1/*
2 * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "code/vmreg.inline.hpp"
27#include "compiler/oopMap.hpp"
28#include "memory/resourceArea.hpp"
29#include "opto/addnode.hpp"
30#include "opto/callnode.hpp"
31#include "opto/compile.hpp"
32#include "opto/machnode.hpp"
33#include "opto/matcher.hpp"
34#include "opto/phase.hpp"
35#include "opto/regalloc.hpp"
36#include "opto/rootnode.hpp"
37
38// The functions in this file builds OopMaps after all scheduling is done.
39//
40// OopMaps contain a list of all registers and stack-slots containing oops (so
41// they can be updated by GC).  OopMaps also contain a list of derived-pointer
42// base-pointer pairs.  When the base is moved, the derived pointer moves to
43// follow it.  Finally, any registers holding callee-save values are also
44// recorded.  These might contain oops, but only the caller knows.
45//
46// BuildOopMaps implements a simple forward reaching-defs solution.  At each
47// GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
48// typed as pointers (no offset), then they are oops.  Pointers+offsets are
49// derived pointers, and bases can be found from them.  Finally, we'll also
50// track reaching callee-save values.  Note that a copy of a callee-save value
51// "kills" it's source, so that only 1 copy of a callee-save value is alive at
52// a time.
53//
54// We run a simple bitvector liveness pass to help trim out dead oops.  Due to
55// irreducible loops, we can have a reaching def of an oop that only reaches
56// along one path and no way to know if it's valid or not on the other path.
57// The bitvectors are quite dense and the liveness pass is fast.
58//
59// At GC points, we consult this information to build OopMaps.  All reaching
60// defs typed as oops are added to the OopMap.  Only 1 instance of a
61// callee-save register can be recorded.  For derived pointers, we'll have to
62// find and record the register holding the base.
63//
64// The reaching def's is a simple 1-pass worklist approach.  I tried a clever
65// breadth-first approach but it was worse (showed O(n^2) in the
66// pick-next-block code).
67//
68// The relevant data is kept in a struct of arrays (it could just as well be
69// an array of structs, but the struct-of-arrays is generally a little more
70// efficient).  The arrays are indexed by register number (including
71// stack-slots as registers) and so is bounded by 200 to 300 elements in
72// practice.  One array will map to a reaching def Node (or NULL for
73// conflict/dead).  The other array will map to a callee-saved register or
74// OptoReg::Bad for not-callee-saved.
75
76
77// Structure to pass around
78struct OopFlow : public ResourceObj {
79  short *_callees;              // Array mapping register to callee-saved
80  Node **_defs;                 // array mapping register to reaching def
81                                // or NULL if dead/conflict
82  // OopFlow structs, when not being actively modified, describe the _end_ of
83  // this block.
84  Block *_b;                    // Block for this struct
85  OopFlow *_next;               // Next free OopFlow
86                                // or NULL if dead/conflict
87  Compile* C;
88
89  OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
90    _b(NULL), _next(NULL), C(c) { }
91
92  // Given reaching-defs for this block start, compute it for this block end
93  void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
94
95  // Merge these two OopFlows into the 'this' pointer.
96  void merge( OopFlow *flow, int max_reg );
97
98  // Copy a 'flow' over an existing flow
99  void clone( OopFlow *flow, int max_size);
100
101  // Make a new OopFlow from scratch
102  static OopFlow *make( Arena *A, int max_size, Compile* C );
103
104  // Build an oopmap from the current flow info
105  OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
106};
107
108// Given reaching-defs for this block start, compute it for this block end
109void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
110
111  for( uint i=0; i<_b->number_of_nodes(); i++ ) {
112    Node *n = _b->get_node(i);
113
114    if( n->jvms() ) {           // Build an OopMap here?
115      JVMState *jvms = n->jvms();
116      // no map needed for leaf calls
117      if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
118        int *live = (int*) (*safehash)[n];
119        assert( live, "must find live" );
120        n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
121      }
122    }
123
124    // Assign new reaching def's.
