1/*
2 * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/stringTable.hpp"
27#include "code/codeCache.hpp"
28#include "gc/parallel/cardTableExtension.hpp"
29#include "gc/parallel/gcTaskManager.hpp"
30#include "gc/parallel/parallelScavengeHeap.hpp"
31#include "gc/parallel/psAdaptiveSizePolicy.hpp"
32#include "gc/parallel/psMarkSweep.hpp"
33#include "gc/parallel/psParallelCompact.inline.hpp"
34#include "gc/parallel/psScavenge.inline.hpp"
35#include "gc/parallel/psTasks.hpp"
36#include "gc/shared/collectorPolicy.hpp"
37#include "gc/shared/gcCause.hpp"
38#include "gc/shared/gcHeapSummary.hpp"
39#include "gc/shared/gcId.hpp"
40#include "gc/shared/gcLocker.inline.hpp"
41#include "gc/shared/gcTimer.hpp"
42#include "gc/shared/gcTrace.hpp"
43#include "gc/shared/gcTraceTime.inline.hpp"
44#include "gc/shared/isGCActiveMark.hpp"
45#include "gc/shared/referencePolicy.hpp"
46#include "gc/shared/referenceProcessor.hpp"
47#include "gc/shared/spaceDecorator.hpp"
48#include "memory/resourceArea.hpp"
49#include "logging/log.hpp"
50#include "oops/oop.inline.hpp"
51#include "runtime/biasedLocking.hpp"
52#include "runtime/fprofiler.hpp"
53#include "runtime/handles.inline.hpp"
54#include "runtime/threadCritical.hpp"
55#include "runtime/vmThread.hpp"
56#include "runtime/vm_operations.hpp"
57#include "services/memoryService.hpp"
58#include "utilities/stack.inline.hpp"
59
60HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
61int                        PSScavenge::_consecutive_skipped_scavenges = 0;
62ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
63CardTableExtension*        PSScavenge::_card_table = NULL;
64bool                       PSScavenge::_survivor_overflow = false;
65uint                       PSScavenge::_tenuring_threshold = 0;
66HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
67uintptr_t                  PSScavenge::_young_generation_boundary_compressed = 0;
68elapsedTimer               PSScavenge::_accumulated_time;
69STWGCTimer                 PSScavenge::_gc_timer;
70ParallelScavengeTracer     PSScavenge::_gc_tracer;
71CollectorCounters*         PSScavenge::_counters = NULL;
72
73// Define before use
74class PSIsAliveClosure: public BoolObjectClosure {
75public:
76  bool do_object_b(oop p) {
77    return (!PSScavenge::is_obj_in_young(p)) || p->is_forwarded();
78  }
79};
80
81PSIsAliveClosure PSScavenge::_is_alive_closure;
82
83class PSKeepAliveClosure: public OopClosure {
84protected:
85  MutableSpace* _to_space;
86  PSPromotionManager* _promotion_manager;
87
88public:
89  PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
90    ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
91    _to_space = heap->young_gen()->to_space();
92
93    assert(_promotion_manager != NULL, "Sanity");
94  }
95
96  template <class T> void do_oop_work(T* p) {
97    assert (!oopDesc::is_null(*p), "expected non-null ref");
98    assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
99            "expected an oop while scanning weak refs");
100
101    // Weak refs may be visited more than once.
