node
2992        // corresponds to use it as value in implicit_null_check().
2993        //
2994        new_in1->set_req(0, n->in(0));
2995      }
2996
2997      n->subsume_by(new_in1, this);
2998      if (in1->outcnt() == 0) {
2999        in1->disconnect_inputs(NULL, this);
3000      }
3001    } else {
3002      n->subsume_by(n->in(1), this);
3003      if (n->outcnt() == 0) {
3004        n->disconnect_inputs(NULL, this);
3005      }
3006    }
3007    break;
3008  }
3009#ifdef _LP64
3010  case Op_CmpP:
3011    // Do this transformation here to preserve CmpPNode::sub() and
3012    // other TypePtr related Ideal optimizations (for example, ptr nullness).
3013    if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3014      Node* in1 = n->in(1);
3015      Node* in2 = n->in(2);
3016      if (!in1->is_DecodeNarrowPtr()) {
3017        in2 = in1;
3018        in1 = n->in(2);
3019      }
3020      assert(in1->is_DecodeNarrowPtr(), "sanity");
3021
3022      Node* new_in2 = NULL;
3023      if (in2->is_DecodeNarrowPtr()) {
3024        assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3025        new_in2 = in2->in(1);
3026      } else if (in2->Opcode() == Op_ConP) {
3027        const Type* t = in2->bottom_type();
3028        if (t == TypePtr::NULL_PTR) {
3029          assert(in1->is_DecodeN(), "compare klass to null?");
3030          // Don't convert CmpP null check into CmpN if compressed
3031          // oops implicit null check is not generated.
3032          // This will allow to generate normal oop implicit null check.
3033          if (Matcher::gen_narrow_oop_implicit_null_checks())
3034            new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3035          //
3036          // This transformation together with CastPP transformation above
3037          // will generated code for implicit NULL checks for compressed oops.
3038          //
3039          // The original code after Optimize()
3040          //
3041          //    LoadN memory, narrow_oop_reg
3042          //    decode narrow_oop_reg, base_reg
3043          //    CmpP base_reg, NULL
3044          //    CastPP base_reg // NotNull
3045          //    Load [base_reg + offset], val_reg
3046          //
3047          // after these transformations will be
3048          //
3049          //    LoadN memory, narrow_oop_reg
3050          //    CmpN narrow_oop_reg, NULL
3051          //    decode_not_null narrow_oop_reg, base_reg
3052          //    Load [base_reg + offset], val_reg
3053          //
3054          // and the uncommon path (== NULL) will use narrow_oop_reg directly
3055          // since narrow oops can be used in debug info now (see the code in
3056          // final_graph_reshaping_walk()).
3057          //
3058          // At the end the code will be matched to
3059          // on x86:
3060          //
3061          //    Load_narrow_oop memory, narrow_oop_reg
3062          //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3063          //    NullCheck narrow_oop_reg
3064          //
3065          // and on sparc:
3066          //
3067          //    Load_narrow_oop memory, narrow_oop_reg
3068          //    decode_not_null narrow_oop_reg, base_reg
3069          //    Load [base_reg + offset], val_reg
3070          //    NullCheck base_reg
3071          //
3072        } else if (t->isa_oopptr()) {
3073          new_in2 = ConNode::make(t->make_narrowoop());
3074        } else if (t->isa_klassptr()) {
3075          new_in2 = ConNode::make(t->make_narrowklass());
3076        }
3077      }
3078      if (new_in2 != NULL) {
3079        Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3080        n->subsume_by(cmpN, this);
3081        if (in1->outcnt() == 0) {
3082          in1->disconnect_inputs(NULL, this);
3083        }
3084        if (in2->outcnt() == 0) {
3085          in2->disconnect_inputs(NULL, this);
3086        }
3087      }
3088    }
3089    break;
3090
3091  case Op_DecodeN:
3092  case Op_DecodeNKlass:
3093    assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3094    // DecodeN could be pinned when it can't be fold into
3095    // an address expression, see the code for Op_CastPP above.
3096    assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3097    break;
3098
3099  case Op_EncodeP:
3100  case Op_EncodePKlass: {
3101    Node* in1 = n->in(1);
3102    if (in1->is_DecodeNarrowPtr()) {
3103      n->subsume_by(in1->in(1), this);
3104    } else if (in1->Opcode() == Op_ConP) {
3105      const Type* t = in1->bottom_type();
3106      if (t == TypePtr::NULL_PTR) {
3107        assert(t->isa_oopptr(), "null klass?");
3108        n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3109      } else if (t->isa_oopptr()) {
3110        n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3111      } else if (t->isa_klassptr()) {
3112        n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3113      }
3114    }
3115    if (in1->outcnt() == 0) {
3116      in1->disconnect_inputs(NULL, this);
3117    }
3118    break;
3119  }
3120
3121  case Op_Proj: {
3122    if (OptimizeStringConcat) {
3123      ProjNode* p = n->as_Proj();
3124      if (p->_is_io_use) {
3125        // Separate projections were used for the exception path which
3126        // are normally removed by a late inline.  If it wasn't inlined
3127        // then they will hang around and should just be replaced with
3128        // the original one.
3129        Node* proj = NULL;
3130        // Replace with just one
3131        for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3132          Node *use = i.get();
3133          if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3134            proj = use;
3135            break;
3136          }
3137        }
3138        assert(proj != NULL, "must be found");
3139        p->subsume_by(proj, this);
3140      }
3141    }
3142    break;
3143  }
3144
3145  case Op_Phi:
3146    if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3147      // The EncodeP optimization may create Phi with the same edges
3148      // for all paths. It is not handled well by Register Allocator.
3149      Node* unique_in = n->in(1);
3150      assert(unique_in != NULL, "");
3151      uint cnt = n->req();
3152      for (uint i = 2; i < cnt; i++) {
3153        Node* m = n->in(i);
3154        assert(m != NULL, "");
3155        if (unique_in != m)
3156          unique_in = NULL;
3157      }
3158      if (unique_in != NULL) {
3159        n->subsume_by(unique_in, this);
3160      }
3161    }
3162    break;
3163
3164#endif
3165
3166#ifdef ASSERT
3167  case Op_CastII:
3168    // Verify that all range check dependent CastII nodes were removed.
