1/*
2 * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
26#define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
27
28#include "gc/shared/adaptiveSizePolicy.hpp"
29#include "gc/shared/collectedHeap.hpp"
30#include "gc/shared/collectorPolicy.hpp"
31#include "gc/shared/generation.hpp"
32
33class StrongRootsScope;
34class SubTasksDone;
35class WorkGang;
36
37// A "GenCollectedHeap" is a CollectedHeap that uses generational
38// collection.  It has two generations, young and old.
39class GenCollectedHeap : public CollectedHeap {
40  friend class GenCollectorPolicy;
41  friend class Generation;
42  friend class DefNewGeneration;
43  friend class TenuredGeneration;
44  friend class ConcurrentMarkSweepGeneration;
45  friend class CMSCollector;
46  friend class GenMarkSweep;
47  friend class VM_GenCollectForAllocation;
48  friend class VM_GenCollectFull;
49  friend class VM_GenCollectFullConcurrent;
50  friend class VM_GC_HeapInspection;
51  friend class VM_HeapDumper;
52  friend class HeapInspection;
53  friend class GCCauseSetter;
54  friend class VMStructs;
55public:
56  friend class VM_PopulateDumpSharedSpace;
57
58  enum GenerationType {
59    YoungGen,
60    OldGen
61  };
62
63private:
64  Generation* _young_gen;
65  Generation* _old_gen;
66
67  // The singleton CardTable Remembered Set.
68  CardTableRS* _rem_set;
69
70  // The generational collector policy.
71  GenCollectorPolicy* _gen_policy;
72
73  // Indicates that the most recent previous incremental collection failed.
74  // The flag is cleared when an action is taken that might clear the
75  // condition that caused that incremental collection to fail.
76  bool _incremental_collection_failed;
77
78  // In support of ExplicitGCInvokesConcurrent functionality
79  unsigned int _full_collections_completed;
80
81  // Data structure for claiming the (potentially) parallel tasks in
82  // (gen-specific) roots processing.
83  SubTasksDone* _process_strong_tasks;
84
85  // Collects the given generation.
86  void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
87                          bool run_verification, bool clear_soft_refs,
88                          bool restore_marks_for_biased_locking);
89
90  // In block contents verification, the number of header words to skip
91  NOT_PRODUCT(static size_t _skip_header_HeapWords;)
92
93  WorkGang* _workers;
94
95protected:
96  // Helper functions for allocation
97  HeapWord* attempt_allocation(size_t size,
98                               bool   is_tlab,
99                               bool   first_only);
100
101  // Helper function for two callbacks below.
102  // Considers collection of the first max_level+1 generations.
103  void do_collection(bool           full,
104                     bool           clear_all_soft_refs,
105                     size_t         size,
106                     bool           is_tlab,
107                     GenerationType max_generation);
108
109  // Callback from VM_GenCollectForAllocation operation.
110  // This function does everything necessary/possible to satisfy an
111  // allocation request that failed in the youngest generation that should
112  // have handled it (including collection, expansion, etc.)
113  HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
114
115  // Callback from VM_GenCollectFull operation.
116  // Perform a full collection of the first max_level+1 generations.
117  virtual void do_full_collection(bool clear_all_soft_refs);
118  void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
119
120  // Does the "cause" of GC indicate that
121  // we absolutely __must__ clear soft refs?
122  bool must_clear_all_soft_refs();
123
124public:
125  GenCollectedHeap(GenCollectorPolicy *policy);
126
127  WorkGang* workers() const { return _workers; }
128
129  // Returns JNI_OK on success
130  virtual jint initialize();
131
132  // Reserve aligned space for the heap as needed by the contained generations.
133  char* allocate(size_t alignment, ReservedSpace* heap_rs);
134
135  // Does operations required after initialization has been done.
136  void post_initialize();
137
138  // Initialize ("weak") refs processing support
139  virtual void ref_processing_init();
140
141  virtual Name kind() const {
142    return CollectedHeap::GenCollectedHeap;
143  }
144
145  virtual const char* name() const {
146    if (UseConcMarkSweepGC) {
147      return "Concurrent Mark Sweep";
148    } else {
149      return "Serial";
150    }
151  }
152
153  Generation* young_gen() const { return _young_gen; }
154  Generation* old_gen()   const { return _old_gen; }
155
156  bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
157  bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
158
159  // The generational collector policy.
