1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
26#define SHARE_VM_OOPS_OOP_INLINE_HPP
27
28#include "gc/shared/ageTable.hpp"
29#include "gc/shared/barrierSet.inline.hpp"
30#include "gc/shared/cardTableModRefBS.hpp"
31#include "gc/shared/collectedHeap.inline.hpp"
32#include "gc/shared/genCollectedHeap.hpp"
33#include "gc/shared/generation.hpp"
34#include "oops/arrayKlass.hpp"
35#include "oops/arrayOop.hpp"
36#include "oops/klass.inline.hpp"
37#include "oops/markOop.inline.hpp"
38#include "oops/oop.hpp"
39#include "runtime/atomic.hpp"
40#include "runtime/orderAccess.inline.hpp"
41#include "runtime/os.hpp"
42#include "utilities/macros.hpp"
43
44inline void update_barrier_set(void* p, oop v, bool release = false) {
45  assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
46  oopDesc::bs()->write_ref_field(p, v, release);
47}
48
49template <class T> inline void update_barrier_set_pre(T* p, oop v) {
50  oopDesc::bs()->write_ref_field_pre(p, v);
51}
52
53template <class T> void oop_store(T* p, oop v) {
54  if (always_do_update_barrier) {
55    oop_store((volatile T*)p, v);
56  } else {
57    update_barrier_set_pre(p, v);
58    oopDesc::encode_store_heap_oop(p, v);
59    // always_do_update_barrier == false =>
60    // Either we are at a safepoint (in GC) or CMS is not used. In both
61    // cases it's unnecessary to mark the card as dirty with release sematics.
62    update_barrier_set((void*)p, v, false /* release */);  // cast away type
63  }
64}
65
66template <class T> void oop_store(volatile T* p, oop v) {
67  update_barrier_set_pre((T*)p, v);   // cast away volatile
68  // Used by release_obj_field_put, so use release_store_ptr.
69  oopDesc::release_encode_store_heap_oop(p, v);
70  // When using CMS we must mark the card corresponding to p as dirty
71  // with release sematics to prevent that CMS sees the dirty card but
72  // not the new value v at p due to reordering of the two
73  // stores. Note that CMS has a concurrent precleaning phase, where
74  // it reads the card table while the Java threads are running.
75  update_barrier_set((void*)p, v, true /* release */);    // cast away type
76}
77
78// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
79// (without having to remember the function name this calls).
80inline void oop_store_raw(HeapWord* addr, oop value) {
81  if (UseCompressedOops) {
82    oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
83  } else {
84    oopDesc::encode_store_heap_oop((oop*)addr, value);
85  }
86}
87
88// Implementation of all inlined member functions defined in oop.hpp
89// We need a separate file to avoid circular references
90
91void oopDesc::release_set_mark(markOop m) {
92  OrderAccess::release_store_ptr(&_mark, m);
93}
94
95markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
96  return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
97}
98
99void oopDesc::init_mark() {
100  set_mark(markOopDesc::prototype_for_object(this));
101}
102
103Klass* oopDesc::klass() const {
104  if (UseCompressedClassPointers) {
105    return Klass::decode_klass_not_null(_metadata._compressed_klass);
106  } else {
107    return _metadata._klass;
108  }
109}
110
111Klass* oopDesc::klass_or_null() const volatile {
112  if (UseCompressedClassPointers) {
113    return Klass::decode_klass(_metadata._compressed_klass);
114  } else {
115    return _metadata._klass;
116  }
117}
118
119Klass* oopDesc::klass_or_null_acquire() const volatile {
120  if (UseCompressedClassPointers) {
121    // Workaround for non-const load_acquire parameter.