125    // Note that I padded the _defs and _callees arrays so it's legal
126    // to index at _defs[OptoReg::Bad].
127    OptoReg::Name first = regalloc->get_reg_first(n);
128    OptoReg::Name second = regalloc->get_reg_second(n);
129    _defs[first] = n;
130    _defs[second] = n;
131
132    // Pass callee-save info around copies
133    int idx = n->is_Copy();
134    if( idx ) {                 // Copies move callee-save info
135      OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
136      OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
137      int tmp_first = _callees[old_first];
138      int tmp_second = _callees[old_second];
139      _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
140      _callees[old_second] = OptoReg::Bad;
141      _callees[first] = tmp_first;
142      _callees[second] = tmp_second;
143    } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
144      assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
145      assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
146      assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
147      assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
148    } else {
149      _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
150      _callees[second] = OptoReg::Bad;
151
152      // Find base case for callee saves
153      if( n->is_Proj() && n->in(0)->is_Start() ) {
154        if( OptoReg::is_reg(first) &&
155            regalloc->_matcher.is_save_on_entry(first) )
156          _callees[first] = first;
157        if( OptoReg::is_reg(second) &&
158            regalloc->_matcher.is_save_on_entry(second) )
159          _callees[second] = second;
160      }
161    }
162  }
163}
164
165// Merge the given flow into the 'this' flow
166void OopFlow::merge( OopFlow *flow, int max_reg ) {
167  assert( _b == NULL, "merging into a happy flow" );
168  assert( flow->_b, "this flow is still alive" );
169  assert( flow != this, "no self flow" );
170
171  // Do the merge.  If there are any differences, drop to 'bottom' which
172  // is OptoReg::Bad or NULL depending.
173  for( int i=0; i<max_reg; i++ ) {
174    // Merge the callee-save's
175    if( _callees[i] != flow->_callees[i] )
176      _callees[i] = OptoReg::Bad;
177    // Merge the reaching defs
178    if( _defs[i] != flow->_defs[i] )
179      _defs[i] = NULL;
180  }
181
182}
183
184void OopFlow::clone( OopFlow *flow, int max_size ) {
185  _b = flow->_b;
186  memcpy( _callees, flow->_callees, sizeof(short)*max_size);
187  memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
188}
189
190OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
191  short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
192  Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
193  debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
194  OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
195  assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
196  assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
197  return flow;
198}
199
200static int get_live_bit( int *live, int reg ) {
201  return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
202static void set_live_bit( int *live, int reg ) {
203         live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
204static void clr_live_bit( int *live, int reg ) {
205         live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
206
207// Build an oopmap from the current flow info
208OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
209  int framesize = regalloc->_framesize;
210  int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
211  debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
212              memset(dup_check,0,OptoReg::stack0()) );
213
214  OopMap *omap = new OopMap( framesize,  max_inarg_slot );
215  MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
216  JVMState* jvms = n->jvms();
217
218  // For all registers do...
219  for( int reg=0; reg<max_reg; reg++ ) {
220    if( get_live_bit(live,reg) == 0 )
221      continue;                 // Ignore if not live
222
223    // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
224    // register in that case we'll get an non-concrete register for the second
225    // half. We only need to tell the map the register once!
226    //
227    // However for the moment we disable this change and leave things as they
228    // were.
229
230    VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
231
232    if (false && r->is_reg() && !r->is_concrete()) {
233      continue;
234    }
235
236    // See if dead (no reaching def).
237    Node *def = _defs[reg];     // Get reaching def
238    assert( def, "since live better have reaching def" );
239
240    // Classify the reaching def as oop, derived, callee-save, dead, or other
241    const Type *t = def->bottom_type();
242    if( t->isa_oop_ptr() ) {    // Oop or derived?
243      assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
244#ifdef _LP64
245      // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
246      // Make sure both are record from the same reaching def, but do not
247      // put both into the oopmap.
248      if( (reg&1) == 1 ) {      // High half of oop-pair?
