1/*
2 * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "compiler/compileLog.hpp"
27#include "compiler/oopMap.hpp"
28#include "memory/allocation.inline.hpp"
29#include "memory/resourceArea.hpp"
30#include "opto/addnode.hpp"
31#include "opto/block.hpp"
32#include "opto/callnode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/chaitin.hpp"
35#include "opto/coalesce.hpp"
36#include "opto/connode.hpp"
37#include "opto/idealGraphPrinter.hpp"
38#include "opto/indexSet.hpp"
39#include "opto/machnode.hpp"
40#include "opto/memnode.hpp"
41#include "opto/movenode.hpp"
42#include "opto/opcodes.hpp"
43#include "opto/rootnode.hpp"
44
45#ifndef PRODUCT
46void LRG::dump() const {
47  ttyLocker ttyl;
48  tty->print("%d ",num_regs());
49  _mask.dump();
50  if( _msize_valid ) {
51    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
52    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
53  } else {
54    tty->print(", #?(%d) ",_mask.Size());
55  }
56
57  tty->print("EffDeg: ");
58  if( _degree_valid ) tty->print( "%d ", _eff_degree );
59  else tty->print("? ");
60
61  if( is_multidef() ) {
62    tty->print("MultiDef ");
63    if (_defs != NULL) {
64      tty->print("(");
65      for (int i = 0; i < _defs->length(); i++) {
66        tty->print("N%d ", _defs->at(i)->_idx);
67      }
68      tty->print(") ");
69    }
70  }
71  else if( _def == 0 ) tty->print("Dead ");
72  else tty->print("Def: N%d ",_def->_idx);
73
74  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
75  // Flags
76  if( _is_oop ) tty->print("Oop ");
77  if( _is_float ) tty->print("Float ");
78  if( _is_vector ) tty->print("Vector ");
79  if( _was_spilled1 ) tty->print("Spilled ");
80  if( _was_spilled2 ) tty->print("Spilled2 ");
81  if( _direct_conflict ) tty->print("Direct_conflict ");
82  if( _fat_proj ) tty->print("Fat ");
83  if( _was_lo ) tty->print("Lo ");
84  if( _has_copy ) tty->print("Copy ");
85  if( _at_risk ) tty->print("Risk ");
86
87  if( _must_spill ) tty->print("Must_spill ");
88  if( _is_bound ) tty->print("Bound ");
89  if( _msize_valid ) {
90    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
91  }
92
93  tty->cr();
94}
95#endif
96
97// Compute score from cost and area.  Low score is best to spill.
98static double raw_score( double cost, double area ) {
99  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
100}
101
102double LRG::score() const {
103  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
104  // Bigger area lowers score, encourages spilling this live range.
105  // Bigger cost raise score, prevents spilling this live range.
106  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
107  // to turn a divide by a constant into a multiply by the reciprical).
108  double score = raw_score( _cost, _area);
109
110  // Account for area.  Basically, LRGs covering large areas are better
111  // to spill because more other LRGs get freed up.
112  if( _area == 0.0 )            // No area?  Then no progress to spill
113    return 1e35;
114
115  if( _was_spilled2 )           // If spilled once before, we are unlikely
116    return score + 1e30;        // to make progress again.
117
118  if( _cost >= _area*3.0 )      // Tiny area relative to cost
119    return score + 1e17;        // Probably no progress to spill
120
121  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
122    return score + 1e10;        // Likely no progress to spill
123
124  return score;
125}
126
127#define NUMBUCKS 3
128
129// Straight out of Tarjan's union-find algorithm
130uint LiveRangeMap::find_compress(uint lrg) {
131  uint cur = lrg;
132  uint next = _uf_map.at(cur);
133  while (next != cur) { // Scan chain of equivalences
134    assert( next < cur, "always union smaller");
135    cur = next; // until find a fixed-point
136    next = _uf_map.at(cur);
137  }
138
139  // Core of union-find algorithm: update chain of
140  // equivalences to be equal to the root.
141  while (lrg != next) {
142    uint tmp = _uf_map.at(lrg);
143    _uf_map.at_put(lrg, next);
144    lrg = tmp;
145  }
146  return lrg;
147}
148
149// Reset the Union-Find map to identity
150void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
151  _max_lrg_id= max_lrg_id;
152  // Force the Union-Find mapping to be at least this large
153  _uf_map.at_put_grow(_max_lrg_id, 0);
154  // Initialize it to be the ID mapping.
155  for (uint i = 0; i < _max_lrg_id; ++i) {
156    _uf_map.at_put(i, i);
157  }
158}
159
160// Make all Nodes map directly to their final live range; no need for
161// the Union-Find mapping after this call.
162void LiveRangeMap::compress_uf_map_for_nodes() {
163  // For all Nodes, compress mapping
164  uint unique = _names.length();
165  for (uint i = 0; i < unique; ++i) {
166    uint lrg = _names.at(i);
167    uint compressed_lrg = find(lrg);
168    if (lrg != compressed_lrg) {
169      _names.at_put(i, compressed_lrg);
170    }
171  }
172}
173
174// Like Find above, but no path compress, so bad asymptotic behavior
175uint LiveRangeMap::find_const(uint lrg) const {
176  if (!lrg) {
177    return lrg; // Ignore the zero LRG
178  }
179
180  // Off the end?  This happens during debugging dumps when you got
181  // brand new live ranges but have not told the allocator yet.
182  if (lrg >= _max_lrg_id) {
183    return lrg;
184  }
185
186  uint next = _uf_map.at(lrg);
187  while (next != lrg) { // Scan chain of equivalences
188    assert(next < lrg, "always union smaller");
189    lrg = next; // until find a fixed-point
190    next = _uf_map.at(lrg);
191  }
192  return next;
193}
194
195PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
196  : PhaseRegAlloc(unique, cfg, matcher,
197#ifndef PRODUCT
198       print_chaitin_statistics
199#else
200       NULL
201#endif
202       )
203  , _lrg_map(Thread::current()->resource_area(), unique)
204  , _live(0)
205  , _spilled_once(Thread::current()->resource_area())
206  , _spilled_twice(Thread::current()->resource_area())
207  , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
208  , _oldphi(unique)
209  , _scheduling_info_generated(scheduling_info_generated)
210  , _sched_int_pressure(0, INTPRESSURE)
211  , _sched_float_pressure(0, FLOATPRESSURE)
212  , _scratch_int_pressure(0, INTPRESSURE)
213  , _scratch_float_pressure(0, FLOATPRESSURE)
214#ifndef PRODUCT
215  , _trace_spilling(C->directive()->TraceSpillingOption)
216#endif
217{
218  Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]);
219
220  _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
221
222  // Build a list of basic blocks, sorted by frequency
223  _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
224  // Experiment with sorting strategies to speed compilation
225  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
226  Block **buckets[NUMBUCKS];             // Array of buckets
227  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
228  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
229  for (uint i = 0; i < NUMBUCKS; i++) {
230    buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
231    buckcnt[i] = 0;
232    // Bump by three orders of magnitude each time
233    cutoff *= 0.001;
234    buckval[i] = cutoff;
235    for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
236      buckets[i][j] = NULL;
237    }
238  }
239  // Sort blocks into buckets
240  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
241    for (uint j = 0; j < NUMBUCKS; j++) {
242      if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
243        // Assign block to end of list for appropriate bucket
244        buckets[j][buckcnt[j]++] = _cfg.get_block(i);
245        break; // kick out of inner loop
246      }
247    }
248  }
249  // Dump buckets into final block array
250  uint blkcnt = 0;
251  for (uint i = 0; i < NUMBUCKS; i++) {
252    for (uint j = 0; j < buckcnt[i]; j++) {
253      _blks[blkcnt++] = buckets[i][j];
254    }
255  }
256
257  assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
258}
259
260// union 2 sets together.
261void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
262  uint src = _lrg_map.find(src_n);
263  uint dst = _lrg_map.find(dst_n);
264  assert(src, "");
265  assert(dst, "");
266  assert(src < _lrg_map.max_lrg_id(), "oob");
267  assert(dst < _lrg_map.max_lrg_id(), "oob");
268  assert(src < dst, "always union smaller");
269  _lrg_map.uf_map(dst, src);
270}
271
272void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
273  // Make the Node->LRG mapping
274  _lrg_map.extend(x->_idx,lrg);
275  // Make the Union-Find mapping an identity function
276  _lrg_map.uf_extend(lrg, lrg);
277}
278
279
280int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
281  assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
282  DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
283  int found_projs = 0;
284  uint cnt = orig->outcnt();
285  for (uint i = 0; i < cnt; i++) {
286    Node* proj = orig->raw_out(i);
287    if (proj->is_MachProj()) {
288      assert(proj->outcnt() == 0, "only kill projections are expected here");
289      assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
290      found_projs++;
291      // Copy kill projections after the cloned node
292      Node* kills = proj->clone();
293      kills->set_req(0, copy);
294      b->insert_node(kills, idx++);
295      _cfg.map_node_to_block(kills, b);
296      new_lrg(kills, max_lrg_id++);
297    }
298  }
299  return found_projs;
300}
301
302// Renumber the live ranges to compact them.  Makes the IFG smaller.
303void PhaseChaitin::compact() {
304  Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]);
305
306  // Current the _uf_map contains a series of short chains which are headed
307  // by a self-cycle.  All the chains run from big numbers to little numbers.
308  // The Find() call chases the chains & shortens them for the next Find call.
309  // We are going to change this structure slightly.  Numbers above a moving
310  // wave 'i' are unchanged.  Numbers below 'j' point directly to their
311  // compacted live range with no further chaining.  There are no chains or
312  // cycles below 'i', so the Find call no longer works.
313  uint j=1;
314  uint i;
315  for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
316    uint lr = _lrg_map.uf_live_range_id(i);
317    // Ignore unallocated live ranges
318    if (!lr) {
319      continue;
320    }
321    assert(lr <= i, "");
322    _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
323  }
324  // Now change the Node->LR mapping to reflect the compacted names
325  uint unique = _lrg_map.size();
326  for (i = 0; i < unique; i++) {
327    uint lrg_id = _lrg_map.live_range_id(i);
328    _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
329  }
330
331  // Reset the Union-Find mapping
332  _lrg_map.reset_uf_map(j);
333}
334
335void PhaseChaitin::Register_Allocate() {
336
337  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
338  // slots in this area are called "arg_slots".  Above the NEW FP (and in
339  // registers) is the outgoing argument area; above that is the spill/temp
340  // area.  These are all "frame_slots".  Arg_slots start at the zero
341  // stack_slots and count up to the known arg_size.  Frame_slots start at
342  // the stack_slot #arg_size and go up.  After allocation I map stack
343  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
344  // by the frame_size; stack-slots in the frame_slot area are biased by 0.