3169    if (n->isa_CastII()->has_range_check()) {
3170      n->dump(3);
3171      assert(false, "Range check dependent CastII node was not removed");
3172    }
3173    break;
3174#endif
3175
3176  case Op_ModI:
3177    if (UseDivMod) {
3178      // Check if a%b and a/b both exist
3179      Node* d = n->find_similar(Op_DivI);
3180      if (d) {
3181        // Replace them with a fused divmod if supported
3182        if (Matcher::has_match_rule(Op_DivModI)) {
3183          DivModINode* divmod = DivModINode::make(n);
3184          d->subsume_by(divmod->div_proj(), this);
3185          n->subsume_by(divmod->mod_proj(), this);
3186        } else {
3187          // replace a%b with a-((a/b)*b)
3188          Node* mult = new MulINode(d, d->in(2));
3189          Node* sub  = new SubINode(d->in(1), mult);
3190          n->subsume_by(sub, this);
3191        }
3192      }
3193    }
3194    break;
3195
3196  case Op_ModL:
3197    if (UseDivMod) {
3198      // Check if a%b and a/b both exist
3199      Node* d = n->find_similar(Op_DivL);
3200      if (d) {
3201        // Replace them with a fused divmod if supported
3202        if (Matcher::has_match_rule(Op_DivModL)) {
3203          DivModLNode* divmod = DivModLNode::make(n);
3204          d->subsume_by(divmod->div_proj(), this);
3205          n->subsume_by(divmod->mod_proj(), this);
3206        } else {
3207          // replace a%b with a-((a/b)*b)
3208          Node* mult = new MulLNode(d, d->in(2));
3209          Node* sub  = new SubLNode(d->in(1), mult);
3210          n->subsume_by(sub, this);
3211        }
3212      }
3213    }
3214    break;
3215
3216  case Op_LoadVector:
3217  case Op_StoreVector:
3218    break;
3219
3220  case Op_AddReductionVI:
3221  case Op_AddReductionVL:
3222  case Op_AddReductionVF:
3223  case Op_AddReductionVD:
3224  case Op_MulReductionVI:
3225  case Op_MulReductionVL:
3226  case Op_MulReductionVF:
3227  case Op_MulReductionVD:
3228    break;
3229
3230  case Op_PackB:
3231  case Op_PackS:
3232  case Op_PackI:
3233  case Op_PackF:
3234  case Op_PackL:
3235  case Op_PackD:
3236    if (n->req()-1 > 2) {
3237      // Replace many operand PackNodes with a binary tree for matching
3238      PackNode* p = (PackNode*) n;
3239      Node* btp = p->binary_tree_pack(1, n->req());
3240      n->subsume_by(btp, this);
3241    }
3242    break;
3243  case Op_Loop:
3244  case Op_CountedLoop:
3245    if (n->as_Loop()->is_inner_loop()) {
3246      frc.inc_inner_loop_count();
3247    }
3248    break;
3249  case Op_LShiftI:
3250  case Op_RShiftI:
3251  case Op_URShiftI:
3252  case Op_LShiftL:
3253  case Op_RShiftL:
3254  case Op_URShiftL:
3255    if (Matcher::need_masked_shift_count) {
3256      // The cpu's shift instructions don't restrict the count to the
3257      // lower 5/6 bits. We need to do the masking ourselves.
3258      Node* in2 = n->in(2);
3259      juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3260      const TypeInt* t = in2->find_int_type();
3261      if (t != NULL && t->is_con()) {
3262        juint shift = t->get_con();
3263        if (shift > mask) { // Unsigned cmp
3264          n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3265        }
3266      } else {
3267        if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3268          Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3269          n->set_req(2, shift);
3270        }
3271      }
3272      if (in2->outcnt() == 0) { // Remove dead node
3273        in2->disconnect_inputs(NULL, this);
3274      }
3275    }
3276    break;
3277  case Op_MemBarStoreStore:
3278  case Op_MemBarRelease:
3279    // Break the link with AllocateNode: it is no longer useful and
3280    // confuses register allocation.
3281    if (n->req() > MemBarNode::Precedent) {
3282      n->set_req(MemBarNode::Precedent, top());
3283    }
3284    break;
3285  case Op_RangeCheck: {
3286    RangeCheckNode* rc = n->as_RangeCheck();
3287    Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3288    n->subsume_by(iff, this);
3289    frc._tests.push(iff);
3290    break;
3291  }
3292  case Op_ConvI2L: {
3293    if (!Matcher::convi2l_type_required) {
3294      // Code generation on some platforms doesn't need accurate
3295      // ConvI2L types. Widening the type can help remove redundant
3296      // address computations.
3297      n->as_Type()->set_type(TypeLong::INT);
3298      ResourceMark rm;
3299      Node_List wq;
3300      wq.push(n);
3301      for (uint next = 0; next < wq.size(); next++) {
3302        Node *m = wq.at(next);
3303
3304        for(;;) {
3305          // Loop over all nodes with identical inputs edges as m
3306          Node* k = m->find_similar(m->Opcode());
3307          if (k == NULL) {
3308            break;
3309          }
3310          // Push their uses so we get a chance to remove node made
3311          // redundant
3312          for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3313            Node* u = k->fast_out(i);
3314            assert(!wq.contains(u), "shouldn't process one node several times");
3315            if (u->Opcode() == Op_LShiftL ||
3316                u->Opcode() == Op_AddL ||
3317                u->Opcode() == Op_SubL ||
3318                u->Opcode() == Op_AddP) {
3319              wq.push(u);
3320            }
3321          }
3322          // Replace all nodes with identical edges as m with m
3323          k->subsume_by(m, this);
3324        }
3325      }
3326    }
3327    break;
3328  }
3329  default:
3330    assert( !n->is_Call(), "" );
3331    assert( !n->is_Mem(), "" );
3332    assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3333    break;
3334  }
3335
3336  // Collect CFG split points
3337  if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3338    frc._tests.push(n);
3339  }
3340}
3341
3342//------------------------------final_graph_reshaping_walk---------------------
3343// Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3344// requires that the walk visits a node's inputs before visiting the node.
3345void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3346  ResourceArea *area = Thread::current()->resource_area();
3347  Unique_Node_List sfpt(area);
3348
3349  frc._visited.set(root->_idx); // first, mark node as visited
3350  uint cnt = root->req();
3351  Node *n = root;
3352  uint  i = 0;
3353  while (true) {
3354    if (i < cnt) {
3355      // Place all non-visited non-null inputs onto stack
3356      Node* m = n->in(i);
3357      ++i;
3358      if (m != NULL && !frc._visited.test_set(m->_idx)) {
3359        if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3360          // compute worst case interpreter size in case of a deoptimization
3361          update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3362
3363          sfpt.push(m);
3364        }
3365        cnt = m->req();
3366        nstack.push(n, i); // put on stack parent and next input's index
3367        n = m;
3368        i = 0;
3369      }
3370    } else {
3371      // Now do post-visit work
3372      final_graph_reshaping_impl( n, frc );
3373      if (nstack.is_empty())
3374        break;             // finished
3375      n = nstack.node();   // Get node from stack
3376      cnt = n->req();
3377      i = nstack.index();
3378      nstack.pop();        // Shift to the next node on stack
3379    }
3380  }
3381
3382  // Skip next transformation if compressed oops are not used.