122    const volatile narrowKlass* addr = &_metadata._compressed_klass;
123    volatile narrowKlass* xaddr = const_cast<volatile narrowKlass*>(addr);
124    return Klass::decode_klass(OrderAccess::load_acquire(xaddr));
125  } else {
126    return (Klass*)OrderAccess::load_ptr_acquire(&_metadata._klass);
127  }
128}
129
130Klass** oopDesc::klass_addr() {
131  // Only used internally and with CMS and will not work with
132  // UseCompressedOops
133  assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
134  return (Klass**) &_metadata._klass;
135}
136
137narrowKlass* oopDesc::compressed_klass_addr() {
138  assert(UseCompressedClassPointers, "only called by compressed klass pointers");
139  return &_metadata._compressed_klass;
140}
141
142#define CHECK_SET_KLASS(k)                                                \
143  do {                                                                    \
144    assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass");      \
145    assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \
146  } while (0)
147
148void oopDesc::set_klass(Klass* k) {
149  CHECK_SET_KLASS(k);
150  if (UseCompressedClassPointers) {
151    *compressed_klass_addr() = Klass::encode_klass_not_null(k);
152  } else {
153    *klass_addr() = k;
154  }
155}
156
157void oopDesc::release_set_klass(Klass* k) {
158  CHECK_SET_KLASS(k);
159  if (UseCompressedClassPointers) {
160    OrderAccess::release_store(compressed_klass_addr(),
161                               Klass::encode_klass_not_null(k));
162  } else {
163    OrderAccess::release_store_ptr(klass_addr(), k);
164  }
165}
166
167#undef CHECK_SET_KLASS
168
169int oopDesc::klass_gap() const {
170  return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
171}
172
173void oopDesc::set_klass_gap(int v) {
174  if (UseCompressedClassPointers) {
175    *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
176  }
177}
178
179void oopDesc::set_klass_to_list_ptr(oop k) {
180  // This is only to be used during GC, for from-space objects, so no
181  // barrier is needed.
182  if (UseCompressedClassPointers) {
183    _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
184  } else {
185    _metadata._klass = (Klass*)(address)k;
186  }
187}
188
189oop oopDesc::list_ptr_from_klass() {
190  // This is only to be used during GC, for from-space objects.
191  if (UseCompressedClassPointers) {
192    return decode_heap_oop((narrowOop)_metadata._compressed_klass);
193  } else {
194    // Special case for GC
195    return (oop)(address)_metadata._klass;
196  }
197}
198
199bool oopDesc::is_a(Klass* k) const {
200  return klass()->is_subtype_of(k);
201}
202
203int oopDesc::size()  {
204  return size_given_klass(klass());
205}
206
207int oopDesc::size_given_klass(Klass* klass)  {
208  int lh = klass->layout_helper();
209  int s;
210
211  // lh is now a value computed at class initialization that may hint
212  // at the size.  For instances, this is positive and equal to the
213  // size.  For arrays, this is negative and provides log2 of the
214  // array element size.  For other oops, it is zero and thus requires
215  // a virtual call.
216  //
217  // We go to all this trouble because the size computation is at the
218  // heart of phase 2 of mark-compaction, and called for every object,
219  // alive or dead.  So the speed here is equal in importance to the
220  // speed of allocation.
221
222  if (lh > Klass::_lh_neutral_value) {
223    if (!Klass::layout_helper_needs_slow_path(lh)) {
224      s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
225    } else {
226      s = klass->oop_size(this);
227    }
228  } else if (lh <= Klass::_lh_neutral_value) {
229    // The most common case is instances; fall through if so.
230    if (lh < Klass::_lh_neutral_value) {
231      // Second most common case is arrays.  We have to fetch the
232      // length of the array, shift (multiply) it appropriately,
233      // up to wordSize, add the header, and align to object size.
234      size_t size_in_bytes;
235#ifdef _M_IA64
236      // The Windows Itanium Aug 2002 SDK hoists this load above
237      // the check for s < 0.  An oop at the end of the heap will
238      // cause an access violation if this load is performed on a non
239      // array oop.  Making the reference volatile prohibits this.
240      // (%%% please explain by what magic the length is actually fetched!)
241      volatile int *array_length;
242      array_length = (volatile int *)( (intptr_t)this +
243                          arrayOopDesc::length_offset_in_bytes() );
244      assert(array_length > 0, "Integer arithmetic problem somewhere");
245      // Put into size_t to avoid overflow.