345
346  _trip_cnt = 0;
347  _alternate = 0;
348  _matcher._allocation_started = true;
349
350  ResourceArea split_arena;     // Arena for Split local resources
351  ResourceArea live_arena;      // Arena for liveness & IFG info
352  ResourceMark rm(&live_arena);
353
354  // Need live-ness for the IFG; need the IFG for coalescing.  If the
355  // liveness is JUST for coalescing, then I can get some mileage by renaming
356  // all copy-related live ranges low and then using the max copy-related
357  // live range as a cut-off for LIVE and the IFG.  In other words, I can
358  // build a subset of LIVE and IFG just for copies.
359  PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
360
361  // Need IFG for coalescing and coloring
362  PhaseIFG ifg(&live_arena);
363  _ifg = &ifg;
364
365  // Come out of SSA world to the Named world.  Assign (virtual) registers to
366  // Nodes.  Use the same register for all inputs and the output of PhiNodes
367  // - effectively ending SSA form.  This requires either coalescing live
368  // ranges or inserting copies.  For the moment, we insert "virtual copies"
369  // - we pretend there is a copy prior to each Phi in predecessor blocks.
370  // We will attempt to coalesce such "virtual copies" before we manifest
371  // them for real.
372  de_ssa();
373
374#ifdef ASSERT
375  // Veify the graph before RA.
376  verify(&live_arena);
377#endif
378
379  {
380    Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
381    _live = NULL;                 // Mark live as being not available
382    rm.reset_to_mark();           // Reclaim working storage
383    IndexSet::reset_memory(C, &live_arena);
384    ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
385    gather_lrg_masks( false );    // Collect LRG masks
386    live.compute(_lrg_map.max_lrg_id()); // Compute liveness
387    _live = &live;                // Mark LIVE as being available
388  }
389
390  // Base pointers are currently "used" by instructions which define new
391  // derived pointers.  This makes base pointers live up to the where the
392  // derived pointer is made, but not beyond.  Really, they need to be live
393  // across any GC point where the derived value is live.  So this code looks
394  // at all the GC points, and "stretches" the live range of any base pointer
395  // to the GC point.
396  if (stretch_base_pointer_live_ranges(&live_arena)) {
397    Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]);
398    // Since some live range stretched, I need to recompute live
399    _live = NULL;
400    rm.reset_to_mark();         // Reclaim working storage
401    IndexSet::reset_memory(C, &live_arena);
402    ifg.init(_lrg_map.max_lrg_id());
403    gather_lrg_masks(false);
404    live.compute(_lrg_map.max_lrg_id());
405    _live = &live;
406  }
407  // Create the interference graph using virtual copies
408  build_ifg_virtual();  // Include stack slots this time
409
410  // The IFG is/was triangular.  I am 'squaring it up' so Union can run
411  // faster.  Union requires a 'for all' operation which is slow on the
412  // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
413  // meaning I can visit all the Nodes neighbors less than a Node in time
414  // O(# of neighbors), but I have to visit all the Nodes greater than a
415  // given Node and search them for an instance, i.e., time O(#MaxLRG)).
416  _ifg->SquareUp();
417
418  // Aggressive (but pessimistic) copy coalescing.
419  // This pass works on virtual copies.  Any virtual copies which are not
420  // coalesced get manifested as actual copies
421  {
422    Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]);
423
424    PhaseAggressiveCoalesce coalesce(*this);
425    coalesce.coalesce_driver();
426    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
427    // not match the Phi itself, insert a copy.
428    coalesce.insert_copies(_matcher);
429    if (C->failing()) {
430      return;
431    }
432  }
433
434  // After aggressive coalesce, attempt a first cut at coloring.
435  // To color, we need the IFG and for that we need LIVE.
436  {
437    Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
438    _live = NULL;
439    rm.reset_to_mark();           // Reclaim working storage
440    IndexSet::reset_memory(C, &live_arena);
441    ifg.init(_lrg_map.max_lrg_id());
442    gather_lrg_masks( true );
443    live.compute(_lrg_map.max_lrg_id());
444    _live = &live;
445  }
446
447  // Build physical interference graph
448  uint must_spill = 0;
449  must_spill = build_ifg_physical(&live_arena);
450  // If we have a guaranteed spill, might as well spill now
451  if (must_spill) {
452    if(!_lrg_map.max_lrg_id()) {
453      return;
454    }
455    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
456    C->check_node_count(10*must_spill, "out of nodes before split");
457    if (C->failing()) {
458      return;
459    }
460
461    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
462    _lrg_map.set_max_lrg_id(new_max_lrg_id);
463    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
464    // or we failed to split
465    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
466    if (C->failing()) {
467      return;
468    }
469
470    NOT_PRODUCT(C->verify_graph_edges();)
471
472    compact();                  // Compact LRGs; return new lower max lrg
473
474    {
475      Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
476      _live = NULL;
477      rm.reset_to_mark();         // Reclaim working storage
478      IndexSet::reset_memory(C, &live_arena);
479      ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
480      gather_lrg_masks( true );   // Collect intersect mask
481      live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
482      _live = &live;
483    }
484    build_ifg_physical(&live_arena);
485    _ifg->SquareUp();
486    _ifg->Compute_Effective_Degree();
487    // Only do conservative coalescing if requested
488    if (OptoCoalesce) {
489      Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]);
490      // Conservative (and pessimistic) copy coalescing of those spills
491      PhaseConservativeCoalesce coalesce(*this);
492      // If max live ranges greater than cutoff, don't color the stack.
493      // This cutoff can be larger than below since it is only done once.
494      coalesce.coalesce_driver();
495    }
496    _lrg_map.compress_uf_map_for_nodes();
497
498#ifdef ASSERT
499    verify(&live_arena, true);
500#endif
501  } else {
502    ifg.SquareUp();
503    ifg.Compute_Effective_Degree();
504#ifdef ASSERT
505    set_was_low();
506#endif
507  }
508
509  // Prepare for Simplify & Select
510  cache_lrg_info();           // Count degree of LRGs
511
512  // Simplify the InterFerence Graph by removing LRGs of low degree.
513  // LRGs of low degree are trivially colorable.
514  Simplify();
515
516  // Select colors by re-inserting LRGs back into the IFG in reverse order.
517  // Return whether or not something spills.
518  uint spills = Select( );
519
520  // If we spill, split and recycle the entire thing
521  while( spills ) {
522    if( _trip_cnt++ > 24 ) {
523      DEBUG_ONLY( dump_for_spill_split_recycle(); )
524      if( _trip_cnt > 27 ) {
525        C->record_method_not_compilable("failed spill-split-recycle sanity check");
526        return;
527      }
528    }
529
530    if (!_lrg_map.max_lrg_id()) {
531      return;
532    }
533    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
534    _lrg_map.set_max_lrg_id(new_max_lrg_id);
535    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
536    C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
537    if (C->failing()) {
538      return;
539    }
540
541    compact(); // Compact LRGs; return new lower max lrg
542
543    // Nuke the live-ness and interference graph and LiveRanGe info
544    {
545      Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
546      _live = NULL;
547      rm.reset_to_mark();         // Reclaim working storage
548      IndexSet::reset_memory(C, &live_arena);
549      ifg.init(_lrg_map.max_lrg_id());
550
551      // Create LiveRanGe array.
552      // Intersect register masks for all USEs and DEFs
553      gather_lrg_masks(true);
554      live.compute(_lrg_map.max_lrg_id());
555      _live = &live;
556    }
557    must_spill = build_ifg_physical(&live_arena);
558    _ifg->SquareUp();
559    _ifg->Compute_Effective_Degree();
560
561    // Only do conservative coalescing if requested
562    if (OptoCoalesce) {
563      Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]);
564      // Conservative (and pessimistic) copy coalescing
565      PhaseConservativeCoalesce coalesce(*this);
566      // Check for few live ranges determines how aggressive coalesce is.
567      coalesce.coalesce_driver();
568    }
569    _lrg_map.compress_uf_map_for_nodes();
570#ifdef ASSERT
571    verify(&live_arena, true);
572#endif
573    cache_lrg_info();           // Count degree of LRGs
574
575    // Simplify the InterFerence Graph by removing LRGs of low degree.
576    // LRGs of low degree are trivially colorable.
577    Simplify();
578
579    // Select colors by re-inserting LRGs back into the IFG in reverse order.
580    // Return whether or not something spills.
581    spills = Select();
582  }
583
584  // Count number of Simplify-Select trips per coloring success.
585  _allocator_attempts += _trip_cnt + 1;
586  _allocator_successes += 1;
587
588  // Peephole remove copies
589  post_allocate_copy_removal();
590
591  // Merge multidefs if multiple defs representing the same value are used in a single block.
592  merge_multidefs();
593
594#ifdef ASSERT
595  // Veify the graph after RA.
596  verify(&live_arena);
597#endif
598
599  // max_reg is past the largest *register* used.
600  // Convert that to a frame_slot number.
601  if (_max_reg <= _matcher._new_SP) {
602    _framesize = C->out_preserve_stack_slots();
603  }
604  else {
605    _framesize = _max_reg -_matcher._new_SP;
606  }
607  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
608
609  // This frame must preserve the required fp alignment
610  _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
611  assert(_framesize <= 1000000, "sanity check");
612#ifndef PRODUCT
613  _total_framesize += _framesize;
614  if ((int)_framesize > _max_framesize) {
615    _max_framesize = _framesize;
616  }
617#endif
618
619  // Convert CISC spills
620  fixup_spills();
621
622  // Log regalloc results
623  CompileLog* log = Compile::current()->log();
624  if (log != NULL) {
625    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
626  }
627
628  if (C->failing()) {
629    return;
630  }
631
632  NOT_PRODUCT(C->verify_graph_edges();)
633
634  // Move important info out of the live_arena to longer lasting storage.