249        assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
250        continue;               // Do not record high parts in oopmap
251      }
252#endif
253
254      // Check for a legal reg name in the oopMap and bailout if it is not.
255      if (!omap->legal_vm_reg_name(r)) {
256        regalloc->C->record_method_not_compilable("illegal oopMap register name");
257        continue;
258      }
259      if( t->is_ptr()->_offset == 0 ) { // Not derived?
260        if( mcall ) {
261          // Outgoing argument GC mask responsibility belongs to the callee,
262          // not the caller.  Inspect the inputs to the call, to see if
263          // this live-range is one of them.
264          uint cnt = mcall->tf()->domain()->cnt();
265          uint j;
266          for( j = TypeFunc::Parms; j < cnt; j++)
267            if( mcall->in(j) == def )
268              break;            // reaching def is an argument oop
269          if( j < cnt )         // arg oops dont go in GC map
270            continue;           // Continue on to the next register
271        }
272        omap->set_oop(r);
273      } else {                  // Else it's derived.
274        // Find the base of the derived value.
275        uint i;
276        // Fast, common case, scan
277        for( i = jvms->oopoff(); i < n->req(); i+=2 )
278          if( n->in(i) == def ) break; // Common case
279        if( i == n->req() ) {   // Missed, try a more generous scan
280          // Scan again, but this time peek through copies
281          for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
282            Node *m = n->in(i); // Get initial derived value
283            while( 1 ) {
284              Node *d = def;    // Get initial reaching def
285              while( 1 ) {      // Follow copies of reaching def to end
286                if( m == d ) goto found; // breaks 3 loops
287                int idx = d->is_Copy();
288                if( !idx ) break;
289                d = d->in(idx);     // Link through copy
290              }
291              int idx = m->is_Copy();
292              if( !idx ) break;
293              m = m->in(idx);
294            }
295          }
296          guarantee( 0, "must find derived/base pair" );
297        }
298      found: ;
299        Node *base = n->in(i+1); // Base is other half of pair
300        int breg = regalloc->get_reg_first(base);
301        VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
302
303        // I record liveness at safepoints BEFORE I make the inputs
304        // live.  This is because argument oops are NOT live at a
305        // safepoint (or at least they cannot appear in the oopmap).
306        // Thus bases of base/derived pairs might not be in the
307        // liveness data but they need to appear in the oopmap.
308        if( get_live_bit(live,breg) == 0 ) {// Not live?
309          // Flag it, so next derived pointer won't re-insert into oopmap
310          set_live_bit(live,breg);
311          // Already missed our turn?
312          if( breg < reg ) {
313            if (b->is_stack() || b->is_concrete() || true ) {
314              omap->set_oop( b);
315            }
316          }
317        }
318        if (b->is_stack() || b->is_concrete() || true ) {
319          omap->set_derived_oop( r, b);
320        }
321      }
322
323    } else if( t->isa_narrowoop() ) {
324      assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
325      // Check for a legal reg name in the oopMap and bailout if it is not.
326      if (!omap->legal_vm_reg_name(r)) {
327        regalloc->C->record_method_not_compilable("illegal oopMap register name");
328        continue;
329      }
330      if( mcall ) {
331          // Outgoing argument GC mask responsibility belongs to the callee,
332          // not the caller.  Inspect the inputs to the call, to see if
333          // this live-range is one of them.