160  GenCollectorPolicy* gen_policy() const { return _gen_policy; }
161
162  virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
163
164  // Adaptive size policy
165  virtual AdaptiveSizePolicy* size_policy() {
166    return gen_policy()->size_policy();
167  }
168
169  // Return the (conservative) maximum heap alignment
170  static size_t conservative_max_heap_alignment() {
171    return Generation::GenGrain;
172  }
173
174  size_t capacity() const;
175  size_t used() const;
176
177  // Save the "used_region" for both generations.
178  void save_used_regions();
179
180  size_t max_capacity() const;
181
182  HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
183
184  // We may support a shared contiguous allocation area, if the youngest
185  // generation does.
186  bool supports_inline_contig_alloc() const;
187  HeapWord* volatile* top_addr() const;
188  HeapWord** end_addr() const;
189
190  // Perform a full collection of the heap; intended for use in implementing
191  // "System.gc". This implies as full a collection as the CollectedHeap
192  // supports. Caller does not hold the Heap_lock on entry.
193  void collect(GCCause::Cause cause);
194
195  // The same as above but assume that the caller holds the Heap_lock.
196  void collect_locked(GCCause::Cause cause);
197
198  // Perform a full collection of generations up to and including max_generation.
199  // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
200  void collect(GCCause::Cause cause, GenerationType max_generation);
201
202  // Returns "TRUE" iff "p" points into the committed areas of the heap.
203  // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
204  // be expensive to compute in general, so, to prevent
205  // their inadvertent use in product jvm's, we restrict their use to
206  // assertion checking or verification only.
207  bool is_in(const void* p) const;
208
209  // override
210  bool is_in_closed_subset(const void* p) const {
211    if (UseConcMarkSweepGC) {
212      return is_in_reserved(p);
213    } else {
214      return is_in(p);
215    }
216  }
217
218  // Returns true if the reference is to an object in the reserved space
219  // for the young generation.
220  // Assumes the the young gen address range is less than that of the old gen.
221  bool is_in_young(oop p);
222
223#ifdef ASSERT
224  bool is_in_partial_collection(const void* p);
225#endif
226
227  virtual bool is_scavengable(const void* addr) {
228    return is_in_young((oop)addr);
229  }
230
231  // Iteration functions.
232  void oop_iterate_no_header(OopClosure* cl);
233  void oop_iterate(ExtendedOopClosure* cl);
234  void object_iterate(ObjectClosure* cl);
235  void safe_object_iterate(ObjectClosure* cl);
236  Space* space_containing(const void* addr) const;
237
238  // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
239  // each address in the (reserved) heap is a member of exactly
240  // one block.  The defining characteristic of a block is that it is
241  // possible to find its size, and thus to progress forward to the next
242  // block.  (Blocks may be of different sizes.)  Thus, blocks may
243  // represent Java objects, or they might be free blocks in a
244  // free-list-based heap (or subheap), as long as the two kinds are
245  // distinguishable and the size of each is determinable.
246
247  // Returns the address of the start of the "block" that contains the
248  // address "addr".  We say "blocks" instead of "object" since some heaps
249  // may not pack objects densely; a chunk may either be an object or a
250  // non-object.
251  virtual HeapWord* block_start(const void* addr) const;
252
253  // Requires "addr" to be the start of a chunk, and returns its size.
254  // "addr + size" is required to be the start of a new chunk, or the end
255  // of the active area of the heap. Assumes (and verifies in non-product
256  // builds) that addr is in the allocated part of the heap and is
257  // the start of a chunk.
258  virtual size_t block_size(const HeapWord* addr) const;
259
260  // Requires "addr" to be the start of a block, and returns "TRUE" iff
261  // the block is an object. Assumes (and verifies in non-product
262  // builds) that addr is in the allocated part of the heap and is
263  // the start of a chunk.
264  virtual bool block_is_obj(const HeapWord* addr) const;
265
266  // Section on TLAB's.
267  virtual bool supports_tlab_allocation() const;
268  virtual size_t tlab_capacity(Thread* thr) const;
269  virtual size_t tlab_used(Thread* thr) const;
270  virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
271  virtual HeapWord* allocate_new_tlab(size_t size);
272
273  // Can a compiler initialize a new object without store barriers?
274  // This permission only extends from the creation of a new object
275  // via a TLAB up to the first subsequent safepoint.