635  alloc_node_regs(_lrg_map.size());
636  for (uint i=0; i < _lrg_map.size(); i++) {
637    if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
638      LRG &lrg = lrgs(_lrg_map.live_range_id(i));
639      if (!lrg.alive()) {
640        set_bad(i);
641      } else if (lrg.num_regs() == 1) {
642        set1(i, lrg.reg());
643      } else {                  // Must be a register-set
644        if (!lrg._fat_proj) {   // Must be aligned adjacent register set
645          // Live ranges record the highest register in their mask.
646          // We want the low register for the AD file writer's convenience.
647          OptoReg::Name hi = lrg.reg(); // Get hi register
648          OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
649          // We have to use pair [lo,lo+1] even for wide vectors because
650          // the rest of code generation works only with pairs. It is safe
651          // since for registers encoding only 'lo' is used.
652          // Second reg from pair is used in ScheduleAndBundle on SPARC where
653          // vector max size is 8 which corresponds to registers pair.
654          // It is also used in BuildOopMaps but oop operations are not
655          // vectorized.
656          set2(i, lo);
657        } else {                // Misaligned; extract 2 bits
658          OptoReg::Name hi = lrg.reg(); // Get hi register
659          lrg.Remove(hi);       // Yank from mask
660          int lo = lrg.mask().find_first_elem(); // Find lo
661          set_pair(i, hi, lo);
662        }
663      }
664      if( lrg._is_oop ) _node_oops.set(i);
665    } else {
666      set_bad(i);
667    }
668  }
669
670  // Done!
671  _live = NULL;
672  _ifg = NULL;
673  C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
674}
675
676void PhaseChaitin::de_ssa() {
677  // Set initial Names for all Nodes.  Most Nodes get the virtual register
678  // number.  A few get the ZERO live range number.  These do not
679  // get allocated, but instead rely on correct scheduling to ensure that
680  // only one instance is simultaneously live at a time.
681  uint lr_counter = 1;
682  for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
683    Block* block = _cfg.get_block(i);
684    uint cnt = block->number_of_nodes();
685
686    // Handle all the normal Nodes in the block
687    for( uint j = 0; j < cnt; j++ ) {
688      Node *n = block->get_node(j);
689      // Pre-color to the zero live range, or pick virtual register
690      const RegMask &rm = n->out_RegMask();
691      _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
692    }
693  }
694
695  // Reset the Union-Find mapping to be identity
696  _lrg_map.reset_uf_map(lr_counter);
697}
698
699void PhaseChaitin::mark_ssa() {
700  // Use ssa names to populate the live range maps or if no mask
701  // is available, use the 0 entry.
702  uint max_idx = 0;
703  for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
704    Block* block = _cfg.get_block(i);
705    uint cnt = block->number_of_nodes();
706
707    // Handle all the normal Nodes in the block
708    for ( uint j = 0; j < cnt; j++ ) {
709      Node *n = block->get_node(j);
710      // Pre-color to the zero live range, or pick virtual register
711      const RegMask &rm = n->out_RegMask();
712      _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
713      max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
714    }
715  }
716  _lrg_map.set_max_lrg_id(max_idx+1);
717
718  // Reset the Union-Find mapping to be identity
719  _lrg_map.reset_uf_map(max_idx+1);
720}
721
722
723// Gather LiveRanGe information, including register masks.  Modification of
724// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
725void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
726
727  // Nail down the frame pointer live range
728  uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
729  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
730
731  // For all blocks
732  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
733    Block* block = _cfg.get_block(i);
734
735    // For all instructions
736    for (uint j = 1; j < block->number_of_nodes(); j++) {
737      Node* n = block->get_node(j);
738      uint input_edge_start =1; // Skip control most nodes
739      bool is_machine_node = false;
740      if (n->is_Mach()) {
741        is_machine_node = true;
742        input_edge_start = n->as_Mach()->oper_input_base();
743      }
744      uint idx = n->is_Copy();
745
746      // Get virtual register number, same as LiveRanGe index
747      uint vreg = _lrg_map.live_range_id(n);
748      LRG& lrg = lrgs(vreg);
749      if (vreg) {              // No vreg means un-allocable (e.g. memory)
750
751        // Collect has-copy bit
752        if (idx) {
753          lrg._has_copy = 1;
754          uint clidx = _lrg_map.live_range_id(n->in(idx));
755          LRG& copy_src = lrgs(clidx);
756          copy_src._has_copy = 1;
757        }
758
759        // Check for float-vs-int live range (used in register-pressure
760        // calculations)
761        const Type *n_type = n->bottom_type();
762        if (n_type->is_floatingpoint()) {
763          lrg._is_float = 1;
764        }
765
766        // Check for twice prior spilling.  Once prior spilling might have
767        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
768        // further spilling is unlikely to make progress.
769        if (_spilled_once.test(n->_idx)) {
770          lrg._was_spilled1 = 1;
771          if (_spilled_twice.test(n->_idx)) {
772            lrg._was_spilled2 = 1;
773          }
774        }
775
776#ifndef PRODUCT
777        if (trace_spilling() && lrg._def != NULL) {
778          // collect defs for MultiDef printing
779          if (lrg._defs == NULL) {
780            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
781            lrg._defs->append(lrg._def);
782          }
783          lrg._defs->append(n);
784        }
785#endif
786
787        // Check for a single def LRG; these can spill nicely
788        // via rematerialization.  Flag as NULL for no def found
789        // yet, or 'n' for single def or -1 for many defs.
790        lrg._def = lrg._def ? NodeSentinel : n;
791
792        // Limit result register mask to acceptable registers
793        const RegMask &rm = n->out_RegMask();
794        lrg.AND( rm );
795
796        int ireg = n->ideal_reg();
797        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
798                "oops must be in Op_RegP's" );
799
800        // Check for vector live range (only if vector register is used).
801        // On SPARC vector uses RegD which could be misaligned so it is not
802        // processes as vector in RA.
803        if (RegMask::is_vector(ireg))
804          lrg._is_vector = 1;
805        assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL,
806               "vector must be in vector registers");
807
808        // Check for bound register masks
809        const RegMask &lrgmask = lrg.mask();
810        if (lrgmask.is_bound(ireg)) {
811          lrg._is_bound = 1;
812        }
813
814        // Check for maximum frequency value
815        if (lrg._maxfreq < block->_freq) {
816          lrg._maxfreq = block->_freq;
817        }
818
819        // Check for oop-iness, or long/double
820        // Check for multi-kill projection
821        switch (ireg) {
822        case MachProjNode::fat_proj:
823          // Fat projections have size equal to number of registers killed
824          lrg.set_num_regs(rm.Size());
825          lrg.set_reg_pressure(lrg.num_regs());
826          lrg._fat_proj = 1;
827          lrg._is_bound = 1;
828          break;
829        case Op_RegP:
830#ifdef _LP64
831          lrg.set_num_regs(2);  // Size is 2 stack words
832#else
833          lrg.set_num_regs(1);  // Size is 1 stack word
834#endif
835          // Register pressure is tracked relative to the maximum values
836          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
837          // and relative to other types which compete for the same regs.
838          //
839          // The following table contains suggested values based on the
840          // architectures as defined in each .ad file.
841          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
842          // compile-speed or performance.
843          // Note1:
844          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
845          // since .ad registers are defined as high and low halves.
846          // These reg_pressure values remain compatible with the code
847          // in is_high_pressure() which relates get_invalid_mask_size(),
848          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
849          // Note2:
850          // SPARC -d32 has 24 registers available for integral values,
851          // but only 10 of these are safe for 64-bit longs.
852          // Using set_reg_pressure(2) for both int and long means
853          // the allocator will believe it can fit 26 longs into
854          // registers.  Using 2 for longs and 1 for ints means the
855          // allocator will attempt to put 52 integers into registers.
856          // The settings below limit this problem to methods with
857          // many long values which are being run on 32-bit SPARC.
858          //
859          // ------------------- reg_pressure --------------------
860          // Each entry is reg_pressure_per_value,number_of_regs
861          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
862          // IA32     2     1     1          1    1          6           6
863          // IA64     1     1     1          1    1         50          41
864          // SPARC    2     2     2          2    2         48 (24)     52 (26)
865          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
866          // AMD64    1     1     1          1    1         14          15
867          // -----------------------------------------------------
868#if defined(SPARC)
869          lrg.set_reg_pressure(2);  // use for v9 as well
870#else
871          lrg.set_reg_pressure(1);  // normally one value per register
872#endif
873          if( n_type->isa_oop_ptr() ) {
874            lrg._is_oop = 1;
875          }
876          break;
877        case Op_RegL:           // Check for long or double
878        case Op_RegD:
879          lrg.set_num_regs(2);
880          // Define platform specific register pressure
881#if defined(SPARC) || defined(ARM32)
882          lrg.set_reg_pressure(2);
883#elif defined(IA32)
884          if( ireg == Op_RegL ) {
885            lrg.set_reg_pressure(2);
886          } else {
887            lrg.set_reg_pressure(1);
888          }
889#else
890          lrg.set_reg_pressure(1);  // normally one value per register
891#endif
892          // If this def of a double forces a mis-aligned double,
893          // flag as '_fat_proj' - really flag as allowing misalignment
894          // AND changes how we count interferences.  A mis-aligned
895          // double can interfere with TWO aligned pairs, or effectively
896          // FOUR registers!