246      size_in_bytes = (size_t) array_length;
247      size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
248#else
249      size_t array_length = (size_t) ((arrayOop)this)->length();
250      size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
251#endif
252      size_in_bytes += Klass::layout_helper_header_size(lh);
253
254      // This code could be simplified, but by keeping array_header_in_bytes
255      // in units of bytes and doing it this way we can round up just once,
256      // skipping the intermediate round to HeapWordSize.  Cast the result
257      // of round_to to size_t to guarantee unsigned division == right shift.
258      s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
259        HeapWordSize);
260
261      // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
262      // of an "old copy" of an object array in the young gen so it indicates
263      // the grey portion of an already copied array. This will cause the first
264      // disjunct below to fail if the two comparands are computed across such
265      // a concurrent change.
266      // ParNew also runs with promotion labs (which look like int
267      // filler arrays) which are subject to changing their declared size
268      // when finally retiring a PLAB; this also can cause the first disjunct
269      // to fail for another worker thread that is concurrently walking the block
270      // offset table. Both these invariant failures are benign for their
271      // current uses; we relax the assertion checking to cover these two cases below:
272      //     is_objArray() && is_forwarded()   // covers first scenario above
273      //  || is_typeArray()                    // covers second scenario above
274      // If and when UseParallelGC uses the same obj array oop stealing/chunking
275      // technique, we will need to suitably modify the assertion.
276      assert((s == klass->oop_size(this)) ||
277             (Universe::heap()->is_gc_active() &&
278              ((is_typeArray() && UseConcMarkSweepGC) ||
279               (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
280             "wrong array object size");
281    } else {
282      // Must be zero, so bite the bullet and take the virtual call.
283      s = klass->oop_size(this);
284    }
285  }
286
287  assert(s % MinObjAlignment == 0, "Oop size is not properly aligned: %d", s);
288  assert(s > 0, "Oop size must be greater than zero, not %d", s);
289  return s;
290}
291
292bool oopDesc::is_instance()  const { return klass()->is_instance_klass();  }
293bool oopDesc::is_array()     const { return klass()->is_array_klass();     }
294bool oopDesc::is_objArray()  const { return klass()->is_objArray_klass();  }
295bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
296
297void*      oopDesc::field_base(int offset)          const { return (void*)&((char*)this)[offset]; }
298
299jbyte*     oopDesc::byte_field_addr(int offset)     const { return (jbyte*)    field_base(offset); }
300jchar*     oopDesc::char_field_addr(int offset)     const { return (jchar*)    field_base(offset); }
301jboolean*  oopDesc::bool_field_addr(int offset)     const { return (jboolean*) field_base(offset); }
302jint*      oopDesc::int_field_addr(int offset)      const { return (jint*)     field_base(offset); }
303jshort*    oopDesc::short_field_addr(int offset)    const { return (jshort*)   field_base(offset); }
304jlong*     oopDesc::long_field_addr(int offset)     const { return (jlong*)    field_base(offset); }
305jfloat*    oopDesc::float_field_addr(int offset)    const { return (jfloat*)   field_base(offset); }
306jdouble*   oopDesc::double_field_addr(int offset)   const { return (jdouble*)  field_base(offset); }
307Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
308
309template <class T> T* oopDesc::obj_field_addr(int offset) const { return (T*)  field_base(offset); }
310address*   oopDesc::address_field_addr(int offset)  const { return (address*)  field_base(offset); }
311
312
313// Functions for getting and setting oops within instance objects.
314// If the oops are compressed, the type passed to these overloaded functions
315// is narrowOop.  All functions are overloaded so they can be called by
316// template functions without conditionals (the compiler instantiates via
317// the right type and inlines the appopriate code).
318
319// Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
320// offset from the heap base.  Saving the check for null can save instructions
321// in inner GC loops so these are separated.