276  virtual bool can_elide_tlab_store_barriers() const {
277    return true;
278  }
279
280  virtual bool card_mark_must_follow_store() const {
281    return UseConcMarkSweepGC;
282  }
283
284  // We don't need barriers for stores to objects in the
285  // young gen and, a fortiori, for initializing stores to
286  // objects therein. This applies to DefNew+Tenured and ParNew+CMS
287  // only and may need to be re-examined in case other
288  // kinds of collectors are implemented in the future.
289  virtual bool can_elide_initializing_store_barrier(oop new_obj) {
290    return is_in_young(new_obj);
291  }
292
293  // The "requestor" generation is performing some garbage collection
294  // action for which it would be useful to have scratch space.  The
295  // requestor promises to allocate no more than "max_alloc_words" in any
296  // older generation (via promotion say.)   Any blocks of space that can
297  // be provided are returned as a list of ScratchBlocks, sorted by
298  // decreasing size.
299  ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
300  // Allow each generation to reset any scratch space that it has
301  // contributed as it needs.
302  void release_scratch();
303
304  // Ensure parsability: override
305  virtual void ensure_parsability(bool retire_tlabs);
306
307  // Time in ms since the longest time a collector ran in
308  // in any generation.
309  virtual jlong millis_since_last_gc();
310
311  // Total number of full collections completed.
312  unsigned int total_full_collections_completed() {
313    assert(_full_collections_completed <= _total_full_collections,
314           "Can't complete more collections than were started");
315    return _full_collections_completed;
316  }
317
318  // Update above counter, as appropriate, at the end of a stop-world GC cycle
319  unsigned int update_full_collections_completed();
320  // Update above counter, as appropriate, at the end of a concurrent GC cycle
321  unsigned int update_full_collections_completed(unsigned int count);
322
323  // Update "time of last gc" for all generations to "now".
324  void update_time_of_last_gc(jlong now) {
325    _young_gen->update_time_of_last_gc(now);
326    _old_gen->update_time_of_last_gc(now);
327  }
328
329  // Update the gc statistics for each generation.
330  void update_gc_stats(Generation* current_generation, bool full) {
331    _old_gen->update_gc_stats(current_generation, full);
332  }
333
334  bool no_gc_in_progress() { return !is_gc_active(); }
335
336  // Override.
337  void prepare_for_verify();
338
339  // Override.
340  void verify(VerifyOption option);
341
342  // Override.
343  virtual void print_on(outputStream* st) const;
344  virtual void print_gc_threads_on(outputStream* st) const;
345  virtual void gc_threads_do(ThreadClosure* tc) const;
346  virtual void print_tracing_info() const;
347  virtual void print_on_error(outputStream* st) const;
348
349  void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
350
351  // The functions below are helper functions that a subclass of
352  // "CollectedHeap" can use in the implementation of its virtual
353  // functions.
354
355  class GenClosure : public StackObj {
356   public:
357    virtual void do_generation(Generation* gen) = 0;
358  };
359
360  // Apply "cl.do_generation" to all generations in the heap
361  // If "old_to_young" determines the order.
362  void generation_iterate(GenClosure* cl, bool old_to_young);
363
364  // Return "true" if all generations have reached the
365  // maximal committed limit that they can reach, without a garbage
366  // collection.
367  virtual bool is_maximal_no_gc() const;
368
369  // This function returns the CardTableRS object that allows us to scan
370  // generations in a fully generational heap.
371  CardTableRS* rem_set() { return _rem_set; }
372
373  // Convenience function to be used in situations where the heap type can be
374  // asserted to be this type.
375  static GenCollectedHeap* heap();
376
377  // The ScanningOption determines which of the roots
378  // the closure is applied to:
379  // "SO_None" does none;
380  enum ScanningOption {
381    SO_None                =  0x0,
382    SO_AllCodeCache        =  0x8,
383    SO_ScavengeCodeCache   = 0x10
384  };
385
386 private:
387  void process_roots(StrongRootsScope* scope,
388                     ScanningOption so,
389                     OopClosure* strong_roots,
390                     OopClosure* weak_roots,
391                     CLDClosure* strong_cld_closure,
392                     CLDClosure* weak_cld_closure,
393                     CodeBlobToOopClosure* code_roots);
394
395  void process_string_table_roots(StrongRootsScope* scope,
396                                  OopClosure* root_closure);
397
398 public:
399  void young_process_roots(StrongRootsScope* scope,
400                           OopsInGenClosure* root_closure,
401                           OopsInGenClosure* old_gen_closure,
402                           CLDClosure* cld_closure);
403
404  // If "young_gen_as_roots" is false, younger generations are
405  // not scanned as roots; in this case, the caller must be arranging to
406  // scan the younger generations itself.  (For example, a generation might
407  // explicitly mark reachable objects in younger generations, to avoid
408  // excess storage retention.)