334        uint cnt = mcall->tf()->domain()->cnt();
335        uint j;
336        for( j = TypeFunc::Parms; j < cnt; j++)
337          if( mcall->in(j) == def )
338            break;            // reaching def is an argument oop
339        if( j < cnt )         // arg oops dont go in GC map
340          continue;           // Continue on to the next register
341      }
342      omap->set_narrowoop(r);
343    } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
344      // It's a callee-save value
345      assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
346      debug_only( dup_check[_callees[reg]]=1; )
347      VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
348      if ( callee->is_concrete() || true ) {
349        omap->set_callee_saved( r, callee);
350      }
351
352    } else {
353      // Other - some reaching non-oop value
354      omap->set_value( r);
355#ifdef ASSERT
356      if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
357        def->dump();
358        n->dump();
359        assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
360      }
361#endif
362    }
363
364  }
365
366#ifdef ASSERT
367  /* Nice, Intel-only assert
368  int cnt_callee_saves=0;
369  int reg2 = 0;
370  while (OptoReg::is_reg(reg2)) {
371    if( dup_check[reg2] != 0) cnt_callee_saves++;
372    assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
373    reg2++;
374  }
375  */
376#endif
377
378#ifdef ASSERT
379  for( OopMapStream oms1(omap, OopMapValue::derived_oop_value); !oms1.is_done(); oms1.next()) {
380    OopMapValue omv1 = oms1.current();
381    bool found = false;
382    for( OopMapStream oms2(omap,OopMapValue::oop_value); !oms2.is_done(); oms2.next()) {
383      if( omv1.content_reg() == oms2.current().reg() ) {
384        found = true;
385        break;
386      }
387    }
388    assert( found, "derived with no base in oopmap" );
389  }
390#endif
391
392  return omap;
393}
394
395// Compute backwards liveness on registers
396static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
397  int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
398  int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
399  Node* root = cfg->get_root_node();
400  // On CISC platforms, get the node representing the stack pointer  that regalloc
401  // used for spills
402  Node *fp = NodeSentinel;
403  if (UseCISCSpill && root->req() > 1) {
404    fp = root->in(1)->in(TypeFunc::FramePtr);
405  }
406  memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
407  // Push preds onto worklist
408  for (uint i = 1; i < root->req(); i++) {
409    Block* block = cfg->get_block_for_node(root->in(i));
410    worklist->push(block);
411  }
412
413  // ZKM.jar includes tiny infinite loops which are unreached from below.
414  // If we missed any blocks, we'll retry here after pushing all missed
415  // blocks on the worklist.  Normally this outer loop never trips more
416  // than once.
417  while (1) {
418
419    while( worklist->size() ) { // Standard worklist algorithm
420      Block *b = worklist->rpop();
421
422      // Copy first successor into my tmp_live space
423      int s0num = b->_succs[0]->_pre_order;
424      int *t = &live[s0num*max_reg_ints];
425      for( int i=0; i<max_reg_ints; i++ )
426        tmp_live[i] = t[i];
427
428      // OR in the remaining live registers
429      for( uint j=1; j<b->_num_succs; j++ ) {
430        uint sjnum = b->_succs[j]->_pre_order;
431        int *t = &live[sjnum*max_reg_ints];
432        for( int i=0; i<max_reg_ints; i++ )
433          tmp_live[i] |= t[i];
434      }
435
436      // Now walk tmp_live up the block backwards, computing live
437      for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
438        Node *n = b->get_node(k);
439        // KILL def'd bits
440        int first = regalloc->get_reg_first(n);
441        int second = regalloc->get_reg_second(n);
442        if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
443        if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
444
445        MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
446
447        // Check if m is potentially a CISC alternate instruction (i.e, possibly
448        // synthesized by RegAlloc from a conventional instruction and a
449        // spilled input)
450        bool is_cisc_alternate = false;
451        if (UseCISCSpill && m) {
452          is_cisc_alternate = m->is_cisc_alternate();
453        }
454
455        // GEN use'd bits
456        for( uint l=1; l<n->req(); l++ ) {
457          Node *def = n->in(l);
458          assert(def != 0, "input edge required");
459          int first = regalloc->get_reg_first(def);
460          int second = regalloc->get_reg_second(def);
461          if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
462          if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
463          // If we use the stack pointer in a cisc-alternative instruction,
464          // check for use as a memory operand.  Then reconstruct the RegName
465          // for this stack location, and set the appropriate bit in the
466          // live vector 4987749.
467          if (is_cisc_alternate && def == fp) {
468            const TypePtr *adr_type = NULL;
469            intptr_t offset;
470            const Node* base = m->get_base_and_disp(offset, adr_type);
471            if (base == NodeSentinel) {
472              // Machnode has multiple memory inputs. We are unable to reason
473              // with these, but are presuming (with trepidation) that not any of
474              // them are oops. This can be fixed by making get_base_and_disp()
475              // look at a specific input instead of all inputs.