102    if (PSScavenge::should_scavenge(p, _to_space)) {
103      _promotion_manager->copy_and_push_safe_barrier<T, /*promote_immediately=*/false>(p);
104    }
105  }
106  virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
107  virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
108};
109
110class PSEvacuateFollowersClosure: public VoidClosure {
111 private:
112  PSPromotionManager* _promotion_manager;
113 public:
114  PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
115
116  virtual void do_void() {
117    assert(_promotion_manager != NULL, "Sanity");
118    _promotion_manager->drain_stacks(true);
119    guarantee(_promotion_manager->stacks_empty(),
120              "stacks should be empty at this point");
121  }
122};
123
124class PSRefProcTaskProxy: public GCTask {
125  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
126  ProcessTask & _rp_task;
127  uint          _work_id;
128public:
129  PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
130    : _rp_task(rp_task),
131      _work_id(work_id)
132  { }
133
134private:
135  virtual char* name() { return (char *)"Process referents by policy in parallel"; }
136  virtual void do_it(GCTaskManager* manager, uint which);
137};
138
139void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
140{
141  PSPromotionManager* promotion_manager =
142    PSPromotionManager::gc_thread_promotion_manager(which);
143  assert(promotion_manager != NULL, "sanity check");
144  PSKeepAliveClosure keep_alive(promotion_manager);
145  PSEvacuateFollowersClosure evac_followers(promotion_manager);
146  PSIsAliveClosure is_alive;
147  _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
148}
149
150class PSRefEnqueueTaskProxy: public GCTask {
151  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
152  EnqueueTask& _enq_task;
153  uint         _work_id;
154
155public:
156  PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
157    : _enq_task(enq_task),
158      _work_id(work_id)
159  { }
160
161  virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
162  virtual void do_it(GCTaskManager* manager, uint which)
163  {
164    _enq_task.work(_work_id);
165  }
166};
167
168class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
169  virtual void execute(ProcessTask& task);
170  virtual void execute(EnqueueTask& task);
171};
172
173void PSRefProcTaskExecutor::execute(ProcessTask& task)
174{
175  GCTaskQueue* q = GCTaskQueue::create();
176  GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
177  for(uint i=0; i < manager->active_workers(); i++) {
178    q->enqueue(new PSRefProcTaskProxy(task, i));
179  }
180  ParallelTaskTerminator terminator(manager->active_workers(),
181                 (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth());
182  if (task.marks_oops_alive() && manager->active_workers() > 1) {
183    for (uint j = 0; j < manager->active_workers(); j++) {
184      q->enqueue(new StealTask(&terminator));
185    }
186  }
187  manager->execute_and_wait(q);
188}
189
190
191void PSRefProcTaskExecutor::execute(EnqueueTask& task)
192{
193  GCTaskQueue* q = GCTaskQueue::create();
194  GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
195  for(uint i=0; i < manager->active_workers(); i++) {
196    q->enqueue(new PSRefEnqueueTaskProxy(task, i));
197  }
198  manager->execute_and_wait(q);
199}
200
201// This method contains all heap specific policy for invoking scavenge.
202// PSScavenge::invoke_no_policy() will do nothing but attempt to
203// scavenge. It will not clean up after failed promotions, bail out if
204// we've exceeded policy time limits, or any other special behavior.
205// All such policy should be placed here.
206//
207// Note that this method should only be called from the vm_thread while
208// at a safepoint!
209bool PSScavenge::invoke() {
210  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
211  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
212  assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
213
214  ParallelScavengeHeap* const heap = ParallelScavengeHeap::heap();
215  PSAdaptiveSizePolicy* policy = heap->size_policy();
216  IsGCActiveMark mark;
217
218  const bool scavenge_done = PSScavenge::invoke_no_policy();
219  const bool need_full_gc = !scavenge_done ||
220    policy->should_full_GC(heap->old_gen()->free_in_bytes());
221  bool full_gc_done = false;
222
223  if (UsePerfData) {
224    PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
225    const int ffs_val = need_full_gc ? full_follows_scavenge : not_skipped;
226    counters->update_full_follows_scavenge(ffs_val);
227  }
228
229  if (need_full_gc) {
230    GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
231    CollectorPolicy* cp = heap->collector_policy();
232    const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
233
234    if (UseParallelOldGC) {
235      full_gc_done = PSParallelCompact::invoke_no_policy(clear_all_softrefs);
236    } else {
237      full_gc_done = PSMarkSweep::invoke_no_policy(clear_all_softrefs);
238    }
239  }
240
241  return full_gc_done;
242}
243
244// This method contains no policy. You should probably
245// be calling invoke() instead.