897          if (rm.is_misaligned_pair()) {
898            lrg._fat_proj = 1;
899            lrg._is_bound = 1;
900          }
901          break;
902        case Op_RegF:
903        case Op_RegI:
904        case Op_RegN:
905        case Op_RegFlags:
906        case 0:                 // not an ideal register
907          lrg.set_num_regs(1);
908#ifdef SPARC
909          lrg.set_reg_pressure(2);
910#else
911          lrg.set_reg_pressure(1);
912#endif
913          break;
914        case Op_VecS:
915          assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
916          assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
917          lrg.set_num_regs(RegMask::SlotsPerVecS);
918          lrg.set_reg_pressure(1);
919          break;
920        case Op_VecD:
921          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
922          assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
923          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
924          lrg.set_num_regs(RegMask::SlotsPerVecD);
925          lrg.set_reg_pressure(1);
926          break;
927        case Op_VecX:
928          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
929          assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
930          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
931          lrg.set_num_regs(RegMask::SlotsPerVecX);
932          lrg.set_reg_pressure(1);
933          break;
934        case Op_VecY:
935          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
936          assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
937          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
938          lrg.set_num_regs(RegMask::SlotsPerVecY);
939          lrg.set_reg_pressure(1);
940          break;
941        case Op_VecZ:
942          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
943          assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
944          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
945          lrg.set_num_regs(RegMask::SlotsPerVecZ);
946          lrg.set_reg_pressure(1);
947          break;
948        default:
949          ShouldNotReachHere();
950        }
951      }
952
953      // Now do the same for inputs
954      uint cnt = n->req();
955      // Setup for CISC SPILLING
956      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
957      if( UseCISCSpill && after_aggressive ) {
958        inp = n->cisc_operand();
959        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
960          // Convert operand number to edge index number
961          inp = n->as_Mach()->operand_index(inp);
962      }
963
964      // Prepare register mask for each input
965      for( uint k = input_edge_start; k < cnt; k++ ) {
966        uint vreg = _lrg_map.live_range_id(n->in(k));
967        if (!vreg) {
968          continue;
969        }
970
971        // If this instruction is CISC Spillable, add the flags
972        // bit to its appropriate input
973        if( UseCISCSpill && after_aggressive && inp == k ) {
974#ifndef PRODUCT
975          if( TraceCISCSpill ) {
976            tty->print("  use_cisc_RegMask: ");
977            n->dump();
978          }
979#endif
980          n->as_Mach()->use_cisc_RegMask();
981        }
982
983        if (is_machine_node && _scheduling_info_generated) {
984          MachNode* cur_node = n->as_Mach();
985          // this is cleaned up by register allocation
986          if (k >= cur_node->num_opnds()) continue;
987        }
988
989        LRG &lrg = lrgs(vreg);
990        // // Testing for floating point code shape
991        // Node *test = n->in(k);
992        // if( test->is_Mach() ) {
993        //   MachNode *m = test->as_Mach();
994        //   int  op = m->ideal_Opcode();
995        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
996        //     int zzz = 1;
997        //   }
998        // }
999
1000        // Limit result register mask to acceptable registers.
1001        // Do not limit registers from uncommon uses before
1002        // AggressiveCoalesce.  This effectively pre-virtual-splits
1003        // around uncommon uses of common defs.
1004        const RegMask &rm = n->in_RegMask(k);
1005        if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1006          // Since we are BEFORE aggressive coalesce, leave the register
1007          // mask untrimmed by the call.  This encourages more coalescing.
1008          // Later, AFTER aggressive, this live range will have to spill
1009          // but the spiller handles slow-path calls very nicely.
1010        } else {
1011          lrg.AND( rm );
1012        }
1013
1014        // Check for bound register masks
1015        const RegMask &lrgmask = lrg.mask();
1016        int kreg = n->in(k)->ideal_reg();
1017        bool is_vect = RegMask::is_vector(kreg);
1018        assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
1019               is_vect || kreg == Op_RegD || kreg == Op_RegL,
1020               "vector must be in vector registers");
1021        if (lrgmask.is_bound(kreg))
1022          lrg._is_bound = 1;
1023
1024        // If this use of a double forces a mis-aligned double,
1025        // flag as '_fat_proj' - really flag as allowing misalignment
1026        // AND changes how we count interferences.  A mis-aligned
1027        // double can interfere with TWO aligned pairs, or effectively
1028        // FOUR registers!
1029#ifdef ASSERT
1030        if (is_vect && !_scheduling_info_generated) {
1031          if (lrg.num_regs() != 0) {
1032            assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
1033            assert(!lrg._fat_proj, "sanity");
1034            assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
1035          } else {
1036            assert(n->is_Phi(), "not all inputs processed only if Phi");
1037          }
1038        }
1039#endif
1040        if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1041          lrg._fat_proj = 1;
1042          lrg._is_bound = 1;
1043        }
1044        // if the LRG is an unaligned pair, we will have to spill
1045        // so clear the LRG's register mask if it is not already spilled
1046        if (!is_vect && !n->is_SpillCopy() &&
1047            (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1048            lrgmask.is_misaligned_pair()) {
1049          lrg.Clear();
1050        }
1051
1052        // Check for maximum frequency value
1053        if (lrg._maxfreq < block->_freq) {
1054          lrg._maxfreq = block->_freq;
1055        }
1056
1057      } // End for all allocated inputs
1058    } // end for all instructions
1059  } // end for all blocks
1060
1061  // Final per-liverange setup
1062  for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1063    LRG &lrg = lrgs(i2);
1064    assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1065    if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1066      lrg.clear_to_sets();
1067    }
1068    lrg.compute_set_mask_size();
1069    if (lrg.not_free()) {      // Handle case where we lose from the start
1070      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1071      lrg._direct_conflict = 1;
1072    }
1073    lrg.set_degree(0);          // no neighbors in IFG yet
1074  }
1075}
1076
1077// Set the was-lo-degree bit.  Conservative coalescing should not change the
1078// colorability of the graph.  If any live range was of low-degree before
1079// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
1080// The bit is checked in Simplify.
1081void PhaseChaitin::set_was_low() {
1082#ifdef ASSERT
1083  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1084    int size = lrgs(i).num_regs();
1085    uint old_was_lo = lrgs(i)._was_lo;
1086    lrgs(i)._was_lo = 0;
1087    if( lrgs(i).lo_degree() ) {
1088      lrgs(i)._was_lo = 1;      // Trivially of low degree
1089    } else {                    // Else check the Brigg's assertion
1090      // Brigg's observation is that the lo-degree neighbors of a
1091      // hi-degree live range will not interfere with the color choices
1092      // of said hi-degree live range.  The Simplify reverse-stack-coloring
1093      // order takes care of the details.  Hence you do not have to count
1094      // low-degree neighbors when determining if this guy colors.
1095      int briggs_degree = 0;
1096      IndexSet *s = _ifg->neighbors(i);
1097      IndexSetIterator elements(s);
1098      uint lidx;
1099      while((lidx = elements.next()) != 0) {
1100        if( !lrgs(lidx).lo_degree() )
1101          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1102      }
1103      if( briggs_degree < lrgs(i).degrees_of_freedom() )
1104        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
1105    }
1106    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1107  }
1108#endif
1109}
1110
1111#define REGISTER_CONSTRAINED 16
1112
1113// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
1114void PhaseChaitin::cache_lrg_info( ) {
1115  Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]);
1116
1117  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1118    LRG &lrg = lrgs(i);
1119
1120    // Check for being of low degree: means we can be trivially colored.
1121    // Low degree, dead or must-spill guys just get to simplify right away
1122    if( lrg.lo_degree() ||
1123       !lrg.alive() ||
1124        lrg._must_spill ) {
1125      // Split low degree list into those guys that must get a
1126      // register and those that can go to register or stack.
1127      // The idea is LRGs that can go register or stack color first when
1128      // they have a good chance of getting a register.  The register-only
1129      // lo-degree live ranges always get a register.
1130      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1131      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1132        lrg._next = _lo_stk_degree;
1133        _lo_stk_degree = i;
1134      } else {
1135        lrg._next = _lo_degree;
1136        _lo_degree = i;
1137      }
1138    } else {                    // Else high degree
1139      lrgs(_hi_degree)._prev = i;
1140      lrg._next = _hi_degree;
1141      lrg._prev = 0;
1142      _hi_degree = i;
1143    }
1144  }
1145}
1146
1147// Simplify the IFG by removing LRGs of low degree that have NO copies
1148void PhaseChaitin::Pre_Simplify( ) {
1149
1150  // Warm up the lo-degree no-copy list
1151  int lo_no_copy = 0;
1152  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1153    if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
1154        !lrgs(i).alive() ||
1155        lrgs(i)._must_spill) {
1156      lrgs(i)._next = lo_no_copy;
1157      lo_no_copy = i;
1158    }
1159  }
1160
1161  while( lo_no_copy ) {
1162    uint lo = lo_no_copy;
1163    lo_no_copy = lrgs(lo)._next;
1164    int size = lrgs(lo).num_regs();
1165
1166    // Put the simplified guy on the simplified list.
1167    lrgs(lo)._next = _simplified;
1168    _simplified = lo;
1169
1170    // Yank this guy from the IFG.
1171    IndexSet *adj = _ifg->remove_node( lo );
1172
1173    // If any neighbors' degrees fall below their number of
1174    // allowed registers, then put that neighbor on the low degree
1175    // list.  Note that 'degree' can only fall and 'numregs' is
1176    // unchanged by this action.  Thus the two are equal at most once,
1177    // so LRGs hit the lo-degree worklists at most once.
1178    IndexSetIterator elements(adj);
1179    uint neighbor;
1180    while ((neighbor = elements.next()) != 0) {
1181      LRG *n = &lrgs(neighbor);
1182      assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1183
1184      // Check for just becoming of-low-degree
1185      if( n->just_lo_degree() && !n->_has_copy ) {
1186        assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1187        // Put on lo-degree list
1188        n->_next = lo_no_copy;
1189        lo_no_copy = neighbor;
1190      }
1191    }
1192  } // End of while lo-degree no_copy worklist not empty
1193
1194  // No more lo-degree no-copy live ranges to simplify
1195}
1196
1197// Simplify the IFG by removing LRGs of low degree.
1198void PhaseChaitin::Simplify( ) {
1199  Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]);
1200
1201  while( 1 ) {                  // Repeat till simplified it all
1202    // May want to explore simplifying lo_degree before _lo_stk_degree.
1203    // This might result in more spills coloring into registers during
1204    // Select().
1205    while( _lo_degree || _lo_stk_degree ) {
1206      // If possible, pull from lo_stk first
1207      uint lo;
1208      if( _lo_degree ) {
1209        lo = _lo_degree;
1210        _lo_degree = lrgs(lo)._next;
1211      } else {
1212        lo = _lo_stk_degree;
1213        _lo_stk_degree = lrgs(lo)._next;
1214      }
1215
1216      // Put the simplified guy on the simplified list.
1217      lrgs(lo)._next = _simplified;
1218      _simplified = lo;
1219      // If this guy is "at risk" then mark his current neighbors
1220      if( lrgs(lo)._at_risk ) {
1221        IndexSetIterator elements(_ifg->neighbors(lo));
1222        uint datum;
1223        while ((datum = elements.next()) != 0) {
1224          lrgs(datum)._risk_bias = lo;
1225        }
1226      }
1227
1228      // Yank this guy from the IFG.