3383  if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3384      (!UseCompressedOops && !UseCompressedClassPointers))
3385    return;
3386
3387  // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3388  // It could be done for an uncommon traps or any safepoints/calls
3389  // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3390  while (sfpt.size() > 0) {
3391    n = sfpt.pop();
3392    JVMState *jvms = n->as_SafePoint()->jvms();
3393    assert(jvms != NULL, "sanity");
3394    int start = jvms->debug_start();
3395    int end   = n->req();
3396    bool is_uncommon = (n->is_CallStaticJava() &&
3397                        n->as_CallStaticJava()->uncommon_trap_request() != 0);
3398    for (int j = start; j < end; j++) {
3399      Node* in = n->in(j);
3400      if (in->is_DecodeNarrowPtr()) {
3401        bool safe_to_skip = true;
3402        if (!is_uncommon ) {
3403          // Is it safe to skip?
3404          for (uint i = 0; i < in->outcnt(); i++) {
3405            Node* u = in->raw_out(i);
3406            if (!u->is_SafePoint() ||
3407                 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3408              safe_to_skip = false;
3409            }
3410          }
3411        }
3412        if (safe_to_skip) {
3413          n->set_req(j, in->in(1));
3414        }
3415        if (in->outcnt() == 0) {
3416          in->disconnect_inputs(NULL, this);
3417        }
3418      }
3419    }
3420  }
3421}
3422
3423//------------------------------final_graph_reshaping--------------------------
3424// Final Graph Reshaping.
3425//
3426// (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3427//     and not commoned up and forced early.  Must come after regular
3428//     optimizations to avoid GVN undoing the cloning.  Clone constant
3429//     inputs to Loop Phis; these will be split by the allocator anyways.
3430//     Remove Opaque nodes.
3431// (2) Move last-uses by commutative operations to the left input to encourage
3432//     Intel update-in-place two-address operations and better register usage
3433//     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3434//     calls canonicalizing them back.
3435// (3) Count the number of double-precision FP ops, single-precision FP ops
3436//     and call sites.  On Intel, we can get correct rounding either by
3437//     forcing singles to memory (requires extra stores and loads after each
3438//     FP bytecode) or we can set a rounding mode bit (requires setting and
3439//     clearing the mode bit around call sites).  The mode bit is only used
3440//     if the relative frequency of single FP ops to calls is low enough.
3441//     This is a key transform for SPEC mpeg_audio.
3442// (4) Detect infinite loops; blobs of code reachable from above but not
3443//     below.  Several of the Code_Gen algorithms fail on such code shapes,
3444//     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3445//     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3446//     Detection is by looking for IfNodes where only 1 projection is
3447//     reachable from below or CatchNodes missing some targets.
3448// (5) Assert for insane oop offsets in debug mode.
3449
3450bool Compile::final_graph_reshaping() {
3451  // an infinite loop may have been eliminated by the optimizer,
3452  // in which case the graph will be empty.
3453  if (root()->req() == 1) {
3454    record_method_not_compilable("trivial infinite loop");
3455    return true;
3456  }
3457
3458  // Expensive nodes have their control input set to prevent the GVN
3459  // from freely commoning them. There's no GVN beyond this point so
3460  // no need to keep the control input. We want the expensive nodes to
3461  // be freely moved to the least frequent code path by gcm.
3462  assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3463  for (int i = 0; i < expensive_count(); i++) {
3464    _expensive_nodes->at(i)->set_req(0, NULL);
3465  }
3466
3467  Final_Reshape_Counts frc;
3468
3469  // Visit everybody reachable!
3470  // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3471  Node_Stack nstack(live_nodes() >> 1);
3472  final_graph_reshaping_walk(nstack, root(), frc);
3473
3474  // Check for unreachable (from below) code (i.e., infinite loops).
3475  for( uint i = 0; i < frc._tests.size(); i++ ) {
3476    MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3477    // Get number of CFG targets.
3478    // Note that PCTables include exception targets after calls.
3479    uint required_outcnt = n->required_outcnt();
3480    if (n->outcnt() != required_outcnt) {
3481      // Check for a few special cases.  Rethrow Nodes never take the
3482      // 'fall-thru' path, so expected kids is 1 less.
3483      if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3484        if (n->in(0)->in(0)->is_Call()) {
3485          CallNode *call = n->in(0)->in(0)->as_Call();
3486          if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3487            required_outcnt--;      // Rethrow always has 1 less kid
3488          } else if (call->req() > TypeFunc::Parms &&
3489                     call->is_CallDynamicJava()) {
3490            // Check for null receiver. In such case, the optimizer has
3491            // detected that the virtual call will always result in a null
3492            // pointer exception. The fall-through projection of this CatchNode
3493            // will not be populated.
3494            Node *arg0 = call->in(TypeFunc::Parms);
3495            if (arg0->is_Type() &&
3496                arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3497              required_outcnt--;
3498            }
3499          } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3500                     call->req() > TypeFunc::Parms+1 &&
3501                     call->is_CallStaticJava()) {
3502            // Check for negative array length. In such case, the optimizer has
3503            // detected that the allocation attempt will always result in an
3504            // exception. There is no fall-through projection of this CatchNode .
3505            Node *arg1 = call->in(TypeFunc::Parms+1);
3506            if (arg1->is_Type() &&
3507                arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3508              required_outcnt--;
3509            }
3510          }
3511        }
3512      }
3513      // Recheck with a better notion of 'required_outcnt'
3514      if (n->outcnt() != required_outcnt) {
3515        record_method_not_compilable("malformed control flow");
3516        return true;            // Not all targets reachable!
3517      }
3518    }
3519    // Check that I actually visited all kids.  Unreached kids
3520    // must be infinite loops.
3521    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3522      if (!frc._visited.test(n->fast_out(j)->_idx)) {
3523        record_method_not_compilable("infinite loop");
3524        return true;            // Found unvisited kid; must be unreach
3525      }
3526  }
3527
3528  // If original bytecodes contained a mixture of floats and doubles
3529  // check if the optimizer has made it homogenous, item (3).
3530  if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3531      frc.get_float_count() > 32 &&
3532      frc.get_double_count() == 0 &&
3533      (10 * frc.get_call_count() < frc.get_float_count()) ) {
3534    set_24_bit_selection_and_mode( false,  true );
3535  }
3536
3537  set_java_calls(frc.get_java_call_count());
3538  set_inner_loops(frc.get_inner_loop_count());
3539
3540  // No infinite loops, no reason to bail out.
3541  return false;
3542}
3543
3544//-----------------------------too_many_traps----------------------------------
3545// Report if there are too many traps at the current method and bci.
3546// Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3547bool Compile::too_many_traps(ciMethod* method,
3548                             int bci,
3549                             Deoptimization::DeoptReason reason) {
3550  ciMethodData* md = method->method_data();
3551  if (md->is_empty()) {
3552    // Assume the trap has not occurred, or that it occurred only
3553    // because of a transient condition during start-up in the interpreter.