246bool PSScavenge::invoke_no_policy() {
247  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
248  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
249
250  _gc_timer.register_gc_start();
251
252  TimeStamp scavenge_entry;
253  TimeStamp scavenge_midpoint;
254  TimeStamp scavenge_exit;
255
256  scavenge_entry.update();
257
258  if (GCLocker::check_active_before_gc()) {
259    return false;
260  }
261
262  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
263  GCCause::Cause gc_cause = heap->gc_cause();
264
265  // Check for potential problems.
266  if (!should_attempt_scavenge()) {
267    return false;
268  }
269
270  GCIdMark gc_id_mark;
271  _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
272
273  bool promotion_failure_occurred = false;
274
275  PSYoungGen* young_gen = heap->young_gen();
276  PSOldGen* old_gen = heap->old_gen();
277  PSAdaptiveSizePolicy* size_policy = heap->size_policy();
278
279  heap->increment_total_collections();
280
281  if (AdaptiveSizePolicy::should_update_eden_stats(gc_cause)) {
282    // Gather the feedback data for eden occupancy.
283    young_gen->eden_space()->accumulate_statistics();
284  }
285
286  heap->print_heap_before_gc();
287  heap->trace_heap_before_gc(&_gc_tracer);
288
289  assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
290  assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
291
292  // Fill in TLABs
293  heap->accumulate_statistics_all_tlabs();
294  heap->ensure_parsability(true);  // retire TLABs
295
296  if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
297    HandleMark hm;  // Discard invalid handles created during verification
298    Universe::verify("Before GC");
299  }
300
301  {
302    ResourceMark rm;
303    HandleMark hm;
304
305    GCTraceCPUTime tcpu;
306    GCTraceTime(Info, gc) tm("Pause Young", NULL, gc_cause, true);
307    TraceCollectorStats tcs(counters());
308    TraceMemoryManagerStats tms(false /* not full GC */,gc_cause);
309
310    if (TraceYoungGenTime) accumulated_time()->start();
311
312    // Let the size policy know we're starting
313    size_policy->minor_collection_begin();
314
315    // Verify the object start arrays.
316    if (VerifyObjectStartArray &&
317        VerifyBeforeGC) {
318      old_gen->verify_object_start_array();
319    }
320
321    // Verify no unmarked old->young roots
322    if (VerifyRememberedSets) {
323      CardTableExtension::verify_all_young_refs_imprecise();
324    }
325
326    assert(young_gen->to_space()->is_empty(),
327           "Attempt to scavenge with live objects in to_space");
328    young_gen->to_space()->clear(SpaceDecorator::Mangle);
329
330    save_to_space_top_before_gc();
331
332#if defined(COMPILER2) || INCLUDE_JVMCI
333    DerivedPointerTable::clear();
334#endif
335
336    reference_processor()->enable_discovery();
337    reference_processor()->setup_policy(false);
338
339    PreGCValues pre_gc_values(heap);
340
341    // Reset our survivor overflow.
342    set_survivor_overflow(false);
343
344    // We need to save the old top values before
345    // creating the promotion_manager. We pass the top
346    // values to the card_table, to prevent it from
347    // straying into the promotion labs.
348    HeapWord* old_top = old_gen->object_space()->top();
349
350    // Release all previously held resources
351    gc_task_manager()->release_all_resources();
352
353    // Set the number of GC threads to be used in this collection
354    gc_task_manager()->set_active_gang();
355    gc_task_manager()->task_idle_workers();
356    // Get the active number of workers here and use that value
357    // throughout the methods.
358    uint active_workers = gc_task_manager()->active_workers();
359
360    PSPromotionManager::pre_scavenge();
361
362    // We'll use the promotion manager again later.
363    PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
364    {
365      GCTraceTime(Debug, gc, phases) tm("Scavenge", &_gc_timer);
366      ParallelScavengeHeap::ParStrongRootsScope psrs;
367
368      GCTaskQueue* q = GCTaskQueue::create();
369
370      if (!old_gen->object_space()->is_empty()) {
371        // There are only old-to-young pointers if there are objects
372        // in the old gen.