1229      IndexSet *adj = _ifg->remove_node( lo );
1230
1231      // If any neighbors' degrees fall below their number of
1232      // allowed registers, then put that neighbor on the low degree
1233      // list.  Note that 'degree' can only fall and 'numregs' is
1234      // unchanged by this action.  Thus the two are equal at most once,
1235      // so LRGs hit the lo-degree worklist at most once.
1236      IndexSetIterator elements(adj);
1237      uint neighbor;
1238      while ((neighbor = elements.next()) != 0) {
1239        LRG *n = &lrgs(neighbor);
1240#ifdef ASSERT
1241        if( VerifyOpto || VerifyRegisterAllocator ) {
1242          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1243        }
1244#endif
1245
1246        // Check for just becoming of-low-degree just counting registers.
1247        // _must_spill live ranges are already on the low degree list.
1248        if( n->just_lo_degree() && !n->_must_spill ) {
1249          assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
1250          // Pull from hi-degree list
1251          uint prev = n->_prev;
1252          uint next = n->_next;
1253          if( prev ) lrgs(prev)._next = next;
1254          else _hi_degree = next;
1255          lrgs(next)._prev = prev;
1256          n->_next = _lo_degree;
1257          _lo_degree = neighbor;
1258        }
1259      }
1260    } // End of while lo-degree/lo_stk_degree worklist not empty
1261
1262    // Check for got everything: is hi-degree list empty?
1263    if( !_hi_degree ) break;
1264
1265    // Time to pick a potential spill guy
1266    uint lo_score = _hi_degree;
1267    double score = lrgs(lo_score).score();
1268    double area = lrgs(lo_score)._area;
1269    double cost = lrgs(lo_score)._cost;
1270    bool bound = lrgs(lo_score)._is_bound;
1271
1272    // Find cheapest guy
1273    debug_only( int lo_no_simplify=0; );
1274    for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
1275      assert( !(*_ifg->_yanked)[i], "" );
1276      // It's just vaguely possible to move hi-degree to lo-degree without
1277      // going through a just-lo-degree stage: If you remove a double from
1278      // a float live range it's degree will drop by 2 and you can skip the
1279      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1280      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1281      if( lrgs(i).lo_degree() ) {
1282        lo_score = i;
1283        break;
1284      }
1285      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1286      double iscore = lrgs(i).score();
1287      double iarea = lrgs(i)._area;
1288      double icost = lrgs(i)._cost;
1289      bool ibound = lrgs(i)._is_bound;
1290
1291      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1292      // wins.  Ties happen because all live ranges in question have spilled
1293      // a few times before and the spill-score adds a huge number which
1294      // washes out the low order bits.  We are choosing the lesser of 2
1295      // evils; in this case pick largest area to spill.
1296      // Ties also happen when live ranges are defined and used only inside
1297      // one block. In which case their area is 0 and score set to max.
1298      // In such case choose bound live range over unbound to free registers
1299      // or with smaller cost to spill.
1300      if( iscore < score ||
1301          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1302          (iscore == score && iarea == area &&
1303           ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
1304        lo_score = i;
1305        score = iscore;
1306        area = iarea;
1307        cost = icost;
1308        bound = ibound;
1309      }
1310    }
1311    LRG *lo_lrg = &lrgs(lo_score);
1312    // The live range we choose for spilling is either hi-degree, or very
1313    // rarely it can be low-degree.  If we choose a hi-degree live range
1314    // there better not be any lo-degree choices.
1315    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1316
1317    // Pull from hi-degree list
1318    uint prev = lo_lrg->_prev;
1319    uint next = lo_lrg->_next;
1320    if( prev ) lrgs(prev)._next = next;
1321    else _hi_degree = next;
1322    lrgs(next)._prev = prev;
1323    // Jam him on the lo-degree list, despite his high degree.
1324    // Maybe he'll get a color, and maybe he'll spill.
1325    // Only Select() will know.
1326    lrgs(lo_score)._at_risk = true;
1327    _lo_degree = lo_score;
1328    lo_lrg->_next = 0;
1329
1330  } // End of while not simplified everything
1331
1332}
1333
1334// Is 'reg' register legal for 'lrg'?
1335static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1336  if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1337      lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1338    // RA uses OptoReg which represent the highest element of a registers set.
1339    // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1340    // in which XMMd is used by RA to represent such vectors. A double value
1341    // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1342    // The register mask uses largest bits set of overlapping register sets.
1343    // On x86 with AVX it uses 8 bits for each XMM registers set.
1344    //
1345    // The 'lrg' already has cleared-to-set register mask (done in Select()
1346    // before calling choose_color()). Passing mask.Member(reg) check above
1347    // indicates that the size (num_regs) of 'reg' set is less or equal to
1348    // 'lrg' set size.
1349    // For set size 1 any register which is member of 'lrg' mask is legal.
1350    if (lrg.num_regs()==1)
1351      return true;
1352    // For larger sets only an aligned register with the same set size is legal.
1353    int mask = lrg.num_regs()-1;
1354    if ((reg&mask) == mask)
1355      return true;
1356  }
1357  return false;
1358}
1359
1360// Choose a color using the biasing heuristic
1361OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1362
1363  // Check for "at_risk" LRG's
1364  uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1365  if( risk_lrg != 0 ) {
1366    // Walk the colored neighbors of the "at_risk" candidate
1367    // Choose a color which is both legal and already taken by a neighbor
1368    // of the "at_risk" candidate in order to improve the chances of the
1369    // "at_risk" candidate of coloring
1370    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1371    uint datum;
1372    while ((datum = elements.next()) != 0) {
1373      OptoReg::Name reg = lrgs(datum).reg();
1374      // If this LRG's register is legal for us, choose it
1375      if (is_legal_reg(lrg, reg, chunk))
1376        return reg;
1377    }
1378  }
1379
1380  uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1381  if( copy_lrg != 0 ) {
1382    // If he has a color,
1383    if( !(*(_ifg->_yanked))[copy_lrg] ) {
1384      OptoReg::Name reg = lrgs(copy_lrg).reg();
1385      //  And it is legal for you,
1386      if (is_legal_reg(lrg, reg, chunk))
1387        return reg;
1388    } else if( chunk == 0 ) {
1389      // Choose a color which is legal for him
1390      RegMask tempmask = lrg.mask();
1391      tempmask.AND(lrgs(copy_lrg).mask());
1392      tempmask.clear_to_sets(lrg.num_regs());
1393      OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
1394      if (OptoReg::is_valid(reg))
1395        return reg;
1396    }
1397  }
1398
1399  // If no bias info exists, just go with the register selection ordering
1400  if (lrg._is_vector || lrg.num_regs() == 2) {
1401    // Find an aligned set
1402    return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
1403  }
1404
1405  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1406  // copy removal to remove many more copies, by preventing a just-assigned
1407  // register from being repeatedly assigned.
1408  OptoReg::Name reg = lrg.mask().find_first_elem();
1409  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1410    // This 'Remove; find; Insert' idiom is an expensive way to find the
1411    // SECOND element in the mask.
1412    lrg.Remove(reg);
1413    OptoReg::Name reg2 = lrg.mask().find_first_elem();
1414    lrg.Insert(reg);
1415    if( OptoReg::is_reg(reg2))
1416      reg = reg2;
1417  }
1418  return OptoReg::add( reg, chunk );
1419}
1420
1421// Choose a color in the current chunk
1422OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1423  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1424  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1425
1426  if( lrg.num_regs() == 1 ||    // Common Case
1427      !lrg._fat_proj )          // Aligned+adjacent pairs ok
1428    // Use a heuristic to "bias" the color choice
1429    return bias_color(lrg, chunk);
1430
1431  assert(!lrg._is_vector, "should be not vector here" );
1432  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1433
1434  // Fat-proj case or misaligned double argument.
1435  assert(lrg.compute_mask_size() == lrg.num_regs() ||
1436         lrg.num_regs() == 2,"fat projs exactly color" );
1437  assert( !chunk, "always color in 1st chunk" );
1438  // Return the highest element in the set.
1439  return lrg.mask().find_last_elem();
1440}
1441
1442// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1443// in reverse order of removal.  As long as nothing of hi-degree was yanked,
1444// everything going back is guaranteed a color.  Select that color.  If some
1445// hi-degree LRG cannot get a color then we record that we must spill.
1446uint PhaseChaitin::Select( ) {
1447  Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]);
1448
1449  uint spill_reg = LRG::SPILL_REG;
1450  _max_reg = OptoReg::Name(0);  // Past max register used
1451  while( _simplified ) {
1452    // Pull next LRG from the simplified list - in reverse order of removal
1453    uint lidx = _simplified;
1454    LRG *lrg = &lrgs(lidx);
1455    _simplified = lrg->_next;
1456
1457
1458#ifndef PRODUCT
1459    if (trace_spilling()) {
1460      ttyLocker ttyl;
1461      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1462                    lrg->degrees_of_freedom());
1463      lrg->dump();
1464    }
1465#endif
1466
1467    // Re-insert into the IFG
1468    _ifg->re_insert(lidx);
1469    if( !lrg->alive() ) continue;
1470    // capture allstackedness flag before mask is hacked
1471    const int is_allstack = lrg->mask().is_AllStack();
1472
1473    // Yeah, yeah, yeah, I know, I know.  I can refactor this
1474    // to avoid the GOTO, although the refactored code will not
1475    // be much clearer.  We arrive here IFF we have a stack-based
1476    // live range that cannot color in the current chunk, and it
1477    // has to move into the next free stack chunk.
1478    int chunk = 0;              // Current chunk is first chunk
1479    retry_next_chunk:
1480
1481    // Remove neighbor colors
1482    IndexSet *s = _ifg->neighbors(lidx);
1483
1484    debug_only(RegMask orig_mask = lrg->mask();)
1485    IndexSetIterator elements(s);
1486    uint neighbor;
1487    while ((neighbor = elements.next()) != 0) {
1488      // Note that neighbor might be a spill_reg.  In this case, exclusion
1489      // of its color will be a no-op, since the spill_reg chunk is in outer
1490      // space.  Also, if neighbor is in a different chunk, this exclusion
1491      // will be a no-op.  (Later on, if lrg runs out of possible colors in
1492      // its chunk, a new chunk of color may be tried, in which case
1493      // examination of neighbors is started again, at retry_next_chunk.)