322
323inline bool check_obj_alignment(oop obj) {
324  return (cast_from_oop<intptr_t>(obj) & MinObjAlignmentInBytesMask) == 0;
325}
326
327oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
328  assert(!is_null(v), "narrow oop value can never be zero");
329  address base = Universe::narrow_oop_base();
330  int    shift = Universe::narrow_oop_shift();
331  oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
332  assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
333  return result;
334}
335
336oop oopDesc::decode_heap_oop(narrowOop v) {
337  return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
338}
339
340narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
341  assert(!is_null(v), "oop value can never be zero");
342  assert(check_obj_alignment(v), "Address not aligned");
343  assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
344  address base = Universe::narrow_oop_base();
345  int    shift = Universe::narrow_oop_shift();
346  uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
347  assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
348  uint64_t result = pd >> shift;
349  assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
350  assert(decode_heap_oop(result) == v, "reversibility");
351  return (narrowOop)result;
352}
353
354narrowOop oopDesc::encode_heap_oop(oop v) {
355  return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
356}
357
358// Load and decode an oop out of the Java heap into a wide oop.
359oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
360  return decode_heap_oop_not_null(*p);
361}
362
363// Load and decode an oop out of the heap accepting null
364oop oopDesc::load_decode_heap_oop(narrowOop* p) {
365  return decode_heap_oop(*p);
366}
367
368// Encode and store a heap oop.
369void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
370  *p = encode_heap_oop_not_null(v);
371}
372
373// Encode and store a heap oop allowing for null.
374void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
375  *p = encode_heap_oop(v);
376}
377
378// Store heap oop as is for volatile fields.
379void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
380  OrderAccess::release_store_ptr(p, v);
381}
382void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) {
383  OrderAccess::release_store(p, v);
384}
385
386void oopDesc::release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v) {
387  // heap oop is not pointer sized.
388  OrderAccess::release_store(p, encode_heap_oop_not_null(v));
389}
390void oopDesc::release_encode_store_heap_oop_not_null(volatile oop* p, oop v) {
391  OrderAccess::release_store_ptr(p, v);
392}
393
394void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) {
395  OrderAccess::release_store_ptr(p, v);
396}
397void oopDesc::release_encode_store_heap_oop(volatile narrowOop* p, oop v) {
398  OrderAccess::release_store(p, encode_heap_oop(v));
399}
400
401// These functions are only used to exchange oop fields in instances,
402// not headers.
403oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
404  if (UseCompressedOops) {
405    // encode exchange value from oop to T
406    narrowOop val = encode_heap_oop(exchange_value);
407    narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
408    // decode old from T to oop
409    return decode_heap_oop(old);
410  } else {
411    return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
412  }
413}
414
415oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
416                                         volatile HeapWord *dest,
417                                         oop compare_value,
418                                         bool prebarrier) {
419  if (UseCompressedOops) {
420    if (prebarrier) {
421      update_barrier_set_pre((narrowOop*)dest, exchange_value);
422    }
423    // encode exchange and compare value from oop to T
424    narrowOop val = encode_heap_oop(exchange_value);
425    narrowOop cmp = encode_heap_oop(compare_value);
426
427    narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
428    // decode old from T to oop
429    return decode_heap_oop(old);
430  } else {
431    if (prebarrier) {
432      update_barrier_set_pre((oop*)dest, exchange_value);
433    }
434    return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
435  }
436}
437
438// In order to put or get a field out of an instance, must first check
439// if the field has been compressed and uncompress it.
440oop oopDesc::obj_field(int offset) const {
441  return UseCompressedOops ?
442    load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
443    load_decode_heap_oop(obj_field_addr<oop>(offset));
444}
445
446void oopDesc::obj_field_put(int offset, oop value) {
447  UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
448                      oop_store(obj_field_addr<oop>(offset),       value);