409  void cms_process_roots(StrongRootsScope* scope,
410                         bool young_gen_as_roots,
411                         ScanningOption so,
412                         bool only_strong_roots,
413                         OopsInGenClosure* root_closure,
414                         CLDClosure* cld_closure);
415
416  void full_process_roots(StrongRootsScope* scope,
417                          bool is_adjust_phase,
418                          ScanningOption so,
419                          bool only_strong_roots,
420                          OopsInGenClosure* root_closure,
421                          CLDClosure* cld_closure);
422
423  // Apply "root_closure" to all the weak roots of the system.
424  // These include JNI weak roots, string table,
425  // and referents of reachable weak refs.
426  void gen_process_weak_roots(OopClosure* root_closure);
427
428  // Set the saved marks of generations, if that makes sense.
429  // In particular, if any generation might iterate over the oops
430  // in other generations, it should call this method.
431  void save_marks();
432
433  // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
434  // allocated since the last call to save_marks in generations at or above
435  // "level".  The "cur" closure is
436  // applied to references in the generation at "level", and the "older"
437  // closure to older generations.
438#define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
439  void oop_since_save_marks_iterate(GenerationType start_gen,           \
440                                    OopClosureType* cur,                \
441                                    OopClosureType* older);
442
443  ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
444
445#undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
446
447  // Returns "true" iff no allocations have occurred since the last
448  // call to "save_marks".
449  bool no_allocs_since_save_marks();
450
451  // Returns true if an incremental collection is likely to fail.
452  // We optionally consult the young gen, if asked to do so;
453  // otherwise we base our answer on whether the previous incremental
454  // collection attempt failed with no corrective action as of yet.
455  bool incremental_collection_will_fail(bool consult_young) {
456    // The first disjunct remembers if an incremental collection failed, even
457    // when we thought (second disjunct) that it would not.
458    return incremental_collection_failed() ||
459           (consult_young && !_young_gen->collection_attempt_is_safe());
460  }
461
462  // If a generation bails out of an incremental collection,
463  // it sets this flag.
464  bool incremental_collection_failed() const {
465    return _incremental_collection_failed;
466  }
467  void set_incremental_collection_failed() {
468    _incremental_collection_failed = true;
469  }
470  void clear_incremental_collection_failed() {
471    _incremental_collection_failed = false;
472  }
473
474  // Promotion of obj into gen failed.  Try to promote obj to higher
475  // gens in ascending order; return the new location of obj if successful.
476  // Otherwise, try expand-and-allocate for obj in both the young and old
477  // generation; return the new location of obj if successful.  Otherwise, return NULL.
478  oop handle_failed_promotion(Generation* old_gen,
479                              oop obj,
480                              size_t obj_size);
481
482private:
483  // Accessor for memory state verification support
484  NOT_PRODUCT(
485    static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
486  )
487
488  // Override
489  void check_for_non_bad_heap_word_value(HeapWord* addr,
490    size_t size) PRODUCT_RETURN;
491
492  // For use by mark-sweep.  As implemented, mark-sweep-compact is global
493  // in an essential way: compaction is performed across generations, by
494  // iterating over spaces.
495  void prepare_for_compaction();
496
497  // Perform a full collection of the generations up to and including max_generation.
498  // This is the low level interface used by the public versions of
499  // collect() and collect_locked(). Caller holds the Heap_lock on entry.
500  void collect_locked(GCCause::Cause cause, GenerationType max_generation);
501
502  // Returns success or failure.
503  bool create_cms_collector();
504
505  // In support of ExplicitGCInvokesConcurrent functionality
506  bool should_do_concurrent_full_gc(GCCause::Cause cause);
507  void collect_mostly_concurrent(GCCause::Cause cause);
508
509  // Save the tops of the spaces in all generations
510  void record_gen_tops_before_GC() PRODUCT_RETURN;
511
512protected:
513  void gc_prologue(bool full);
514  void gc_epilogue(bool full);
515
516public:
517  void stop();
518};
519
520#endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
521