373        uint stripe_total = active_workers;
374        for(uint i=0; i < stripe_total; i++) {
375          q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i, stripe_total));
376        }
377      }
378
379      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
380      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
381      // We scan the thread roots in parallel
382      Threads::create_thread_roots_tasks(q);
383      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
384      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
385      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
386      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
387      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::class_loader_data));
388      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
389      q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
390
391      ParallelTaskTerminator terminator(
392        active_workers,
393                  (TaskQueueSetSuper*) promotion_manager->stack_array_depth());
394        // If active_workers can exceed 1, add a StrealTask.
395        // PSPromotionManager::drain_stacks_depth() does not fully drain its
396        // stacks and expects a StealTask to complete the draining if
397        // ParallelGCThreads is > 1.
398        if (gc_task_manager()->workers() > 1) {
399          for (uint j = 0; j < active_workers; j++) {
400            q->enqueue(new StealTask(&terminator));
401          }
402        }
403
404      gc_task_manager()->execute_and_wait(q);
405    }
406
407    scavenge_midpoint.update();
408
409    // Process reference objects discovered during scavenge
410    {
411      GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
412
413      reference_processor()->setup_policy(false); // not always_clear
414      reference_processor()->set_active_mt_degree(active_workers);
415      PSKeepAliveClosure keep_alive(promotion_manager);
416      PSEvacuateFollowersClosure evac_followers(promotion_manager);
417      ReferenceProcessorStats stats;
418      if (reference_processor()->processing_is_mt()) {
419        PSRefProcTaskExecutor task_executor;
420        stats = reference_processor()->process_discovered_references(
421          &_is_alive_closure, &keep_alive, &evac_followers, &task_executor,
422          &_gc_timer);
423      } else {
424        stats = reference_processor()->process_discovered_references(
425          &_is_alive_closure, &keep_alive, &evac_followers, NULL, &_gc_timer);
426      }
427
428      _gc_tracer.report_gc_reference_stats(stats);
429
430      // Enqueue reference objects discovered during scavenge.
431      if (reference_processor()->processing_is_mt()) {
432        PSRefProcTaskExecutor task_executor;
433        reference_processor()->enqueue_discovered_references(&task_executor);
434      } else {
435        reference_processor()->enqueue_discovered_references(NULL);
436      }
437    }
438
439    {
440      GCTraceTime(Debug, gc, phases) tm("Scrub String Table", &_gc_timer);
441      // Unlink any dead interned Strings and process the remaining live ones.
442      PSScavengeRootsClosure root_closure(promotion_manager);
443      StringTable::unlink_or_oops_do(&_is_alive_closure, &root_closure);
444    }
445
446    // Finally, flush the promotion_manager's labs, and deallocate its stacks.
447    promotion_failure_occurred = PSPromotionManager::post_scavenge(_gc_tracer);
448    if (promotion_failure_occurred) {
449      clean_up_failed_promotion();
450      log_info(gc, promotion)("Promotion failed");
451    }
452
453    _gc_tracer.report_tenuring_threshold(tenuring_threshold());
454
455    // Let the size policy know we're done.  Note that we count promotion
456    // failure cleanup time as part of the collection (otherwise, we're
457    // implicitly saying it's mutator time).
458    size_policy->minor_collection_end(gc_cause);
459
460    if (!promotion_failure_occurred) {
461      // Swap the survivor spaces.
462      young_gen->eden_space()->clear(SpaceDecorator::Mangle);
463      young_gen->from_space()->clear(SpaceDecorator::Mangle);
464      young_gen->swap_spaces();
465
466      size_t survived = young_gen->from_space()->used_in_bytes();
467      size_t promoted = old_gen->used_in_bytes() - pre_gc_values.old_gen_used();
468      size_policy->update_averages(_survivor_overflow, survived, promoted);
469
470      // A successful scavenge should restart the GC time limit count which is
471      // for full GC's.