3554    return false;
3555  }
3556  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3557  if (md->has_trap_at(bci, m, reason) != 0) {
3558    // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3559    // Also, if there are multiple reasons, or if there is no per-BCI record,
3560    // assume the worst.
3561    if (log())
3562      log()->elem("observe trap='%s' count='%d'",
3563                  Deoptimization::trap_reason_name(reason),
3564                  md->trap_count(reason));
3565    return true;
3566  } else {
3567    // Ignore method/bci and see if there have been too many globally.
3568    return too_many_traps(reason, md);
3569  }
3570}
3571
3572// Less-accurate variant which does not require a method and bci.
3573bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3574                             ciMethodData* logmd) {
3575  if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3576    // Too many traps globally.
3577    // Note that we use cumulative trap_count, not just md->trap_count.
3578    if (log()) {
3579      int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3580      log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3581                  Deoptimization::trap_reason_name(reason),
3582                  mcount, trap_count(reason));
3583    }
3584    return true;
3585  } else {
3586    // The coast is clear.
3587    return false;
3588  }
3589}
3590
3591//--------------------------too_many_recompiles--------------------------------
3592// Report if there are too many recompiles at the current method and bci.
3593// Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3594// Is not eager to return true, since this will cause the compiler to use
3595// Action_none for a trap point, to avoid too many recompilations.
3596bool Compile::too_many_recompiles(ciMethod* method,
3597                                  int bci,
3598                                  Deoptimization::DeoptReason reason) {
3599  ciMethodData* md = method->method_data();
3600  if (md->is_empty()) {
3601    // Assume the trap has not occurred, or that it occurred only
3602    // because of a transient condition during start-up in the interpreter.
3603    return false;
3604  }
3605  // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3606  uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3607  uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3608  Deoptimization::DeoptReason per_bc_reason
3609    = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3610  ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3611  if ((per_bc_reason == Deoptimization::Reason_none
3612       || md->has_trap_at(bci, m, reason) != 0)
3613      // The trap frequency measure we care about is the recompile count:
3614      && md->trap_recompiled_at(bci, m)
3615      && md->overflow_recompile_count() >= bc_cutoff) {
3616    // Do not emit a trap here if it has already caused recompilations.
3617    // Also, if there are multiple reasons, or if there is no per-BCI record,
3618    // assume the worst.
3619    if (log())
3620      log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3621                  Deoptimization::trap_reason_name(reason),
3622                  md->trap_count(reason),
3623                  md->overflow_recompile_count());
3624    return true;
3625  } else if (trap_count(reason) != 0
3626             && decompile_count() >= m_cutoff) {
3627    // Too many recompiles globally, and we have seen this sort of trap.
3628    // Use cumulative decompile_count, not just md->decompile_count.
3629    if (log())
3630      log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3631                  Deoptimization::trap_reason_name(reason),
3632                  md->trap_count(reason), trap_count(reason),
3633                  md->decompile_count(), decompile_count());
3634    return true;
3635  } else {
3636    // The coast is clear.
3637    return false;
3638  }
3639}
3640
3641// Compute when not to trap. Used by matching trap based nodes and
3642// NullCheck optimization.
3643void Compile::set_allowed_deopt_reasons() {
3644  _allowed_reasons = 0;
3645  if (is_method_compilation()) {
3646    for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3647      assert(rs < BitsPerInt, "recode bit map");
3648      if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3649        _allowed_reasons |= nth_bit(rs);
3650      }
3651    }
3652  }
3653}
3654
3655#ifndef PRODUCT
3656//------------------------------verify_graph_edges---------------------------
3657// Walk the Graph and verify that there is a one-to-one correspondence
3658// between Use-Def edges and Def-Use edges in the graph.
3659void Compile::verify_graph_edges(bool no_dead_code) {
3660  if (VerifyGraphEdges) {
3661    ResourceArea *area = Thread::current()->resource_area();
3662    Unique_Node_List visited(area);
3663    // Call recursive graph walk to check edges
3664    _root->verify_edges(visited);
3665    if (no_dead_code) {
3666      // Now make sure that no visited node is used by an unvisited node.
3667      bool dead_nodes = false;
3668      Unique_Node_List checked(area);
3669      while (visited.size() > 0) {
3670        Node* n = visited.pop();
3671        checked.push(n);
3672        for (uint i = 0; i < n->outcnt(); i++) {
3673          Node* use = n->raw_out(i);
3674          if (checked.member(use))  continue;  // already checked
3675          if (visited.member(use))  continue;  // already in the graph
3676          if (use->is_Con())        continue;  // a dead ConNode is OK
3677          // At this point, we have found a dead node which is DU-reachable.
3678          if (!dead_nodes) {
3679            tty->print_cr("*** Dead nodes reachable via DU edges:");
3680            dead_nodes = true;
3681          }
3682          use->dump(2);
3683          tty->print_cr("---");
3684          checked.push(use);  // No repeats; pretend it is now checked.
3685        }
3686      }
3687      assert(!dead_nodes, "using nodes must be reachable from root");
3688    }
3689  }
3690}
3691
3692// Verify GC barriers consistency
3693// Currently supported:
3694// - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3695void Compile::verify_barriers() {
3696  if (UseG1GC) {
3697    // Verify G1 pre-barriers
3698    const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3699
3700    ResourceArea *area = Thread::current()->resource_area();
3701    Unique_Node_List visited(area);
3702    Node_List worklist(area);
3703    // We're going to walk control flow backwards starting from the Root
3704    worklist.push(_root);
3705    while (worklist.size() > 0) {
3706      Node* x = worklist.pop();
3707      if (x == NULL || x == top()) continue;
3708      if (visited.member(x)) {
3709        continue;
3710      } else {
3711        visited.push(x);
3712      }
3713
3714      if (x->is_Region()) {
3715        for (uint i = 1; i < x->req(); i++) {
3716          worklist.push(x->in(i));
3717        }
3718      } else {
3719        worklist.push(x->in(0));
3720        // We are looking for the pattern:
3721        //                            /->ThreadLocal
3722        // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3723        //              \->ConI(0)
3724        // We want to verify that the If and the LoadB have the same control
3725        // See GraphKit::g1_write_barrier_pre()
3726        if (x->is_If()) {
3727          IfNode *iff = x->as_If();
3728          if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3729            CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3730            if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3731                && cmp->in(1)->is_Load()) {
3732              LoadNode* load = cmp->in(1)->as_Load();
3733              if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3734                  && load->in(2)->in(3)->is_Con()
3735                  && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3736
3737                Node* if_ctrl = iff->in(0);
3738                Node* load_ctrl = load->in(0);
3739
3740                if (if_ctrl != load_ctrl) {
3741                  // Skip possible CProj->NeverBranch in infinite loops
3742                  if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3743                      && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3744                    if_ctrl = if_ctrl->in(0)->in(0);
3745                  }
3746                }
3747                assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3748              }
3749            }
3750          }
3751        }
3752      }
3753    }
3754  }
3755}
3756
3757#endif
3758
3759// The Compile object keeps track of failure reasons separately from the ciEnv.