1494      LRG &nlrg = lrgs(neighbor);
1495      OptoReg::Name nreg = nlrg.reg();
1496      // Only subtract masks in the same chunk
1497      if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1498#ifndef PRODUCT
1499        uint size = lrg->mask().Size();
1500        RegMask rm = lrg->mask();
1501#endif
1502        lrg->SUBTRACT(nlrg.mask());
1503#ifndef PRODUCT
1504        if (trace_spilling() && lrg->mask().Size() != size) {
1505          ttyLocker ttyl;
1506          tty->print("L%d ", lidx);
1507          rm.dump();
1508          tty->print(" intersected L%d ", neighbor);
1509          nlrg.mask().dump();
1510          tty->print(" removed ");
1511          rm.SUBTRACT(lrg->mask());
1512          rm.dump();
1513          tty->print(" leaving ");
1514          lrg->mask().dump();
1515          tty->cr();
1516        }
1517#endif
1518      }
1519    }
1520    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1521    // Aligned pairs need aligned masks
1522    assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1523    if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1524      lrg->clear_to_sets();
1525    }
1526
1527    // Check if a color is available and if so pick the color
1528    OptoReg::Name reg = choose_color( *lrg, chunk );
1529#ifdef SPARC
1530    debug_only(lrg->compute_set_mask_size());
1531    assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1532#endif
1533
1534    //---------------
1535    // If we fail to color and the AllStack flag is set, trigger
1536    // a chunk-rollover event
1537    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1538      // Bump register mask up to next stack chunk
1539      chunk += RegMask::CHUNK_SIZE;
1540      lrg->Set_All();
1541
1542      goto retry_next_chunk;
1543    }
1544
1545    //---------------
1546    // Did we get a color?
1547    else if( OptoReg::is_valid(reg)) {
1548#ifndef PRODUCT
1549      RegMask avail_rm = lrg->mask();
1550#endif
1551
1552      // Record selected register
1553      lrg->set_reg(reg);
1554
1555      if( reg >= _max_reg )     // Compute max register limit
1556        _max_reg = OptoReg::add(reg,1);
1557      // Fold reg back into normal space
1558      reg = OptoReg::add(reg,-chunk);
1559
1560      // If the live range is not bound, then we actually had some choices
1561      // to make.  In this case, the mask has more bits in it than the colors
1562      // chosen.  Restrict the mask to just what was picked.
1563      int n_regs = lrg->num_regs();
1564      assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1565      if (n_regs == 1 || !lrg->_fat_proj) {
1566        assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1567        lrg->Clear();           // Clear the mask
1568        lrg->Insert(reg);       // Set regmask to match selected reg
1569        // For vectors and pairs, also insert the low bit of the pair
1570        for (int i = 1; i < n_regs; i++)
1571          lrg->Insert(OptoReg::add(reg,-i));
1572        lrg->set_mask_size(n_regs);
1573      } else {                  // Else fatproj
1574        // mask must be equal to fatproj bits, by definition
1575      }
1576#ifndef PRODUCT
1577      if (trace_spilling()) {
1578        ttyLocker ttyl;
1579        tty->print("L%d selected ", lidx);
1580        lrg->mask().dump();
1581        tty->print(" from ");
1582        avail_rm.dump();
1583        tty->cr();
1584      }
1585#endif
1586      // Note that reg is the highest-numbered register in the newly-bound mask.
1587    } // end color available case
1588
1589    //---------------
1590    // Live range is live and no colors available
1591    else {
1592      assert( lrg->alive(), "" );
1593      assert( !lrg->_fat_proj || lrg->is_multidef() ||
1594              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1595      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1596
1597      // Assign the special spillreg register
1598      lrg->set_reg(OptoReg::Name(spill_reg++));
1599      // Do not empty the regmask; leave mask_size lying around
1600      // for use during Spilling
1601#ifndef PRODUCT
1602      if( trace_spilling() ) {
1603        ttyLocker ttyl;
1604        tty->print("L%d spilling with neighbors: ", lidx);
1605        s->dump();
1606        debug_only(tty->print(" original mask: "));
1607        debug_only(orig_mask.dump());
1608        dump_lrg(lidx);
1609      }
1610#endif
1611    } // end spill case
1612
1613  }
1614
1615  return spill_reg-LRG::SPILL_REG;      // Return number of spills
1616}
1617
1618// Copy 'was_spilled'-edness from the source Node to the dst Node.
1619void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1620  if( _spilled_once.test(src->_idx) ) {
1621    _spilled_once.set(dst->_idx);
1622    lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
1623    if( _spilled_twice.test(src->_idx) ) {
1624      _spilled_twice.set(dst->_idx);
1625      lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
1626    }
1627  }
1628}
1629
1630// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1631void PhaseChaitin::set_was_spilled( Node *n ) {
1632  if( _spilled_once.test_set(n->_idx) )
1633    _spilled_twice.set(n->_idx);
1634}
1635
1636// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1637// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1638void PhaseChaitin::fixup_spills() {
1639  // This function does only cisc spill work.
1640  if( !UseCISCSpill ) return;
1641
1642  Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]);
1643
1644  // Grab the Frame Pointer
1645  Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1646
1647  // For all blocks
1648  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1649    Block* block = _cfg.get_block(i);
1650
1651    // For all instructions in block
1652    uint last_inst = block->end_idx();
1653    for (uint j = 1; j <= last_inst; j++) {
1654      Node* n = block->get_node(j);
1655
1656      // Dead instruction???
1657      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1658              C->top() == n ||  // Or the random TOP node
1659              n->is_Proj(),     // Or a fat-proj kill node
1660              "No dead instructions after post-alloc" );
1661
1662      int inp = n->cisc_operand();
1663      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1664        // Convert operand number to edge index number
1665        MachNode *mach = n->as_Mach();
1666        inp = mach->operand_index(inp);
1667        Node *src = n->in(inp);   // Value to load or store
1668        LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1669        OptoReg::Name src_reg = lrg_cisc.reg();
1670        // Doubles record the HIGH register of an adjacent pair.
1671        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1672        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1673          // This is a CISC Spill, get stack offset and construct new node
1674#ifndef PRODUCT
1675          if( TraceCISCSpill ) {
1676            tty->print("    reg-instr:  ");
1677            n->dump();
1678          }
1679#endif
1680          int stk_offset = reg2offset(src_reg);
1681          // Bailout if we might exceed node limit when spilling this instruction
1682          C->check_node_count(0, "out of nodes fixing spills");
1683          if (C->failing())  return;
1684          // Transform node
1685          MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1686          cisc->set_req(inp,fp);          // Base register is frame pointer
1687          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1688            assert( cisc->oper_input_base() == 2, "Only adding one edge");
1689            cisc->ins_req(1,src);         // Requires a memory edge
1690          }
1691          block->map_node(cisc, j);          // Insert into basic block
1692          n->subsume_by(cisc, C); // Correct graph
1693          //
1694          ++_used_cisc_instructions;
1695#ifndef PRODUCT
1696          if( TraceCISCSpill ) {
1697            tty->print("    cisc-instr: ");
1698            cisc->dump();
1699          }
1700#endif
1701        } else {
1702#ifndef PRODUCT
1703          if( TraceCISCSpill ) {
1704            tty->print("    using reg-instr: ");
1705            n->dump();
1706          }
1707#endif
1708          ++_unused_cisc_instructions;    // input can be on stack
1709        }
1710      }
1711
1712    } // End of for all instructions
1713
1714  } // End of for all blocks
1715}
1716
1717// Helper to stretch above; recursively discover the base Node for a
1718// given derived Node.  Easy for AddP-related machine nodes, but needs
1719// to be recursive for derived Phis.
1720Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1721  // See if already computed; if so return it
1722  if( derived_base_map[derived->_idx] )
1723    return derived_base_map[derived->_idx];
1724
1725  // See if this happens to be a base.
1726  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1727  // pointers derived from NULL!  These are always along paths that
1728  // can't happen at run-time but the optimizer cannot deduce it so
1729  // we have to handle it gracefully.
1730  assert(!derived->bottom_type()->isa_narrowoop() ||
1731          derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1732  const TypePtr *tj = derived->bottom_type()->isa_ptr();
1733  // If its an OOP with a non-zero offset, then it is derived.
1734  if( tj == NULL || tj->_offset == 0 ) {
1735    derived_base_map[derived->_idx] = derived;
1736    return derived;
1737  }
1738  // Derived is NULL+offset?  Base is NULL!
1739  if( derived->is_Con() ) {
1740    Node *base = _matcher.mach_null();
1741    assert(base != NULL, "sanity");
1742    if (base->in(0) == NULL) {
1743      // Initialize it once and make it shared:
1744      // set control to _root and place it into Start block
1745      // (where top() node is placed).
1746      base->init_req(0, _cfg.get_root_node());
1747      Block *startb = _cfg.get_block_for_node(C->top());
1748      uint node_pos = startb->find_node(C->top());
1749      startb->insert_node(base, node_pos);
1750      _cfg.map_node_to_block(base, startb);
1751      assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1752
1753      // The loadConP0 might have projection nodes depending on architecture
1754      // Add the projection nodes to the CFG
1755      for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1756        Node* use = base->fast_out(i);
1757        if (use->is_MachProj()) {
1758          startb->insert_node(use, ++node_pos);
1759          _cfg.map_node_to_block(use, startb);
1760          new_lrg(use, maxlrg++);
1761        }
1762      }
1763    }
1764    if (_lrg_map.live_range_id(base) == 0) {
1765      new_lrg(base, maxlrg++);
1766    }
1767    assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
1768    derived_base_map[derived->_idx] = base;
1769    return base;
1770  }
1771
1772  // Check for AddP-related opcodes
1773  if (!derived->is_Phi()) {
1774    assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1775    Node *base = derived->in(AddPNode::Base);
1776    derived_base_map[derived->_idx] = base;
1777    return base;
1778  }
1779
1780  // Recursively find bases for Phis.
1781  // First check to see if we can avoid a base Phi here.
1782  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1783  uint i;
1784  for( i = 2; i < derived->req(); i++ )
1785    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1786      break;
1787  // Went to the end without finding any different bases?