472      size_policy->reset_gc_overhead_limit_count();
473      if (UseAdaptiveSizePolicy) {
474        // Calculate the new survivor size and tenuring threshold
475
476        log_debug(gc, ergo)("AdaptiveSizeStart:  collection: %d ", heap->total_collections());
477        log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
478                            old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
479
480        if (UsePerfData) {
481          PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
482          counters->update_old_eden_size(
483            size_policy->calculated_eden_size_in_bytes());
484          counters->update_old_promo_size(
485            size_policy->calculated_promo_size_in_bytes());
486          counters->update_old_capacity(old_gen->capacity_in_bytes());
487          counters->update_young_capacity(young_gen->capacity_in_bytes());
488          counters->update_survived(survived);
489          counters->update_promoted(promoted);
490          counters->update_survivor_overflowed(_survivor_overflow);
491        }
492
493        size_t max_young_size = young_gen->max_size();
494
495        // Deciding a free ratio in the young generation is tricky, so if
496        // MinHeapFreeRatio or MaxHeapFreeRatio are in use (implicating
497        // that the old generation size may have been limited because of them) we
498        // should then limit our young generation size using NewRatio to have it
499        // follow the old generation size.
500        if (MinHeapFreeRatio != 0 || MaxHeapFreeRatio != 100) {
501          max_young_size = MIN2(old_gen->capacity_in_bytes() / NewRatio, young_gen->max_size());
502        }
503
504        size_t survivor_limit =
505          size_policy->max_survivor_size(max_young_size);
506        _tenuring_threshold =
507          size_policy->compute_survivor_space_size_and_threshold(
508                                                           _survivor_overflow,
509                                                           _tenuring_threshold,
510                                                           survivor_limit);
511
512       log_debug(gc, age)("Desired survivor size " SIZE_FORMAT " bytes, new threshold %u (max threshold " UINTX_FORMAT ")",
513                          size_policy->calculated_survivor_size_in_bytes(),
514                          _tenuring_threshold, MaxTenuringThreshold);
515
516        if (UsePerfData) {
517          PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
518          counters->update_tenuring_threshold(_tenuring_threshold);
519          counters->update_survivor_size_counters();
520        }
521
522        // Do call at minor collections?
523        // Don't check if the size_policy is ready at this
524        // level.  Let the size_policy check that internally.
525        if (UseAdaptiveGenerationSizePolicyAtMinorCollection &&
526            (AdaptiveSizePolicy::should_update_eden_stats(gc_cause))) {
527          // Calculate optimal free space amounts
528          assert(young_gen->max_size() >
529            young_gen->from_space()->capacity_in_bytes() +
530            young_gen->to_space()->capacity_in_bytes(),
531            "Sizes of space in young gen are out-of-bounds");
532
533          size_t young_live = young_gen->used_in_bytes();
534          size_t eden_live = young_gen->eden_space()->used_in_bytes();
535          size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
536          size_t max_old_gen_size = old_gen->max_gen_size();
537          size_t max_eden_size = max_young_size -
538            young_gen->from_space()->capacity_in_bytes() -
539            young_gen->to_space()->capacity_in_bytes();
540
541          // Used for diagnostics
542          size_policy->clear_generation_free_space_flags();
543
544          size_policy->compute_eden_space_size(young_live,
545                                               eden_live,
546                                               cur_eden,
547                                               max_eden_size,
548                                               false /* not full gc*/);
549
550          size_policy->check_gc_overhead_limit(young_live,
551                                               eden_live,
552                                               max_old_gen_size,
553                                               max_eden_size,
554                                               false /* not full gc*/,
555                                               gc_cause,
556                                               heap->collector_policy());
557
558          size_policy->decay_supplemental_growth(false /* not full gc*/);
559        }
560        // Resize the young generation at every collection
561        // even if new sizes have not been calculated.  This is
562        // to allow resizes that may have been inhibited by the
563        // relative location of the "to" and "from" spaces.