449}
450
451void oopDesc::obj_field_put_raw(int offset, oop value) {
452  UseCompressedOops ?
453    encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
454    encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
455}
456void oopDesc::obj_field_put_volatile(int offset, oop value) {
457  OrderAccess::release();
458  obj_field_put(offset, value);
459  OrderAccess::fence();
460}
461
462Metadata* oopDesc::metadata_field(int offset) const           { return *metadata_field_addr(offset);   }
463void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value;  }
464
465jbyte oopDesc::byte_field(int offset) const                   { return (jbyte) *byte_field_addr(offset);    }
466void oopDesc::byte_field_put(int offset, jbyte contents)      { *byte_field_addr(offset) = (jint) contents; }
467
468jchar oopDesc::char_field(int offset) const                   { return (jchar) *char_field_addr(offset);    }
469void oopDesc::char_field_put(int offset, jchar contents)      { *char_field_addr(offset) = (jint) contents; }
470
471jboolean oopDesc::bool_field(int offset) const                { return (jboolean) *bool_field_addr(offset); }
472void oopDesc::bool_field_put(int offset, jboolean contents)   { *bool_field_addr(offset) = (((jint) contents) & 1); }
473
474jint oopDesc::int_field(int offset) const                     { return *int_field_addr(offset);        }
475void oopDesc::int_field_put(int offset, jint contents)        { *int_field_addr(offset) = contents;    }
476
477jshort oopDesc::short_field(int offset) const                 { return (jshort) *short_field_addr(offset);  }
478void oopDesc::short_field_put(int offset, jshort contents)    { *short_field_addr(offset) = (jint) contents;}
479
480jlong oopDesc::long_field(int offset) const                   { return *long_field_addr(offset);       }
481void oopDesc::long_field_put(int offset, jlong contents)      { *long_field_addr(offset) = contents;   }
482
483jfloat oopDesc::float_field(int offset) const                 { return *float_field_addr(offset);      }
484void oopDesc::float_field_put(int offset, jfloat contents)    { *float_field_addr(offset) = contents;  }
485
486jdouble oopDesc::double_field(int offset) const               { return *double_field_addr(offset);     }
487void oopDesc::double_field_put(int offset, jdouble contents)  { *double_field_addr(offset) = contents; }
488
489address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
490void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
491
492oop oopDesc::obj_field_acquire(int offset) const {
493  return UseCompressedOops ?
494             decode_heap_oop((narrowOop)
495               OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
496           : decode_heap_oop((oop)
497               OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
498}
499void oopDesc::release_obj_field_put(int offset, oop value) {
500  UseCompressedOops ?
501    oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
502    oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
503}
504
505jbyte oopDesc::byte_field_acquire(int offset) const                   { return OrderAccess::load_acquire(byte_field_addr(offset));     }
506void oopDesc::release_byte_field_put(int offset, jbyte contents)      { OrderAccess::release_store(byte_field_addr(offset), contents); }
507
508jchar oopDesc::char_field_acquire(int offset) const                   { return OrderAccess::load_acquire(char_field_addr(offset));     }
509void oopDesc::release_char_field_put(int offset, jchar contents)      { OrderAccess::release_store(char_field_addr(offset), contents); }
510
511jboolean oopDesc::bool_field_acquire(int offset) const                { return OrderAccess::load_acquire(bool_field_addr(offset));     }
512void oopDesc::release_bool_field_put(int offset, jboolean contents)   { OrderAccess::release_store(bool_field_addr(offset), (contents & 1)); }
513
514jint oopDesc::int_field_acquire(int offset) const                     { return OrderAccess::load_acquire(int_field_addr(offset));      }
515void oopDesc::release_int_field_put(int offset, jint contents)        { OrderAccess::release_store(int_field_addr(offset), contents);  }
516
517jshort oopDesc::short_field_acquire(int offset) const                 { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
518void oopDesc::release_short_field_put(int offset, jshort contents)    { OrderAccess::release_store(short_field_addr(offset), contents);     }
519
520jlong oopDesc::long_field_acquire(int offset) const                   { return OrderAccess::load_acquire(long_field_addr(offset));       }
521void oopDesc::release_long_field_put(int offset, jlong contents)      { OrderAccess::release_store(long_field_addr(offset), contents);   }
522
523jfloat oopDesc::float_field_acquire(int offset) const                 { return OrderAccess::load_acquire(float_field_addr(offset));      }
524void oopDesc::release_float_field_put(int offset, jfloat contents)    { OrderAccess::release_store(float_field_addr(offset), contents);  }
525
526jdouble oopDesc::double_field_acquire(int offset) const               { return OrderAccess::load_acquire(double_field_addr(offset));     }
527void oopDesc::release_double_field_put(int offset, jdouble contents)  { OrderAccess::release_store(double_field_addr(offset), contents); }
528
529address oopDesc::address_field_acquire(int offset) const              { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
530void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
531
532bool oopDesc::is_locked() const {
533  return mark()->is_locked();
534}
535
536bool oopDesc::is_unlocked() const {
537  return mark()->is_unlocked();
538}
539
540bool oopDesc::has_bias_pattern() const {
541  return mark()->has_bias_pattern();
542}
543
544// used only for asserts
545bool oopDesc::is_oop(bool ignore_mark_word) const {
546  oop obj = (oop) this;
547  if (!check_obj_alignment(obj)) return false;
548  if (!Universe::heap()->is_in_reserved(obj)) return false;
549  // obj is aligned and accessible in heap
550  if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
551
552  // Header verification: the mark is typically non-NULL. If we're
553  // at a safepoint, it must not be null.