1788  if( i == derived->req() ) {   // No need for a base Phi here
1789    derived_base_map[derived->_idx] = base;
1790    return base;
1791  }
1792
1793  // Now we see we need a base-Phi here to merge the bases
1794  const Type *t = base->bottom_type();
1795  base = new PhiNode( derived->in(0), t );
1796  for( i = 1; i < derived->req(); i++ ) {
1797    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1798    t = t->meet(base->in(i)->bottom_type());
1799  }
1800  base->as_Phi()->set_type(t);
1801
1802  // Search the current block for an existing base-Phi
1803  Block *b = _cfg.get_block_for_node(derived);
1804  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1805    Node *phi = b->get_node(i);
1806    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1807      b->insert_node(base,  i); // Must insert created Phi here as base
1808      _cfg.map_node_to_block(base, b);
1809      new_lrg(base,maxlrg++);
1810      break;
1811    }
1812    // See if Phi matches.
1813    uint j;
1814    for( j = 1; j < base->req(); j++ )
1815      if( phi->in(j) != base->in(j) &&
1816          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1817        break;
1818    if( j == base->req() ) {    // All inputs match?
1819      base = phi;               // Then use existing 'phi' and drop 'base'
1820      break;
1821    }
1822  }
1823
1824
1825  // Cache info for later passes
1826  derived_base_map[derived->_idx] = base;
1827  return base;
1828}
1829
1830// At each Safepoint, insert extra debug edges for each pair of derived value/
1831// base pointer that is live across the Safepoint for oopmap building.  The
1832// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1833// required edge set.
1834bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1835  int must_recompute_live = false;
1836  uint maxlrg = _lrg_map.max_lrg_id();
1837  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1838  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1839
1840  // For all blocks in RPO do...
1841  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1842    Block* block = _cfg.get_block(i);
1843    // Note use of deep-copy constructor.  I cannot hammer the original
1844    // liveout bits, because they are needed by the following coalesce pass.
1845    IndexSet liveout(_live->live(block));
1846
1847    for (uint j = block->end_idx() + 1; j > 1; j--) {
1848      Node* n = block->get_node(j - 1);
1849
1850      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1851      // like to see in the same register.  Compare uses the loop-phi and so
1852      // extends its live range BUT cannot be part of the cycle.  If this
1853      // extended live range overlaps with the update of the loop-phi value
1854      // we need both alive at the same time -- which requires at least 1
1855      // copy.  But because Intel has only 2-address registers we end up with
1856      // at least 2 copies, one before the loop-phi update instruction and
1857      // one after.  Instead we split the input to the compare just after the
1858      // phi.
1859      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1860        Node *phi = n->in(1);
1861        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1862          Block *phi_block = _cfg.get_block_for_node(phi);
1863          if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1864            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1865            Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1866            insert_proj( phi_block, 1, spill, maxlrg++ );
1867            n->set_req(1,spill);
1868            must_recompute_live = true;
1869          }
1870        }
1871      }
1872
1873      // Get value being defined
1874      uint lidx = _lrg_map.live_range_id(n);
1875      // Ignore the occasional brand-new live range
1876      if (lidx && lidx < _lrg_map.max_lrg_id()) {
1877        // Remove from live-out set
1878        liveout.remove(lidx);
1879
1880        // Copies do not define a new value and so do not interfere.
1881        // Remove the copies source from the liveout set before interfering.
1882        uint idx = n->is_Copy();
1883        if (idx) {
1884          liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1885        }
1886      }
1887
1888      // Found a safepoint?
1889      JVMState *jvms = n->jvms();
1890      if( jvms ) {
1891        // Now scan for a live derived pointer
1892        IndexSetIterator elements(&liveout);
1893        uint neighbor;
1894        while ((neighbor = elements.next()) != 0) {
1895          // Find reaching DEF for base and derived values
1896          // This works because we are still in SSA during this call.
1897          Node *derived = lrgs(neighbor)._def;
1898          const TypePtr *tj = derived->bottom_type()->isa_ptr();
1899          assert(!derived->bottom_type()->isa_narrowoop() ||
1900                  derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1901          // If its an OOP with a non-zero offset, then it is derived.
1902          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1903            Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1904            assert(base->_idx < _lrg_map.size(), "");
1905            // Add reaching DEFs of derived pointer and base pointer as a
1906            // pair of inputs
1907            n->add_req(derived);
1908            n->add_req(base);
1909
1910            // See if the base pointer is already live to this point.
1911            // Since I'm working on the SSA form, live-ness amounts to
1912            // reaching def's.  So if I find the base's live range then
1913            // I know the base's def reaches here.
1914            if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1915                 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1916                 (_lrg_map.live_range_id(base) > 0) && // not a constant
1917                 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
1918              // Base pointer is not currently live.  Since I stretched
1919              // the base pointer to here and it crosses basic-block
1920              // boundaries, the global live info is now incorrect.
1921              // Recompute live.
1922              must_recompute_live = true;
1923            } // End of if base pointer is not live to debug info
1924          }
1925        } // End of scan all live data for derived ptrs crossing GC point
1926      } // End of if found a GC point
1927
1928      // Make all inputs live
1929      if (!n->is_Phi()) {      // Phi function uses come from prior block
1930        for (uint k = 1; k < n->req(); k++) {
1931          uint lidx = _lrg_map.live_range_id(n->in(k));
1932          if (lidx < _lrg_map.max_lrg_id()) {
1933            liveout.insert(lidx);
1934          }
1935        }
1936      }
1937
1938    } // End of forall instructions in block
1939    liveout.clear();  // Free the memory used by liveout.
1940
1941  } // End of forall blocks
1942  _lrg_map.set_max_lrg_id(maxlrg);
1943
1944  // If I created a new live range I need to recompute live
1945  if (maxlrg != _ifg->_maxlrg) {
1946    must_recompute_live = true;
1947  }
1948
1949  return must_recompute_live != 0;
1950}
1951
1952// Extend the node to LRG mapping
1953
1954void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
1955  _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
1956}
1957
1958#ifndef PRODUCT
1959void PhaseChaitin::dump(const Node *n) const {
1960  uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
1961  tty->print("L%d",r);
1962  if (r && n->Opcode() != Op_Phi) {
1963    if( _node_regs ) {          // Got a post-allocation copy of allocation?
1964      tty->print("[");
1965      OptoReg::Name second = get_reg_second(n);
1966      if( OptoReg::is_valid(second) ) {
1967        if( OptoReg::is_reg(second) )
1968          tty->print("%s:",Matcher::regName[second]);
1969        else
1970          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1971      }
1972      OptoReg::Name first = get_reg_first(n);
1973      if( OptoReg::is_reg(first) )
1974        tty->print("%s]",Matcher::regName[first]);
1975      else
1976         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1977    } else
1978    n->out_RegMask().dump();
1979  }
1980  tty->print("/N%d\t",n->_idx);
1981  tty->print("%s === ", n->Name());
1982  uint k;
1983  for (k = 0; k < n->req(); k++) {
1984    Node *m = n->in(k);
1985    if (!m) {
1986      tty->print("_ ");
1987    }
1988    else {
1989      uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
1990      tty->print("L%d",r);
1991      // Data MultiNode's can have projections with no real registers.
1992      // Don't die while dumping them.
1993      int op = n->Opcode();
1994      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1995        if( _node_regs ) {
1996          tty->print("[");
1997          OptoReg::Name second = get_reg_second(n->in(k));
1998          if( OptoReg::is_valid(second) ) {
1999            if( OptoReg::is_reg(second) )
2000              tty->print("%s:",Matcher::regName[second]);
2001            else
2002              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
2003                         reg2offset_unchecked(second));
2004          }
2005          OptoReg::Name first = get_reg_first(n->in(k));
2006          if( OptoReg::is_reg(first) )
2007            tty->print("%s]",Matcher::regName[first]);
2008          else
2009            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
2010                       reg2offset_unchecked(first));
2011        } else
2012          n->in_RegMask(k).dump();
2013      }
2014      tty->print("/N%d ",m->_idx);
2015    }
2016  }
2017  if( k < n->len() && n->in(k) ) tty->print("| ");
2018  for( ; k < n->len(); k++ ) {
2019    Node *m = n->in(k);
2020    if(!m) {
2021      break;
2022    }
2023    uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2024    tty->print("L%d",r);
2025    tty->print("/N%d ",m->_idx);
2026  }
2027  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
2028  else n->dump_spec(tty);
2029  if( _spilled_once.test(n->_idx ) ) {
2030    tty->print(" Spill_1");
2031    if( _spilled_twice.test(n->_idx ) )
2032      tty->print(" Spill_2");
2033  }
2034  tty->print("\n");
2035}
2036
2037void PhaseChaitin::dump(const Block *b) const {
2038  b->dump_head(&_cfg);
2039
2040  // For all instructions
2041  for( uint j = 0; j < b->number_of_nodes(); j++ )
2042    dump(b->get_node(j));
2043  // Print live-out info at end of block
2044  if( _live ) {
2045    tty->print("Liveout: ");
2046    IndexSet *live = _live->live(b);
2047    IndexSetIterator elements(live);
2048    tty->print("{");
2049    uint i;
2050    while ((i = elements.next()) != 0) {
2051      tty->print("L%d ", _lrg_map.find_const(i));
2052    }
2053    tty->print_cr("}");
2054  }
2055  tty->print("\n");
2056}
2057
2058void PhaseChaitin::dump() const {
2059  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
2060              _matcher._new_SP, _framesize );
2061
2062  // For all blocks
2063  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2064    dump(_cfg.get_block(i));
2065  }
2066  // End of per-block dump
2067  tty->print("\n");
2068
2069  if (!_ifg) {
2070    tty->print("(No IFG.)\n");
2071    return;
2072  }
2073
2074  // Dump LRG array
2075  tty->print("--- Live RanGe Array ---\n");
2076  for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2077    tty->print("L%d: ",i2);
2078    if (i2 < _ifg->_maxlrg) {
2079      lrgs(i2).dump();
2080    }
2081    else {
2082      tty->print_cr("new LRG");
2083    }
2084  }
2085  tty->cr();
2086
2087  // Dump lo-degree list
2088  tty->print("Lo degree: ");
2089  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2090    tty->print("L%d ",i3);
2091  tty->cr();
2092
2093  // Dump lo-stk-degree list
2094  tty->print("Lo stk degree: ");
2095  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2096    tty->print("L%d ",i4);
2097  tty->cr();
2098
2099  // Dump lo-degree list
2100  tty->print("Hi degree: ");
2101  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2102    tty->print("L%d ",i5);
2103  tty->cr();
2104}
2105
2106void PhaseChaitin::dump_degree_lists() const {
2107  // Dump lo-degree list
2108  tty->print("Lo degree: ");
2109  for( uint i = _lo_degree; i; i = lrgs(i)._next )
2110    tty->print("L%d ",i);
2111  tty->cr();
2112
2113  // Dump lo-stk-degree list
2114  tty->print("Lo stk degree: ");
2115  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2116    tty->print("L%d ",i2);
2117  tty->cr();
2118
2119  // Dump lo-degree list
2120  tty->print("Hi degree: ");
2121  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2122    tty->print("L%d ",i3);
2123  tty->cr();
2124}
2125
2126void PhaseChaitin::dump_simplified() const {
2127  tty->print("Simplified: ");
2128  for( uint i = _simplified; i; i = lrgs(i)._next )
2129    tty->print("L%d ",i);
2130  tty->cr();
2131}
2132
2133static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
2134  if ((int)reg < 0)
2135    sprintf(buf, "<OptoReg::%d>", (int)reg);
2136  else if (OptoReg::is_reg(reg))
2137    strcpy(buf, Matcher::regName[reg]);
2138  else
2139    sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2140            pc->reg2offset(reg));
2141  return buf+strlen(buf);
2142}
2143
2144// Dump a register name into a buffer.  Be intelligent if we get called
2145// before allocation is complete.