3760// This is required because there is not quite a 1-1 relation between the
3761// ciEnv and its compilation task and the Compile object.  Note that one
3762// ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3763// to backtrack and retry without subsuming loads.  Other than this backtracking
3764// behavior, the Compile's failure reason is quietly copied up to the ciEnv
3765// by the logic in C2Compiler.
3766void Compile::record_failure(const char* reason) {
3767  if (log() != NULL) {
3768    log()->elem("failure reason='%s' phase='compile'", reason);
3769  }
3770  if (_failure_reason == NULL) {
3771    // Record the first failure reason.
3772    _failure_reason = reason;
3773  }
3774
3775  if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3776    C->print_method(PHASE_FAILURE);
3777  }
3778  _root = NULL;  // flush the graph, too
3779}
3780
3781Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3782  : TraceTime(name, accumulator, CITime, CITimeVerbose),
3783    _phase_name(name), _dolog(CITimeVerbose)
3784{
3785  if (_dolog) {
3786    C = Compile::current();
3787    _log = C->log();
3788  } else {
3789    C = NULL;
3790    _log = NULL;
3791  }
3792  if (_log != NULL) {
3793    _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3794    _log->stamp();
3795    _log->end_head();
3796  }
3797}
3798
3799Compile::TracePhase::~TracePhase() {
3800
3801  C = Compile::current();
3802  if (_dolog) {
3803    _log = C->log();
3804  } else {
3805    _log = NULL;
3806  }
3807
3808#ifdef ASSERT
3809  if (PrintIdealNodeCount) {
3810    tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3811                  _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3812  }
3813
3814  if (VerifyIdealNodeCount) {
3815    Compile::current()->print_missing_nodes();
3816  }
3817#endif
3818
3819  if (_log != NULL) {
3820    _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3821  }
3822}
3823
3824//=============================================================================
3825// Two Constant's are equal when the type and the value are equal.
3826bool Compile::Constant::operator==(const Constant& other) {
3827  if (type()          != other.type()         )  return false;
3828  if (can_be_reused() != other.can_be_reused())  return false;
3829  // For floating point values we compare the bit pattern.
3830  switch (type()) {
3831  case T_INT:
3832  case T_FLOAT:   return (_v._value.i == other._v._value.i);
3833  case T_LONG:
3834  case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3835  case T_OBJECT:
3836  case T_ADDRESS: return (_v._value.l == other._v._value.l);
3837  case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3838  case T_METADATA: return (_v._metadata == other._v._metadata);
3839  default: ShouldNotReachHere();
3840  }
3841  return false;
3842}
3843
3844static int type_to_size_in_bytes(BasicType t) {
3845  switch (t) {
3846  case T_INT:     return sizeof(jint   );
3847  case T_LONG:    return sizeof(jlong  );
3848  case T_FLOAT:   return sizeof(jfloat );
3849  case T_DOUBLE:  return sizeof(jdouble);
3850  case T_METADATA: return sizeof(Metadata*);
3851    // We use T_VOID as marker for jump-table entries (labels) which
3852    // need an internal word relocation.
3853  case T_VOID:
3854  case T_ADDRESS:
3855  case T_OBJECT:  return sizeof(jobject);
3856  }
3857
3858  ShouldNotReachHere();
3859  return -1;
3860}
3861
3862int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3863  // sort descending
3864  if (a->freq() > b->freq())  return -1;
3865  if (a->freq() < b->freq())  return  1;
3866  return 0;
3867}
3868
3869void Compile::ConstantTable::calculate_offsets_and_size() {
3870  // First, sort the array by frequencies.
3871  _constants.sort(qsort_comparator);
3872
3873#ifdef ASSERT
3874  // Make sure all jump-table entries were sorted to the end of the
3875  // array (they have a negative frequency).
3876  bool found_void = false;
3877  for (int i = 0; i < _constants.length(); i++) {
3878    Constant con = _constants.at(i);
3879    if (con.type() == T_VOID)
3880      found_void = true;  // jump-tables
3881    else
3882      assert(!found_void, "wrong sorting");
3883  }
3884#endif
3885
3886  int offset = 0;
3887  for (int i = 0; i < _constants.length(); i++) {
3888    Constant* con = _constants.adr_at(i);
3889
3890    // Align offset for type.
3891    int typesize = type_to_size_in_bytes(con->type());
3892    offset = align_size_up(offset, typesize);
3893    con->set_offset(offset);   // set constant's offset
3894
3895    if (con->type() == T_VOID) {
3896      MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3897      offset = offset + typesize * n->outcnt();  // expand jump-table
3898    } else {
3899      offset = offset + typesize;
3900    }
3901  }
3902
3903  // Align size up to the next section start (which is insts; see
3904  // CodeBuffer::align_at_start).
3905  assert(_size == -1, "already set?");
3906  _size = align_size_up(offset, CodeEntryAlignment);
3907}
3908
3909void Compile::ConstantTable::emit(CodeBuffer& cb) {
3910  MacroAssembler _masm(&cb);
3911  for (int i = 0; i < _constants.length(); i++) {
3912    Constant con = _constants.at(i);
3913    address constant_addr = NULL;
3914    switch (con.type()) {
3915    case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
3916    case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3917    case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3918    case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3919    case T_OBJECT: {
3920      jobject obj = con.get_jobject();
3921      int oop_index = _masm.oop_recorder()->find_index(obj);
3922      constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3923      break;
3924    }
3925    case T_ADDRESS: {
3926      address addr = (address) con.get_jobject();
3927      constant_addr = _masm.address_constant(addr);
3928      break;
3929    }
3930    // We use T_VOID as marker for jump-table entries (labels) which
3931    // need an internal word relocation.
3932    case T_VOID: {
3933      MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3934      // Fill the jump-table with a dummy word.  The real value is
3935      // filled in later in fill_jump_table.