554  // Outside of a safepoint, the header could be changing (for example,
555  // another thread could be inflating a lock on this object).
556  if (ignore_mark_word) {
557    return true;
558  }
559  if (mark() != NULL) {
560    return true;
561  }
562  return !SafepointSynchronize::is_at_safepoint();
563}
564
565
566// used only for asserts
567bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
568  return this == NULL ? true : is_oop(ignore_mark_word);
569}
570
571#ifndef PRODUCT
572// used only for asserts
573bool oopDesc::is_unlocked_oop() const {
574  if (!Universe::heap()->is_in_reserved(this)) return false;
575  return mark()->is_unlocked();
576}
577#endif // PRODUCT
578
579// Used only for markSweep, scavenging
580bool oopDesc::is_gc_marked() const {
581  return mark()->is_marked();
582}
583
584bool oopDesc::is_scavengable() const {
585  return Universe::heap()->is_scavengable(this);
586}
587
588// Used by scavengers
589bool oopDesc::is_forwarded() const {
590  // The extra heap check is needed since the obj might be locked, in which case the
591  // mark would point to a stack location and have the sentinel bit cleared
592  return mark()->is_marked();
593}
594
595// Used by scavengers
596void oopDesc::forward_to(oop p) {
597  assert(check_obj_alignment(p),
598         "forwarding to something not aligned");
599  assert(Universe::heap()->is_in_reserved(p),
600         "forwarding to something not in heap");
601  markOop m = markOopDesc::encode_pointer_as_mark(p);
602  assert(m->decode_pointer() == p, "encoding must be reversable");
603  set_mark(m);
604}
605
606// Used by parallel scavengers
607bool oopDesc::cas_forward_to(oop p, markOop compare) {
608  assert(check_obj_alignment(p),
609         "forwarding to something not aligned");
610  assert(Universe::heap()->is_in_reserved(p),
611         "forwarding to something not in heap");
612  markOop m = markOopDesc::encode_pointer_as_mark(p);
613  assert(m->decode_pointer() == p, "encoding must be reversable");
614  return cas_set_mark(m, compare) == compare;
615}
616
617#if INCLUDE_ALL_GCS
618oop oopDesc::forward_to_atomic(oop p) {
619  markOop oldMark = mark();
620  markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
621  markOop curMark;
622
623  assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
624  assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this.");
625
626  while (!oldMark->is_marked()) {
627    curMark = (markOop)Atomic::cmpxchg_ptr(forwardPtrMark, &_mark, oldMark);
628    assert(is_forwarded(), "object should have been forwarded");
629    if (curMark == oldMark) {
630      return NULL;
631    }
632    // If the CAS was unsuccessful then curMark->is_marked()
633    // should return true as another thread has CAS'd in another
634    // forwarding pointer.
635    oldMark = curMark;
636  }
637  return forwardee();
638}
639#endif
640
641// Note that the forwardee is not the same thing as the displaced_mark.
642// The forwardee is used when copying during scavenge and mark-sweep.
643// It does need to clear the low two locking- and GC-related bits.
644oop oopDesc::forwardee() const {
645  return (oop) mark()->decode_pointer();
646}
647
648// The following method needs to be MT safe.