2146char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
2147  if( this == NULL ) {          // Not got anything?
2148    sprintf(buf,"N%d",n->_idx); // Then use Node index
2149  } else if( _node_regs ) {
2150    // Post allocation, use direct mappings, no LRG info available
2151    print_reg( get_reg_first(n), this, buf );
2152  } else {
2153    uint lidx = _lrg_map.find_const(n); // Grab LRG number
2154    if( !_ifg ) {
2155      sprintf(buf,"L%d",lidx);  // No register binding yet
2156    } else if( !lidx ) {        // Special, not allocated value
2157      strcpy(buf,"Special");
2158    } else {
2159      if (lrgs(lidx)._is_vector) {
2160        if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2161          print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
2162        else
2163          sprintf(buf,"L%d",lidx); // No register binding yet
2164      } else if( (lrgs(lidx).num_regs() == 1)
2165                 ? lrgs(lidx).mask().is_bound1()
2166                 : lrgs(lidx).mask().is_bound_pair() ) {
2167        // Hah!  We have a bound machine register
2168        print_reg( lrgs(lidx).reg(), this, buf );
2169      } else {
2170        sprintf(buf,"L%d",lidx); // No register binding yet
2171      }
2172    }
2173  }
2174  return buf+strlen(buf);
2175}
2176
2177void PhaseChaitin::dump_for_spill_split_recycle() const {
2178  if( WizardMode && (PrintCompilation || PrintOpto) ) {
2179    // Display which live ranges need to be split and the allocator's state
2180    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2181    for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2182      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2183        tty->print("L%d: ", bidx);
2184        lrgs(bidx).dump();
2185      }
2186    }
2187    tty->cr();
2188    dump();
2189  }
2190}
2191
2192void PhaseChaitin::dump_frame() const {
2193  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2194  const TypeTuple *domain = C->tf()->domain();
2195  const int        argcnt = domain->cnt() - TypeFunc::Parms;
2196
2197  // Incoming arguments in registers dump
2198  for( int k = 0; k < argcnt; k++ ) {
2199    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2200    if( OptoReg::is_reg(parmreg))  {
2201      const char *reg_name = OptoReg::regname(parmreg);
2202      tty->print("#r%3.3d %s", parmreg, reg_name);
2203      parmreg = _matcher._parm_regs[k].second();
2204      if( OptoReg::is_reg(parmreg))  {
2205        tty->print(":%s", OptoReg::regname(parmreg));
2206      }
2207      tty->print("   : parm %d: ", k);
2208      domain->field_at(k + TypeFunc::Parms)->dump();
2209      tty->cr();
2210    }
2211  }
2212
2213  // Check for un-owned padding above incoming args
2214  OptoReg::Name reg = _matcher._new_SP;
2215  if( reg > _matcher._in_arg_limit ) {
2216    reg = OptoReg::add(reg, -1);
2217    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2218  }
2219
2220  // Incoming argument area dump
2221  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2222  while( reg > begin_in_arg ) {
2223    reg = OptoReg::add(reg, -1);
2224    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2225    int j;
2226    for( j = 0; j < argcnt; j++) {
2227      if( _matcher._parm_regs[j].first() == reg ||
2228          _matcher._parm_regs[j].second() == reg ) {
2229        tty->print("parm %d: ",j);
2230        domain->field_at(j + TypeFunc::Parms)->dump();
2231        tty->cr();
2232        break;
2233      }
2234    }
2235    if( j >= argcnt )
2236      tty->print_cr("HOLE, owned by SELF");
2237  }
2238
2239  // Old outgoing preserve area
2240  while( reg > _matcher._old_SP ) {
2241    reg = OptoReg::add(reg, -1);
2242    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2243  }
2244
2245  // Old SP
2246  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2247    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2248
2249  // Preserve area dump
2250  int fixed_slots = C->fixed_slots();
2251  OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2252  OptoReg::Name return_addr = _matcher.return_addr();
2253
2254  reg = OptoReg::add(reg, -1);
2255  while (OptoReg::is_stack(reg)) {
2256    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2257    if (return_addr == reg) {
2258      tty->print_cr("return address");
2259    } else if (reg >= begin_in_preserve) {
2260      // Preserved slots are present on x86
2261      if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2262        tty->print_cr("saved fp register");
2263      else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2264               VerifyStackAtCalls)
2265        tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
2266      else
2267        tty->print_cr("in_preserve");
2268    } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2269      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2270    } else {
2271      tty->print_cr("pad2, stack alignment");
2272    }
2273    reg = OptoReg::add(reg, -1);
2274  }
2275
2276  // Spill area dump
2277  reg = OptoReg::add(_matcher._new_SP, _framesize );
2278  while( reg > _matcher._out_arg_limit ) {
2279    reg = OptoReg::add(reg, -1);
2280    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2281  }
2282
2283  // Outgoing argument area dump
2284  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2285    reg = OptoReg::add(reg, -1);
2286    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2287  }
2288
2289  // Outgoing new preserve area
2290  while( reg > _matcher._new_SP ) {
2291    reg = OptoReg::add(reg, -1);
2292    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2293  }
2294  tty->print_cr("#");
2295}
2296
2297void PhaseChaitin::dump_bb( uint pre_order ) const {
2298  tty->print_cr("---dump of B%d---",pre_order);
2299  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2300    Block* block = _cfg.get_block(i);
2301    if (block->_pre_order == pre_order) {
2302      dump(block);
2303    }
2304  }
2305}
2306
2307void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
2308  tty->print_cr("---dump of L%d---",lidx);
2309
2310  if (_ifg) {
2311    if (lidx >= _lrg_map.max_lrg_id()) {
2312      tty->print("Attempt to print live range index beyond max live range.\n");
2313      return;
2314    }
2315    tty->print("L%d: ",lidx);
2316    if (lidx < _ifg->_maxlrg) {
2317      lrgs(lidx).dump();
2318    } else {
2319      tty->print_cr("new LRG");
2320    }
2321  }
2322  if( _ifg && lidx < _ifg->_maxlrg) {
2323    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2324    _ifg->neighbors(lidx)->dump();
2325    tty->cr();
2326  }
2327  // For all blocks
2328  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2329    Block* block = _cfg.get_block(i);
2330    int dump_once = 0;
2331
2332    // For all instructions
2333    for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2334      Node *n = block->get_node(j);
2335      if (_lrg_map.find_const(n) == lidx) {
2336        if (!dump_once++) {
2337          tty->cr();
2338          block->dump_head(&_cfg);
2339        }
2340        dump(n);
2341        continue;
2342      }
2343      if (!defs_only) {
2344        uint cnt = n->req();
2345        for( uint k = 1; k < cnt; k++ ) {
2346          Node *m = n->in(k);
2347          if (!m)  {
2348            continue;  // be robust in the dumper
2349          }
2350          if (_lrg_map.find_const(m) == lidx) {
2351            if (!dump_once++) {
2352              tty->cr();
2353              block->dump_head(&_cfg);
2354            }
2355            dump(n);
2356          }
2357        }
2358      }
2359    }
2360  } // End of per-block dump
2361  tty->cr();
2362}
2363#endif // not PRODUCT
2364
2365int PhaseChaitin::_final_loads  = 0;
2366int PhaseChaitin::_final_stores = 0;
2367int PhaseChaitin::_final_memoves= 0;
2368int PhaseChaitin::_final_copies = 0;
2369double PhaseChaitin::_final_load_cost  = 0;
2370double PhaseChaitin::_final_store_cost = 0;
2371double PhaseChaitin::_final_memove_cost= 0;
2372double PhaseChaitin::_final_copy_cost  = 0;
2373int PhaseChaitin::_conserv_coalesce = 0;
2374int PhaseChaitin::_conserv_coalesce_pair = 0;
2375int PhaseChaitin::_conserv_coalesce_trie = 0;
2376int PhaseChaitin::_conserv_coalesce_quad = 0;
2377int PhaseChaitin::_post_alloc = 0;
2378int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2379int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2380int PhaseChaitin::_used_cisc_instructions   = 0;
2381int PhaseChaitin::_unused_cisc_instructions = 0;
2382int PhaseChaitin::_allocator_attempts       = 0;
2383int PhaseChaitin::_allocator_successes      = 0;
2384
2385#ifndef PRODUCT
2386uint PhaseChaitin::_high_pressure           = 0;
2387uint PhaseChaitin::_low_pressure            = 0;
2388
2389void PhaseChaitin::print_chaitin_statistics() {
2390  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2391  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2392  tty->print_cr("Adjusted spill cost = %7.0f.",
2393                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2394                _final_copy_cost*1.0 + _final_memove_cost*12.0);
2395  tty->print("Conservatively coalesced %d copies, %d pairs",
2396                _conserv_coalesce, _conserv_coalesce_pair);
2397  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2398    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2399  tty->print_cr(", %d post alloc.", _post_alloc);
2400  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2401    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2402                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2403  if( _used_cisc_instructions || _unused_cisc_instructions )
2404    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2405                   _used_cisc_instructions, _unused_cisc_instructions);
2406  if( _allocator_successes != 0 )
2407    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2408  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2409}
2410#endif // not PRODUCT
2411