1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
26#define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
27
28#include "gc/shared/gcTrace.hpp"
29#include "gc/shared/referencePolicy.hpp"
30#include "gc/shared/referenceProcessorStats.hpp"
31#include "memory/referenceType.hpp"
32#include "oops/instanceRefKlass.hpp"
33
34class GCTimer;
35
36// ReferenceProcessor class encapsulates the per-"collector" processing
37// of java.lang.Reference objects for GC. The interface is useful for supporting
38// a generational abstraction, in particular when there are multiple
39// generations that are being independently collected -- possibly
40// concurrently and/or incrementally.  Note, however, that the
41// ReferenceProcessor class abstracts away from a generational setting
42// by using only a heap interval (called "span" below), thus allowing
43// its use in a straightforward manner in a general, non-generational
44// setting.
45//
46// The basic idea is that each ReferenceProcessor object concerns
47// itself with ("weak") reference processing in a specific "span"
48// of the heap of interest to a specific collector. Currently,
49// the span is a convex interval of the heap, but, efficiency
50// apart, there seems to be no reason it couldn't be extended
51// (with appropriate modifications) to any "non-convex interval".
52
53// forward references
54class ReferencePolicy;
55class AbstractRefProcTaskExecutor;
56
57// List of discovered references.
58class DiscoveredList {
59public:
60  DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
61  inline oop head() const;
62  HeapWord* adr_head() {
63    return UseCompressedOops ? (HeapWord*)&_compressed_head :
64                               (HeapWord*)&_oop_head;
65  }
66  inline void set_head(oop o);
67  inline bool is_empty() const;
68  size_t length()               { return _len; }
69  void   set_length(size_t len) { _len = len;  }
70  void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
71  void   dec_length(size_t dec) { _len -= dec; }
72private:
73  // Set value depending on UseCompressedOops. This could be a template class
74  // but then we have to fix all the instantiations and declarations that use this class.
75  oop       _oop_head;
76  narrowOop _compressed_head;
77  size_t _len;
78};
79
80// Iterator for the list of discovered references.
81class DiscoveredListIterator {
82private:
83  DiscoveredList&    _refs_list;
84  HeapWord*          _prev_next;
85  oop                _prev;
86  oop                _ref;
87  HeapWord*          _discovered_addr;
88  oop                _next;
89  HeapWord*          _referent_addr;
90  oop                _referent;
91  OopClosure*        _keep_alive;
92  BoolObjectClosure* _is_alive;
93
94  DEBUG_ONLY(
95  oop                _first_seen; // cyclic linked list check
96  )
97
98  NOT_PRODUCT(
99  size_t             _processed;
100  size_t             _removed;
101  )
102
103public:
104  inline DiscoveredListIterator(DiscoveredList&    refs_list,
105                                OopClosure*        keep_alive,
106                                BoolObjectClosure* is_alive);
107
108  // End Of List.
109  inline bool has_next() const { return _ref != NULL; }
110
111  // Get oop to the Reference object.
112  inline oop obj() const { return _ref; }
113
114  // Get oop to the referent object.
115  inline oop referent() const { return _referent; }
116
117  // Returns true if referent is alive.
118  inline bool is_referent_alive() const {
119    return _is_alive->do_object_b(_referent);
120  }
121
122  // Loads data for the current reference.
123  // The "allow_null_referent" argument tells us to allow for the possibility
124  // of a NULL referent in the discovered Reference object. This typically
125  // happens in the case of concurrent collectors that may have done the
126  // discovery concurrently, or interleaved, with mutator execution.
127  void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
128
129  // Move to the next discovered reference.
130  inline void next() {
131    _prev_next = _discovered_addr;
132    _prev = _ref;
133    move_to_next();
134  }
135
136  // Remove the current reference from the list
137  void remove();
138
139  // Make the referent alive.
140  inline void make_referent_alive() {
141    if (UseCompressedOops) {
142      _keep_alive->do_oop((narrowOop*)_referent_addr);
143    } else {
144      _keep_alive->do_oop((oop*)_referent_addr);
145    }
146  }
147
148  // NULL out referent pointer.