3936      address dummy = (address) n;
3937      constant_addr = _masm.address_constant(dummy);
3938      // Expand jump-table
3939      for (uint i = 1; i < n->outcnt(); i++) {
3940        address temp_addr = _masm.address_constant(dummy + i);
3941        assert(temp_addr, "consts section too small");
3942      }
3943      break;
3944    }
3945    case T_METADATA: {
3946      Metadata* obj = con.get_metadata();
3947      int metadata_index = _masm.oop_recorder()->find_index(obj);
3948      constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3949      break;
3950    }
3951    default: ShouldNotReachHere();
3952    }
3953    assert(constant_addr, "consts section too small");
3954    assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3955            "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3956  }
3957}
3958
3959int Compile::ConstantTable::find_offset(Constant& con) const {
3960  int idx = _constants.find(con);
3961  assert(idx != -1, "constant must be in constant table");
3962  int offset = _constants.at(idx).offset();
3963  assert(offset != -1, "constant table not emitted yet?");
3964  return offset;
3965}
3966
3967void Compile::ConstantTable::add(Constant& con) {
3968  if (con.can_be_reused()) {
3969    int idx = _constants.find(con);
3970    if (idx != -1 && _constants.at(idx).can_be_reused()) {
3971      _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3972      return;
3973    }
3974  }
3975  (void) _constants.append(con);
3976}
3977
3978Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3979  Block* b = Compile::current()->cfg()->get_block_for_node(n);
3980  Constant con(type, value, b->_freq);
3981  add(con);
3982  return con;
3983}
3984
3985Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3986  Constant con(metadata);
3987  add(con);
3988  return con;
3989}
3990
3991Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3992  jvalue value;
3993  BasicType type = oper->type()->basic_type();
3994  switch (type) {
3995  case T_LONG:    value.j = oper->constantL(); break;
3996  case T_FLOAT:   value.f = oper->constantF(); break;
3997  case T_DOUBLE:  value.d = oper->constantD(); break;
3998  case T_OBJECT:
3999  case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4000  case T_METADATA: return add((Metadata*)oper->constant()); break;
4001  default: guarantee(false, "unhandled type: %s", type2name(type));
4002  }
4003  return add(n, type, value);
4004}
4005
4006Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4007  jvalue value;
4008  // We can use the node pointer here to identify the right jump-table
4009  // as this method is called from Compile::Fill_buffer right before
4010  // the MachNodes are emitted and the jump-table is filled (means the
4011  // MachNode pointers do not change anymore).
4012  value.l = (jobject) n;
4013  Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4014  add(con);
4015  return con;
4016}
4017
4018void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4019  // If called from Compile::scratch_emit_size do nothing.
4020  if (Compile::current()->in_scratch_emit_size())  return;
4021
4022  assert(labels.is_nonempty(), "must be");
4023  assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4024
4025  // Since MachConstantNode::constant_offset() also contains
4026  // table_base_offset() we need to subtract the table_base_offset()
4027  // to get the plain offset into the constant table.
4028  int offset = n->constant_offset() - table_base_offset();
4029
4030  MacroAssembler _masm(&cb);
4031  address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4032
4033  for (uint i = 0; i < n->outcnt(); i++) {
4034    address* constant_addr = &jump_table_base[i];
4035    assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4036    *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4037    cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4038  }
4039}
4040
4041//----------------------------static_subtype_check-----------------------------
4042// Shortcut important common cases when superklass is exact:
4043// (0) superklass is java.lang.Object (can occur in reflective code)
4044// (1) subklass is already limited to a subtype of superklass => always ok
4045// (2) subklass does not overlap with superklass => always fail
4046// (3) superklass has NO subtypes and we can check with a simple compare.
4047int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4048  if (StressReflectiveCode) {
4049    return SSC_full_test;       // Let caller generate the general case.
4050  }
4051
4052  if (superk == env()->Object_klass()) {
4053    return SSC_always_true;     // (0) this test cannot fail
4054  }
4055
4056  ciType* superelem = superk;
4057  if (superelem->is_array_klass())
4058    superelem = superelem->as_array_klass()->base_element_type();
4059
4060  if (!subk->is_interface()) {  // cannot trust static interface types yet
4061    if (subk->is_subtype_of(superk)) {
4062      return SSC_always_true;   // (1) false path dead; no dynamic test needed
4063    }
4064    if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4065        !superk->is_subtype_of(subk)) {
4066      return SSC_always_false;
4067    }
4068  }
4069
4070  // If casting to an instance klass, it must have no subtypes
4071  if (superk->is_interface()) {
4072    // Cannot trust interfaces yet.
4073    // %%% S.B. superk->nof_implementors() == 1
4074  } else if (superelem->is_instance_klass()) {
4075    ciInstanceKlass* ik = superelem->as_instance_klass();
4076    if (!ik->has_subklass() && !ik->is_interface()) {
4077      if (!ik->is_final()) {
4078        // Add a dependency if there is a chance of a later subclass.
4079        dependencies()->assert_leaf_type(ik);
4080      }
4081      return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4082    }
4083  } else {
4084    // A primitive array type has no subtypes.
4085    return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4086  }
4087
4088  return SSC_full_test;
4089}
4090
4091Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4092#ifdef _LP64
4093  // The scaled index operand to AddP must be a clean 64-bit value.
4094  // Java allows a 32-bit int to be incremented to a negative
4095  // value, which appears in a 64-bit register as a large
4096  // positive number.  Using that large positive number as an
4097  // operand in pointer arithmetic has bad consequences.
4098  // On the other hand, 32-bit overflow is rare, and the possibility
4099  // can often be excluded, if we annotate the ConvI2L node with
4100  // a type assertion that its value is known to be a small positive
4101  // number.  (The prior range check has ensured this.)
4102  // This assertion is used by ConvI2LNode::Ideal.
4103  int index_max = max_jint - 1;  // array size is max_jint, index is one less
4104  if (sizetype != NULL) index_max = sizetype->_hi - 1;
4105  const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4106  idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4107#endif
4108  return idx;
4109}
4110
4111// Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4112Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4113  if (ctrl != NULL) {
4114    // Express control dependency by a CastII node with a narrow type.
4115    value = new CastIINode(value, itype, false, true /* range check dependency */);
4116    // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4117    // node from floating above the range check during loop optimizations. Otherwise, the
4118    // ConvI2L node may be eliminated independently of the range check, causing the data path
4119    // to become TOP while the control path is still there (although it's unreachable).
4120    value->set_req(0, ctrl);
4121    // Save CastII node to remove it after loop optimizations.
4122    phase->C->add_range_check_cast(value);
4123    value = phase->transform(value);
4124  }
4125  const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4126  return phase->transform(new ConvI2LNode(value, ltype));
4127}
4128
4129// The message about the current inlining is accumulated in
4130// _print_inlining_stream and transfered into the _print_inlining_list
4131// once we know whether inlining succeeds or not. For regular
4132// inlining, messages are appended to the buffer pointed by
4133// _print_inlining_idx in the _print_inlining_list. For late inlining,
4134// a new buffer is added after _print_inlining_idx in the list. This
4135// way we can update the inlining message for late inlining call site
4136// when the inlining is attempted again.
4137void Compile::print_inlining_init() {
4138  if (print_inlining() || print_intrinsics()) {
4139    _print_inlining_stream = new stringStream();
4140    _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4141  }
4142}
4143
4144void Compile::print_inlining_reinit() {
4145  if (print_inlining() || print_intrinsics()) {
4146    // Re allocate buffer when we change ResourceMark
4147    _print_inlining_stream = new stringStream();
4148  }
4149}
4150
4151void Compile::print_inlining_reset() {
4152  _print_inlining_stream->reset();
4153}
4154
4155void Compile::print_inlining_commit() {
4156  assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4157  // Transfer the message from _print_inlining_stream to the current
4158  // _print_inlining_list buffer and clear _print_inlining_stream.