649uint oopDesc::age() const {
650  assert(!is_forwarded(), "Attempt to read age from forwarded mark");
651  if (has_displaced_mark()) {
652    return displaced_mark()->age();
653  } else {
654    return mark()->age();
655  }
656}
657
658void oopDesc::incr_age() {
659  assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
660  if (has_displaced_mark()) {
661    set_displaced_mark(displaced_mark()->incr_age());
662  } else {
663    set_mark(mark()->incr_age());
664  }
665}
666
667int oopDesc::ms_adjust_pointers() {
668  debug_only(int check_size = size());
669  int s = klass()->oop_ms_adjust_pointers(this);
670  assert(s == check_size, "should be the same");
671  return s;
672}
673
674#if INCLUDE_ALL_GCS
675void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
676  klass()->oop_pc_follow_contents(this, cm);
677}
678
679void oopDesc::pc_update_contents(ParCompactionManager* cm) {
680  Klass* k = klass();
681  if (!k->is_typeArray_klass()) {
682    // It might contain oops beyond the header, so take the virtual call.
683    k->oop_pc_update_pointers(this, cm);
684  }
685  // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
686}
687
688void oopDesc::ps_push_contents(PSPromotionManager* pm) {
689  Klass* k = klass();
690  if (!k->is_typeArray_klass()) {
691    // It might contain oops beyond the header, so take the virtual call.
692    k->oop_ps_push_contents(this, pm);
693  }
694  // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
695}
696#endif // INCLUDE_ALL_GCS
697
698#define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                 \
699                                                                    \
700void oopDesc::oop_iterate(OopClosureType* blk) {                    \
701  klass()->oop_oop_iterate##nv_suffix(this, blk);                   \
702}                                                                   \
703                                                                    \
704void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {      \
705  klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);       \
706}
707
708#define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)            \
709                                                                    \
710int oopDesc::oop_iterate_size(OopClosureType* blk) {                \
711  Klass* k = klass();                                               \
712  int size = size_given_klass(k);                                   \
713  k->oop_oop_iterate##nv_suffix(this, blk);                         \
714  return size;                                                      \
715}                                                                   \
716                                                                    \
717int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) {  \
718  Klass* k = klass();                                               \
719  int size = size_given_klass(k);                                   \
720  k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);             \
721  return size;                                                      \
722}
723
724int oopDesc::oop_iterate_no_header(OopClosure* blk) {
725  // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
726  // the do_oop calls, but turns off all other features in ExtendedOopClosure.
727  NoHeaderExtendedOopClosure cl(blk);
728  return oop_iterate_size(&cl);
729}
730
731int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
732  NoHeaderExtendedOopClosure cl(blk);
733  return oop_iterate_size(&cl, mr);
734}
735
736#if INCLUDE_ALL_GCS
737#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)       \
738                                                                    \
739inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) {   \
740  klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);         \
741}
742#else
743#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
744#endif // INCLUDE_ALL_GCS
745
746#define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix)  \
747  OOP_ITERATE_DEFN(OopClosureType, nv_suffix)               \
748  OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)          \
749  OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
750
751ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
752ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
753
754intptr_t oopDesc::identity_hash() {
755  // Fast case; if the object is unlocked and the hash value is set, no locking is needed
756  // Note: The mark must be read into local variable to avoid concurrent updates.
757  markOop mrk = mark();
758  if (mrk->is_unlocked() && !mrk->has_no_hash()) {
759    return mrk->hash();
760  } else if (mrk->is_marked()) {
761    return mrk->hash();
762  } else {
763    return slow_identity_hash();
764  }
765}
766
767bool oopDesc::has_displaced_mark() const {
768  return mark()->has_displaced_mark_helper();
769}
770
771markOop oopDesc::displaced_mark() const {
772  return mark()->displaced_mark_helper();
773}
774
775void oopDesc::set_displaced_mark(markOop m) {
776  mark()->set_displaced_mark_helper(m);
777}
778
779#endif // SHARE_VM_OOPS_OOP_INLINE_HPP
780