149  void clear_referent();
150
151  // Statistics
152  NOT_PRODUCT(
153  inline size_t processed() const { return _processed; }
154  inline size_t removed() const   { return _removed; }
155  )
156
157  inline void move_to_next() {
158    if (_ref == _next) {
159      // End of the list.
160      _ref = NULL;
161    } else {
162      _ref = _next;
163    }
164    assert(_ref != _first_seen, "cyclic ref_list found");
165    NOT_PRODUCT(_processed++);
166  }
167};
168
169class ReferenceProcessor : public CHeapObj<mtGC> {
170
171 private:
172  size_t total_count(DiscoveredList lists[]);
173
174 protected:
175  // The SoftReference master timestamp clock
176  static jlong _soft_ref_timestamp_clock;
177
178  MemRegion   _span;                    // (right-open) interval of heap
179                                        // subject to wkref discovery
180
181  bool        _discovering_refs;        // true when discovery enabled
182  bool        _discovery_is_atomic;     // if discovery is atomic wrt
183                                        // other collectors in configuration
184  bool        _discovery_is_mt;         // true if reference discovery is MT.
185
186  bool        _enqueuing_is_done;       // true if all weak references enqueued
187  bool        _processing_is_mt;        // true during phases when
188                                        // reference processing is MT.
189  uint        _next_id;                 // round-robin mod _num_q counter in
190                                        // support of work distribution
191
192  // For collectors that do not keep GC liveness information
193  // in the object header, this field holds a closure that
194  // helps the reference processor determine the reachability
195  // of an oop. It is currently initialized to NULL for all
196  // collectors except for CMS and G1.
197  BoolObjectClosure* _is_alive_non_header;
198
199  // Soft ref clearing policies
200  // . the default policy
201  static ReferencePolicy*   _default_soft_ref_policy;
202  // . the "clear all" policy
203  static ReferencePolicy*   _always_clear_soft_ref_policy;
204  // . the current policy below is either one of the above
205  ReferencePolicy*          _current_soft_ref_policy;
206
207  // The discovered ref lists themselves
208
209  // The active MT'ness degree of the queues below
210  uint             _num_q;
211  // The maximum MT'ness degree of the queues below
212  uint             _max_num_q;
213
214  // Master array of discovered oops
215  DiscoveredList* _discovered_refs;
216
217  // Arrays of lists of oops, one per thread (pointers into master array above)
218  DiscoveredList* _discoveredSoftRefs;
219  DiscoveredList* _discoveredWeakRefs;
220  DiscoveredList* _discoveredFinalRefs;
221  DiscoveredList* _discoveredPhantomRefs;
222
223 public:
224  static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
225
226  uint num_q()                             { return _num_q; }
227  uint max_num_q()                         { return _max_num_q; }
228  void set_active_mt_degree(uint v);
229
230  DiscoveredList* discovered_refs()        { return _discovered_refs; }
231
232  ReferencePolicy* setup_policy(bool always_clear) {
233    _current_soft_ref_policy = always_clear ?
234      _always_clear_soft_ref_policy : _default_soft_ref_policy;
235    _current_soft_ref_policy->setup();   // snapshot the policy threshold
236    return _current_soft_ref_policy;
237  }
238
239  // Process references with a certain reachability level.
240  void process_discovered_reflist(DiscoveredList               refs_lists[],
241                                  ReferencePolicy*             policy,
242                                  bool                         clear_referent,
243                                  BoolObjectClosure*           is_alive,
244                                  OopClosure*                  keep_alive,
245                                  VoidClosure*                 complete_gc,
246                                  AbstractRefProcTaskExecutor* task_executor);
247
248  void process_phaseJNI(BoolObjectClosure* is_alive,
249                        OopClosure*        keep_alive,
250                        VoidClosure*       complete_gc);
251
252  // Work methods used by the method process_discovered_reflist
253  // Phase1: keep alive all those referents that are otherwise
254  // dead but which must be kept alive by policy (and their closure).
255  void process_phase1(DiscoveredList&     refs_list,
256                      ReferencePolicy*    policy,
257                      BoolObjectClosure*  is_alive,
258                      OopClosure*         keep_alive,
259                      VoidClosure*        complete_gc);
260  // Phase2: remove all those references whose referents are
261  // reachable.