476              assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
477            } else if (base != fp || offset == Type::OffsetBot) {
478              // Do nothing: the fp operand is either not from a memory use
479              // (base == NULL) OR the fp is used in a non-memory context
480              // (base is some other register) OR the offset is not constant,
481              // so it is not a stack slot.
482            } else {
483              assert(offset >= 0, "unexpected negative offset");
484              offset -= (offset % jintSize);  // count the whole word
485              int stack_reg = regalloc->offset2reg(offset);
486              if (OptoReg::is_stack(stack_reg)) {
487                set_live_bit(tmp_live, stack_reg);
488              } else {
489                assert(false, "stack_reg not on stack?");
490              }
491            }
492          }
493        }
494
495        if( n->jvms() ) {       // Record liveness at safepoint
496
497          // This placement of this stanza means inputs to calls are
498          // considered live at the callsite's OopMap.  Argument oops are
499          // hence live, but NOT included in the oopmap.  See cutout in
500          // build_oop_map.  Debug oops are live (and in OopMap).
501          int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
502          for( int l=0; l<max_reg_ints; l++ )
503            n_live[l] = tmp_live[l];
504          safehash->Insert(n,n_live);
505        }
506
507      }
508
509      // Now at block top, see if we have any changes.  If so, propagate
510      // to prior blocks.
511      int *old_live = &live[b->_pre_order*max_reg_ints];
512      int l;
513      for( l=0; l<max_reg_ints; l++ )
514        if( tmp_live[l] != old_live[l] )
515          break;
516      if( l<max_reg_ints ) {     // Change!
517        // Copy in new value
518        for( l=0; l<max_reg_ints; l++ )
519          old_live[l] = tmp_live[l];
520        // Push preds onto worklist
521        for (l = 1; l < (int)b->num_preds(); l++) {
522          Block* block = cfg->get_block_for_node(b->pred(l));
523          worklist->push(block);
524        }
525      }
526    }
527
528    // Scan for any missing safepoints.  Happens to infinite loops
529    // ala ZKM.jar
530    uint i;
531    for (i = 1; i < cfg->number_of_blocks(); i++) {
532      Block* block = cfg->get_block(i);
533      uint j;
534      for (j = 1; j < block->number_of_nodes(); j++) {
535        if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == NULL) {
536           break;
537        }
538      }
539      if (j < block->number_of_nodes()) {
540        break;
541      }
542    }
543    if (i == cfg->number_of_blocks()) {
544      break;                    // Got 'em all
545    }
546
547    if (PrintOpto && Verbose) {
548      tty->print_cr("retripping live calc");
549    }
550
551    // Force the issue (expensively): recheck everybody
552    for (i = 1; i < cfg->number_of_blocks(); i++) {
553      worklist->push(cfg->get_block(i));
554    }
555  }
556}
557
558// Collect GC mask info - where are all the OOPs?
559void Compile::BuildOopMaps() {
560  TracePhase tp("bldOopMaps", &timers[_t_buildOopMaps]);
561  // Can't resource-mark because I need to leave all those OopMaps around,
562  // or else I need to resource-mark some arena other than the default.