4159  _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4160  print_inlining_reset();
4161}
4162
4163void Compile::print_inlining_push() {
4164  // Add new buffer to the _print_inlining_list at current position
4165  _print_inlining_idx++;
4166  _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4167}
4168
4169Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4170  return _print_inlining_list->at(_print_inlining_idx);
4171}
4172
4173void Compile::print_inlining_update(CallGenerator* cg) {
4174  if (print_inlining() || print_intrinsics()) {
4175    if (!cg->is_late_inline()) {
4176      if (print_inlining_current().cg() != NULL) {
4177        print_inlining_push();
4178      }
4179      print_inlining_commit();
4180    } else {
4181      if (print_inlining_current().cg() != cg &&
4182          (print_inlining_current().cg() != NULL ||
4183           print_inlining_current().ss()->size() != 0)) {
4184        print_inlining_push();
4185      }
4186      print_inlining_commit();
4187      print_inlining_current().set_cg(cg);
4188    }
4189  }
4190}
4191
4192void Compile::print_inlining_move_to(CallGenerator* cg) {
4193  // We resume inlining at a late inlining call site. Locate the
4194  // corresponding inlining buffer so that we can update it.
4195  if (print_inlining()) {
4196    for (int i = 0; i < _print_inlining_list->length(); i++) {
4197      if (_print_inlining_list->adr_at(i)->cg() == cg) {
4198        _print_inlining_idx = i;
4199        return;
4200      }
4201    }
4202    ShouldNotReachHere();
4203  }
4204}
4205
4206void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4207  if (print_inlining()) {
4208    assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4209    assert(print_inlining_current().cg() == cg, "wrong entry");
4210    // replace message with new message
4211    _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4212    print_inlining_commit();
4213    print_inlining_current().set_cg(cg);
4214  }
4215}
4216
4217void Compile::print_inlining_assert_ready() {
4218  assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4219}
4220
4221void Compile::process_print_inlining() {
4222  bool do_print_inlining = print_inlining() || print_intrinsics();
4223  if (do_print_inlining || log() != NULL) {
4224    // Print inlining message for candidates that we couldn't inline
4225    // for lack of space
4226    for (int i = 0; i < _late_inlines.length(); i++) {
4227      CallGenerator* cg = _late_inlines.at(i);
4228      if (!cg->is_mh_late_inline()) {
4229        const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4230        if (do_print_inlining) {
4231          cg->print_inlining_late(msg);
4232        }
4233        log_late_inline_failure(cg, msg);
4234      }
4235    }
4236  }
4237  if (do_print_inlining) {
4238    ResourceMark rm;
4239    stringStream ss;
4240    for (int i = 0; i < _print_inlining_list->length(); i++) {
4241      ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4242    }
4243    size_t end = ss.size();
4244    _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4245    strncpy(_print_inlining_output, ss.base(), end+1);
4246    _print_inlining_output[end] = 0;
4247  }
4248}
4249
4250void Compile::dump_print_inlining() {
4251  if (_print_inlining_output != NULL) {
4252    tty->print_raw(_print_inlining_output);
4253  }
4254}
4255
4256void Compile::log_late_inline(CallGenerator* cg) {
4257  if (log() != NULL) {
4258    log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4259                cg->unique_id());
4260    JVMState* p = cg->call_node()->jvms();
4261    while (p != NULL) {
4262      log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4263      p = p->caller();
4264    }
4265    log()->tail("late_inline");
4266  }
4267}
4268
4269void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4270  log_late_inline(cg);
4271  if (log() != NULL) {
4272    log()->inline_fail(msg);
4273  }
4274}
4275
4276void Compile::log_inline_id(CallGenerator* cg) {
4277  if (log() != NULL) {
4278    // The LogCompilation tool needs a unique way to identify late
4279    // inline call sites. This id must be unique for this call site in
4280    // this compilation. Try to have it unique across compilations as
4281    // well because it can be convenient when grepping through the log
4282    // file.
4283    // Distinguish OSR compilations from others in case CICountOSR is
4284    // on.
4285    jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4286    cg->set_unique_id(id);
4287    log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4288  }
4289}
4290
4291void Compile::log_inline_failure(const char* msg) {
4292  if (C->log() != NULL) {
4293    C->log()->inline_fail(msg);
4294  }
4295}
4296
4297
4298// Dump inlining replay data to the stream.
4299// Don't change thread state and acquire any locks.
4300void Compile::dump_inline_data(outputStream* out) {
4301  InlineTree* inl_tree = ilt();
4302  if (inl_tree != NULL) {
4303    out->print(" inline %d", inl_tree->count());
4304    inl_tree->dump_replay_data(out);
4305  }
4306}
4307
4308int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4309  if (n1->Opcode() < n2->Opcode())      return -1;
4310  else if (n1->Opcode() > n2->Opcode()) return 1;
4311
4312  assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4313  for (uint i = 1; i < n1->req(); i++) {
4314    if (n1->in(i) < n2->in(i))      return -1;
4315    else if (n1->in(i) > n2->in(i)) return 1;
4316  }
4317
4318  return 0;
4319}
4320
4321int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4322  Node* n1 = *n1p;
4323  Node* n2 = *n2p;
4324
4325  return cmp_expensive_nodes(n1, n2);
4326}
4327
4328void Compile::sort_expensive_nodes() {
4329  if (!expensive_nodes_sorted()) {
4330    _expensive_nodes->sort(cmp_expensive_nodes);
4331  }
4332}
4333
4334bool Compile::expensive_nodes_sorted() const {
4335  for (int i = 1; i < _expensive_nodes->length(); i++) {
4336    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4337      return false;
4338    }
4339  }
4340  return true;
4341}
4342
4343bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4344  if (_expensive_nodes->length() == 0) {
4345    return false;
4346  }
4347
4348  assert(OptimizeExpensiveOps, "optimization off?");
4349
4350  // Take this opportunity to remove dead nodes from the list
4351  int j = 0;
4352  for (int i = 0; i < _expensive_nodes->length(); i++) {
4353    Node* n = _expensive_nodes->at(i);
4354    if (!n->is_unreachable(igvn)) {
4355      assert(n->is_expensive(), "should be expensive");
4356      _expensive_nodes->at_put(j, n);
4357      j++;
4358    }
4359  }
4360  _expensive_nodes->trunc_to(j);
4361
4362  // Then sort the list so that similar nodes are next to each other
4363  // and check for at least two nodes of identical kind with same data
4364  // inputs.
4365  sort_expensive_nodes();
4366
4367  for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4368    if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4369      return true;
4370    }
4371  }
4372
4373  return false;
4374}
4375
4376void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4377  if (_expensive_nodes->length() == 0) {
4378    return;
4379  }
4380
4381  assert(OptimizeExpensiveOps, "optimization off?");
4382
4383  // Sort to bring similar nodes next to each other and clear the
4384  // control input of nodes for which there's only a single copy.