262  inline void process_phase2(DiscoveredList&    refs_list,
263                             BoolObjectClosure* is_alive,
264                             OopClosure*        keep_alive,
265                             VoidClosure*       complete_gc) {
266    if (discovery_is_atomic()) {
267      // complete_gc is ignored in this case for this phase
268      pp2_work(refs_list, is_alive, keep_alive);
269    } else {
270      assert(complete_gc != NULL, "Error");
271      pp2_work_concurrent_discovery(refs_list, is_alive,
272                                    keep_alive, complete_gc);
273    }
274  }
275  // Work methods in support of process_phase2
276  void pp2_work(DiscoveredList&    refs_list,
277                BoolObjectClosure* is_alive,
278                OopClosure*        keep_alive);
279  void pp2_work_concurrent_discovery(
280                DiscoveredList&    refs_list,
281                BoolObjectClosure* is_alive,
282                OopClosure*        keep_alive,
283                VoidClosure*       complete_gc);
284  // Phase3: process the referents by either clearing them
285  // or keeping them alive (and their closure)
286  void process_phase3(DiscoveredList&    refs_list,
287                      bool               clear_referent,
288                      BoolObjectClosure* is_alive,
289                      OopClosure*        keep_alive,
290                      VoidClosure*       complete_gc);
291
292  // Enqueue references with a certain reachability level
293  void enqueue_discovered_reflist(DiscoveredList& refs_list);
294
295  // "Preclean" all the discovered reference lists
296  // by removing references with strongly reachable referents.
297  // The first argument is a predicate on an oop that indicates
298  // its (strong) reachability and the second is a closure that
299  // may be used to incrementalize or abort the precleaning process.
300  // The caller is responsible for taking care of potential
301  // interference with concurrent operations on these lists
302  // (or predicates involved) by other threads. Currently
303  // only used by the CMS collector.
304  void preclean_discovered_references(BoolObjectClosure* is_alive,
305                                      OopClosure*        keep_alive,
306                                      VoidClosure*       complete_gc,
307                                      YieldClosure*      yield,
308                                      GCTimer*           gc_timer);
309
310  // Returns the name of the discovered reference list
311  // occupying the i / _num_q slot.
312  const char* list_name(uint i);
313
314  void enqueue_discovered_reflists(AbstractRefProcTaskExecutor* task_executor);
315
316 protected:
317  // "Preclean" the given discovered reference list
318  // by removing references with strongly reachable referents.
319  // Currently used in support of CMS only.
320  void preclean_discovered_reflist(DiscoveredList&    refs_list,
321                                   BoolObjectClosure* is_alive,
322                                   OopClosure*        keep_alive,
323                                   VoidClosure*       complete_gc,
324                                   YieldClosure*      yield);
325
326  // round-robin mod _num_q (not: _not_ mode _max_num_q)
327  uint next_id() {
328    uint id = _next_id;
329    assert(!_discovery_is_mt, "Round robin should only be used in serial discovery");
330    if (++_next_id == _num_q) {
331      _next_id = 0;
332    }
333    assert(_next_id < _num_q, "_next_id %u _num_q %u _max_num_q %u", _next_id, _num_q, _max_num_q);
334    return id;
335  }
336  DiscoveredList* get_discovered_list(ReferenceType rt);
337  inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
338                                        HeapWord* discovered_addr);
339
340  void clear_discovered_references(DiscoveredList& refs_list);
341
342  // Calculate the number of jni handles.
343  size_t count_jni_refs();
344
345  void log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_count) PRODUCT_RETURN;
346
347  // Balances reference queues.
348  void balance_queues(DiscoveredList ref_lists[]);
349
350  // Update (advance) the soft ref master clock field.
351  void update_soft_ref_master_clock();
352
353 public:
354  // Default parameters give you a vanilla reference processor.