563  // ResourceMark rm;              // Reclaim all OopFlows when done
564  int max_reg = _regalloc->_max_reg; // Current array extent
565
566  Arena *A = Thread::current()->resource_area();
567  Block_List worklist;          // Worklist of pending blocks
568
569  int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
570  Dict *safehash = NULL;        // Used for assert only
571  // Compute a backwards liveness per register.  Needs a bitarray of
572  // #blocks x (#registers, rounded up to ints)
573  safehash = new Dict(cmpkey,hashkey,A);
574  do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
575  OopFlow *free_list = NULL;    // Free, unused
576
577  // Array mapping blocks to completed oopflows
578  OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->number_of_blocks());
579  memset( flows, 0, _cfg->number_of_blocks() * sizeof(OopFlow*) );
580
581
582  // Do the first block 'by hand' to prime the worklist
583  Block *entry = _cfg->get_block(1);
584  OopFlow *rootflow = OopFlow::make(A,max_reg,this);
585  // Initialize to 'bottom' (not 'top')
586  memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
587  memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
588  flows[entry->_pre_order] = rootflow;
589
590  // Do the first block 'by hand' to prime the worklist
591  rootflow->_b = entry;
592  rootflow->compute_reach( _regalloc, max_reg, safehash );
593  for( uint i=0; i<entry->_num_succs; i++ )
594    worklist.push(entry->_succs[i]);
595
596  // Now worklist contains blocks which have some, but perhaps not all,
597  // predecessors visited.
598  while( worklist.size() ) {
599    // Scan for a block with all predecessors visited, or any randoms slob
600    // otherwise.  All-preds-visited order allows me to recycle OopFlow
601    // structures rapidly and cut down on the memory footprint.
602    // Note: not all predecessors might be visited yet (must happen for
603    // irreducible loops).  This is OK, since every live value must have the
604    // SAME reaching def for the block, so any reaching def is OK.
605    uint i;
606
607    Block *b = worklist.pop();
608    // Ignore root block
609    if (b == _cfg->get_root_block()) {
610      continue;
611    }
612    // Block is already done?  Happens if block has several predecessors,
613    // he can get on the worklist more than once.
614    if( flows[b->_pre_order] ) continue;
615
616    // If this block has a visited predecessor AND that predecessor has this
617    // last block as his only undone child, we can move the OopFlow from the
618    // pred to this block.  Otherwise we have to grab a new OopFlow.
619    OopFlow *flow = NULL;       // Flag for finding optimized flow
620    Block *pred = (Block*)0xdeadbeef;
621    // Scan this block's preds to find a done predecessor
622    for (uint j = 1; j < b->num_preds(); j++) {
623      Block* p = _cfg->get_block_for_node(b->pred(j));
624      OopFlow *p_flow = flows[p->_pre_order];
625      if( p_flow ) {            // Predecessor is done
626        assert( p_flow->_b == p, "cross check" );
627        pred = p;               // Record some predecessor
628        // If all successors of p are done except for 'b', then we can carry
629        // p_flow forward to 'b' without copying, otherwise we have to draw
630        // from the free_list and clone data.
631        uint k;
632        for( k=0; k<p->_num_succs; k++ )
633          if( !flows[p->_succs[k]->_pre_order] &&
634              p->_succs[k] != b )
635            break;
636
637        // Either carry-forward the now-unused OopFlow for b's use
638        // or draw a new one from the free list
639        if( k==p->_num_succs ) {
640          flow = p_flow;
641          break;                // Found an ideal pred, use him
642        }
643      }
644    }
645
646    if( flow ) {
647      // We have an OopFlow that's the last-use of a predecessor.
648      // Carry it forward.
649    } else {                    // Draw a new OopFlow from the freelist
650      if( !free_list )
651        free_list = OopFlow::make(A,max_reg,C);
652      flow = free_list;
653      assert( flow->_b == NULL, "oopFlow is not free" );
654      free_list = flow->_next;
655      flow->_next = NULL;
656
657      // Copy/clone over the data
658      flow->clone(flows[pred->_pre_order], max_reg);
659    }
660
661    // Mark flow for block.  Blocks can only be flowed over once,
662    // because after the first time they are guarded from entering
663    // this code again.
664    assert( flow->_b == pred, "have some prior flow" );
665    flow->_b = NULL;
666
667    // Now push flow forward
668    flows[b->_pre_order] = flow;// Mark flow for this block
669    flow->_b = b;
670    flow->compute_reach( _regalloc, max_reg, safehash );
671
672    // Now push children onto worklist
673    for( i=0; i<b->_num_succs; i++ )
674      worklist.push(b->_succs[i]);
675
676  }
677}
678