4385  sort_expensive_nodes();
4386
4387  int j = 0;
4388  int identical = 0;
4389  int i = 0;
4390  bool modified = false;
4391  for (; i < _expensive_nodes->length()-1; i++) {
4392    assert(j <= i, "can't write beyond current index");
4393    if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4394      identical++;
4395      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4396      continue;
4397    }
4398    if (identical > 0) {
4399      _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4400      identical = 0;
4401    } else {
4402      Node* n = _expensive_nodes->at(i);
4403      igvn.replace_input_of(n, 0, NULL);
4404      igvn.hash_insert(n);
4405      modified = true;
4406    }
4407  }
4408  if (identical > 0) {
4409    _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4410  } else if (_expensive_nodes->length() >= 1) {
4411    Node* n = _expensive_nodes->at(i);
4412    igvn.replace_input_of(n, 0, NULL);
4413    igvn.hash_insert(n);
4414    modified = true;
4415  }
4416  _expensive_nodes->trunc_to(j);
4417  if (modified) {
4418    igvn.optimize();
4419  }
4420}
4421
4422void Compile::add_expensive_node(Node * n) {
4423  assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4424  assert(n->is_expensive(), "expensive nodes with non-null control here only");
4425  assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4426  if (OptimizeExpensiveOps) {
4427    _expensive_nodes->append(n);
4428  } else {
4429    // Clear control input and let IGVN optimize expensive nodes if
4430    // OptimizeExpensiveOps is off.
4431    n->set_req(0, NULL);
4432  }
4433}
4434
4435/**
4436 * Remove the speculative part of types and clean up the graph
4437 */
4438void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4439  if (UseTypeSpeculation) {
4440    Unique_Node_List worklist;
4441    worklist.push(root());
4442    int modified = 0;
4443    // Go over all type nodes that carry a speculative type, drop the
4444    // speculative part of the type and enqueue the node for an igvn
4445    // which may optimize it out.
4446    for (uint next = 0; next < worklist.size(); ++next) {
4447      Node *n  = worklist.at(next);
4448      if (n->is_Type()) {
4449        TypeNode* tn = n->as_Type();
4450        const Type* t = tn->type();
4451        const Type* t_no_spec = t->remove_speculative();
4452        if (t_no_spec != t) {
4453          bool in_hash = igvn.hash_delete(n);
4454          assert(in_hash, "node should be in igvn hash table");
4455          tn->set_type(t_no_spec);
4456          igvn.hash_insert(n);
4457          igvn._worklist.push(n); // give it a chance to go away
4458          modified++;
4459        }
4460      }
4461      uint max = n->len();
4462      for( uint i = 0; i < max; ++i ) {
4463        Node *m = n->in(i);
4464        if (not_a_node(m))  continue;
4465        worklist.push(m);
4466      }
4467    }
4468    // Drop the speculative part of all types in the igvn's type table
4469    igvn.remove_speculative_types();
4470    if (modified > 0) {
4471      igvn.optimize();
4472    }
4473#ifdef ASSERT
4474    // Verify that after the IGVN is over no speculative type has resurfaced
4475    worklist.clear();
4476    worklist.push(root());
4477    for (uint next = 0; next < worklist.size(); ++next) {
4478      Node *n  = worklist.at(next);
4479      const Type* t = igvn.type_or_null(n);
4480      assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4481      if (n->is_Type()) {
4482        t = n->as_Type()->type();
4483        assert(t == t->remove_speculative(), "no more speculative types");
4484      }
4485      uint max = n->len();
4486      for( uint i = 0; i < max; ++i ) {
4487        Node *m = n->in(i);
4488        if (not_a_node(m))  continue;
4489        worklist.push(m);
4490      }
4491    }
4492    igvn.check_no_speculative_types();
4493#endif
4494  }
4495}
4496
4497// Auxiliary method to support randomized stressing/fuzzing.
4498//
4499// This method can be called the arbitrary number of times, with current count
4500// as the argument. The logic allows selecting a single candidate from the
4501// running list of candidates as follows:
4502//    int count = 0;
4503//    Cand* selected = null;
4504//    while(cand = cand->next()) {
4505//      if (randomized_select(++count)) {
4506//        selected = cand;
4507//      }
4508//    }
4509//
4510// Including count equalizes the chances any candidate is "selected".
4511// This is useful when we don't have the complete list of candidates to choose
4512// from uniformly. In this case, we need to adjust the randomicity of the
4513// selection, or else we will end up biasing the selection towards the latter
4514// candidates.
4515//
4516// Quick back-envelope calculation shows that for the list of n candidates
4517// the equal probability for the candidate to persist as "best" can be
4518// achieved by replacing it with "next" k-th candidate with the probability
4519// of 1/k. It can be easily shown that by the end of the run, the
4520// probability for any candidate is converged to 1/n, thus giving the
4521// uniform distribution among all the candidates.
4522//
4523// We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4524#define RANDOMIZED_DOMAIN_POW 29
4525#define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4526#define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4527bool Compile::randomized_select(int count) {
4528  assert(count > 0, "only positive");
4529  return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4530}
4531
4532CloneMap&     Compile::clone_map()                 { return _clone_map; }
4533void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4534
4535void NodeCloneInfo::dump() const {
4536  tty->print(" {%d:%d} ", idx(), gen());
4537}
4538
4539void CloneMap::clone(Node* old, Node* nnn, int gen) {
4540  uint64_t val = value(old->_idx);
4541  NodeCloneInfo cio(val);
4542  assert(val != 0, "old node should be in the map");
4543  NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4544  insert(nnn->_idx, cin.get());
4545#ifndef PRODUCT
4546  if (is_debug()) {
4547    tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4548  }
4549#endif
4550}
4551
4552void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4553  NodeCloneInfo cio(value(old->_idx));
4554  if (cio.get() == 0) {
4555    cio.set(old->_idx, 0);
4556    insert(old->_idx, cio.get());
4557#ifndef PRODUCT
4558    if (is_debug()) {
4559      tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4560    }
4561#endif
4562  }
4563  clone(old, nnn, gen);
4564}
4565
4566int CloneMap::max_gen() const {
4567  int g = 0;
4568  DictI di(_dict);
4569  for(; di.test(); ++di) {
4570    int t = gen(di._key);
4571    if (g < t) {
4572      g = t;
4573#ifndef PRODUCT
4574      if (is_debug()) {
4575        tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4576      }
4577#endif
4578    }
4579  }
4580  return g;
4581}
4582
4583void CloneMap::dump(node_idx_t key) const {
4584  uint64_t val = value(key);
4585  if (val != 0) {
4586    NodeCloneInfo ni(val);
4587    ni.dump();
4588  }
4589}
4590