355  ReferenceProcessor(MemRegion span,
356                     bool mt_processing = false, uint mt_processing_degree = 1,
357                     bool mt_discovery  = false, uint mt_discovery_degree  = 1,
358                     bool atomic_discovery = true,
359                     BoolObjectClosure* is_alive_non_header = NULL);
360
361  // RefDiscoveryPolicy values
362  enum DiscoveryPolicy {
363    ReferenceBasedDiscovery = 0,
364    ReferentBasedDiscovery  = 1,
365    DiscoveryPolicyMin      = ReferenceBasedDiscovery,
366    DiscoveryPolicyMax      = ReferentBasedDiscovery
367  };
368
369  static void init_statics();
370
371 public:
372  // get and set "is_alive_non_header" field
373  BoolObjectClosure* is_alive_non_header() {
374    return _is_alive_non_header;
375  }
376  void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
377    _is_alive_non_header = is_alive_non_header;
378  }
379
380  // get and set span
381  MemRegion span()                   { return _span; }
382  void      set_span(MemRegion span) { _span = span; }
383
384  // start and stop weak ref discovery
385  void enable_discovery(bool check_no_refs = true);
386  void disable_discovery()  { _discovering_refs = false; }
387  bool discovery_enabled()  { return _discovering_refs;  }
388
389  // whether discovery is atomic wrt other collectors
390  bool discovery_is_atomic() const { return _discovery_is_atomic; }
391  void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
392
393  // whether discovery is done by multiple threads same-old-timeously
394  bool discovery_is_mt() const { return _discovery_is_mt; }
395  void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
396
397  // Whether we are in a phase when _processing_ is MT.
398  bool processing_is_mt() const { return _processing_is_mt; }
399  void set_mt_processing(bool mt) { _processing_is_mt = mt; }
400
401  // whether all enqueueing of weak references is complete
402  bool enqueuing_is_done()  { return _enqueuing_is_done; }
403  void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
404
405  // iterate over oops
406  void weak_oops_do(OopClosure* f);       // weak roots
407
408  // Balance each of the discovered lists.
409  void balance_all_queues();
410  void verify_list(DiscoveredList& ref_list);
411
412  // Discover a Reference object, using appropriate discovery criteria
413  bool discover_reference(oop obj, ReferenceType rt);
414
415  // Has discovered references that need handling
416  bool has_discovered_references();
417
418  // Process references found during GC (called by the garbage collector)
419  ReferenceProcessorStats
420  process_discovered_references(BoolObjectClosure*           is_alive,
421                                OopClosure*                  keep_alive,
422                                VoidClosure*                 complete_gc,
423                                AbstractRefProcTaskExecutor* task_executor,
424                                GCTimer *gc_timer);
425
426  // Enqueue references at end of GC (called by the garbage collector)
427  void enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
428
429  // If a discovery is in process that is being superceded, abandon it: all
430  // the discovered lists will be empty, and all the objects on them will
431  // have NULL discovered fields.  Must be called only at a safepoint.
432  void abandon_partial_discovery();
433
434  // debugging
435  void verify_no_references_recorded() PRODUCT_RETURN;
436  void verify_referent(oop obj)        PRODUCT_RETURN;
437};
438
439// A utility class to disable reference discovery in
440// the scope which contains it, for given ReferenceProcessor.
441class NoRefDiscovery: StackObj {
442 private:
443  ReferenceProcessor* _rp;
444  bool _was_discovering_refs;
445 public:
446  NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
447    _was_discovering_refs = _rp->discovery_enabled();
448    if (_was_discovering_refs) {
449      _rp->disable_discovery();
450    }
451  }
452
453  ~NoRefDiscovery() {
454    if (_was_discovering_refs) {
455      _rp->enable_discovery(false /*check_no_refs*/);
456    }
457  }
458};
459
460
461// A utility class to temporarily mutate the span of the
462// given ReferenceProcessor in the scope that contains it.
463class ReferenceProcessorSpanMutator: StackObj {
464 private:
465  ReferenceProcessor* _rp;
466  MemRegion           _saved_span;
467
468 public:
469  ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
470                                MemRegion span):
471    _rp(rp) {
472    _saved_span = _rp->span();
473    _rp->set_span(span);
474  }
475
476  ~ReferenceProcessorSpanMutator() {
477    _rp->set_span(_saved_span);
478  }
479};
480
481// A utility class to temporarily change the MT'ness of
482// reference discovery for the given ReferenceProcessor
483// in the scope that contains it.
484class ReferenceProcessorMTDiscoveryMutator: StackObj {
485 private:
486  ReferenceProcessor* _rp;
487  bool                _saved_mt;
488
489 public:
490  ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
491                                       bool mt):
492    _rp(rp) {
493    _saved_mt = _rp->discovery_is_mt();
494    _rp->set_mt_discovery(mt);
495  }
496
497  ~ReferenceProcessorMTDiscoveryMutator() {
498    _rp->set_mt_discovery(_saved_mt);
499  }
500};
501
502
503// A utility class to temporarily change the disposition
504// of the "is_alive_non_header" closure field of the
505// given ReferenceProcessor in the scope that contains it.
506class ReferenceProcessorIsAliveMutator: StackObj {
507 private:
508  ReferenceProcessor* _rp;
509  BoolObjectClosure*  _saved_cl;
510
511 public:
512  ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
513                                   BoolObjectClosure*  cl):
514    _rp(rp) {
515    _saved_cl = _rp->is_alive_non_header();
516    _rp->set_is_alive_non_header(cl);
517  }
518
519  ~ReferenceProcessorIsAliveMutator() {
520    _rp->set_is_alive_non_header(_saved_cl);
521  }
522};
523
524// A utility class to temporarily change the disposition
525// of the "discovery_is_atomic" field of the
526// given ReferenceProcessor in the scope that contains it.
527class ReferenceProcessorAtomicMutator: StackObj {
528 private:
529  ReferenceProcessor* _rp;
530  bool                _saved_atomic_discovery;
531
532 public:
533  ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
534                                  bool atomic):
535    _rp(rp) {
536    _saved_atomic_discovery = _rp->discovery_is_atomic();
537    _rp->set_atomic_discovery(atomic);
538  }
539
540  ~ReferenceProcessorAtomicMutator() {
541    _rp->set_atomic_discovery(_saved_atomic_discovery);
542  }
543};
544
545
546// A utility class to temporarily change the MT processing
547// disposition of the given ReferenceProcessor instance
548// in the scope that contains it.
549class ReferenceProcessorMTProcMutator: StackObj {
550 private:
551  ReferenceProcessor* _rp;
552  bool  _saved_mt;
553
554 public:
555  ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
556                                  bool mt):
557    _rp(rp) {
558    _saved_mt = _rp->processing_is_mt();
559    _rp->set_mt_processing(mt);
560  }
561
562  ~ReferenceProcessorMTProcMutator() {
563    _rp->set_mt_processing(_saved_mt);
564  }
565};
566
567
568// This class is an interface used to implement task execution for the
569// reference processing.
570class AbstractRefProcTaskExecutor {
571public:
572
573  // Abstract tasks to execute.
574  class ProcessTask;
575  class EnqueueTask;
576
577  // Executes a task using worker threads.
578  virtual void execute(ProcessTask& task) = 0;
579  virtual void execute(EnqueueTask& task) = 0;
580
581  // Switch to single threaded mode.
582  virtual void set_single_threaded_mode() { };
583};
584
585// Abstract reference processing task to execute.
586class AbstractRefProcTaskExecutor::ProcessTask {
587protected:
588  ProcessTask(ReferenceProcessor& ref_processor,
589              DiscoveredList      refs_lists[],
590              bool                marks_oops_alive)
591    : _ref_processor(ref_processor),
592      _refs_lists(refs_lists),
593      _marks_oops_alive(marks_oops_alive)
594  { }
595
596public:
597  virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
598                    OopClosure& keep_alive,
599                    VoidClosure& complete_gc) = 0;
600
601  // Returns true if a task marks some oops as alive.
602  bool marks_oops_alive() const
603  { return _marks_oops_alive; }
604
605protected:
606  ReferenceProcessor& _ref_processor;
607  DiscoveredList*     _refs_lists;
608  const bool          _marks_oops_alive;
609};
610
611// Abstract reference processing task to execute.
612class AbstractRefProcTaskExecutor::EnqueueTask {
613protected:
614  EnqueueTask(ReferenceProcessor& ref_processor,
615              DiscoveredList      refs_lists[],
616              int                 n_queues)
617    : _ref_processor(ref_processor),
618      _refs_lists(refs_lists),
619      _n_queues(n_queues)
620  { }
621
622public:
623  virtual void work(unsigned int work_id) = 0;
624
625protected:
626  ReferenceProcessor& _ref_processor;
627  DiscoveredList*     _refs_lists;
628  int                 _n_queues;
629};
630
631#endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
632