564
565        // Resizing the old gen at young collections can cause increases
566        // that don't feed back to the generation sizing policy until
567        // a full collection.  Don't resize the old gen here.
568
569        heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
570                        size_policy->calculated_survivor_size_in_bytes());
571
572        log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
573      }
574
575      // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
576      // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
577      // Also update() will case adaptive NUMA chunk resizing.
578      assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
579      young_gen->eden_space()->update();
580
581      heap->gc_policy_counters()->update_counters();
582
583      heap->resize_all_tlabs();
584
585      assert(young_gen->to_space()->is_empty(), "to space should be empty now");
586    }
587
588#if defined(COMPILER2) || INCLUDE_JVMCI
589    DerivedPointerTable::update_pointers();
590#endif
591
592    NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
593
594    // Re-verify object start arrays
595    if (VerifyObjectStartArray &&
596        VerifyAfterGC) {
597      old_gen->verify_object_start_array();
598    }
599
600    // Verify all old -> young cards are now precise
601    if (VerifyRememberedSets) {
602      // Precise verification will give false positives. Until this is fixed,
603      // use imprecise verification.
604      // CardTableExtension::verify_all_young_refs_precise();
605      CardTableExtension::verify_all_young_refs_imprecise();
606    }
607
608    if (TraceYoungGenTime) accumulated_time()->stop();
609
610    young_gen->print_used_change(pre_gc_values.young_gen_used());
611    old_gen->print_used_change(pre_gc_values.old_gen_used());
612    MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
613
614    // Track memory usage and detect low memory
615    MemoryService::track_memory_usage();
616    heap->update_counters();
617
618    gc_task_manager()->release_idle_workers();
619  }
620
621  if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
622    HandleMark hm;  // Discard invalid handles created during verification
623    Universe::verify("After GC");
624  }
625
626  heap->print_heap_after_gc();
627  heap->trace_heap_after_gc(&_gc_tracer);
628
629  scavenge_exit.update();
630
631  log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
632                            scavenge_entry.ticks(), scavenge_midpoint.ticks(),
633                            scavenge_exit.ticks());
634  gc_task_manager()->print_task_time_stamps();
635
636#ifdef TRACESPINNING
637  ParallelTaskTerminator::print_termination_counts();
638#endif
639
640  AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
641
642  _gc_timer.register_gc_end();
643
644  _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
645
646  return !promotion_failure_occurred;
647}
648
649// This method iterates over all objects in the young generation,
650// removing all forwarding references. It then restores any preserved marks.
651void PSScavenge::clean_up_failed_promotion() {
652  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
653  PSYoungGen* young_gen = heap->young_gen();
654
655  RemoveForwardedPointerClosure remove_fwd_ptr_closure;
656  young_gen->object_iterate(&remove_fwd_ptr_closure);
657
658  PSPromotionManager::restore_preserved_marks();
659
660  // Reset the PromotionFailureALot counters.
661  NOT_PRODUCT(heap->reset_promotion_should_fail();)
662}
663
664bool PSScavenge::should_attempt_scavenge() {
665  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
666  PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
667
668  if (UsePerfData) {
669    counters->update_scavenge_skipped(not_skipped);
670  }
671
672  PSYoungGen* young_gen = heap->young_gen();
673  PSOldGen* old_gen = heap->old_gen();
674
675  // Do not attempt to promote unless to_space is empty
676  if (!young_gen->to_space()->is_empty()) {
677    _consecutive_skipped_scavenges++;
678    if (UsePerfData) {
679      counters->update_scavenge_skipped(to_space_not_empty);
680    }
681    return false;
682  }
683
684  // Test to see if the scavenge will likely fail.
685  PSAdaptiveSizePolicy* policy = heap->size_policy();
686
687  // A similar test is done in the policy's should_full_GC().  If this is
688  // changed, decide if that test should also be changed.
689  size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
690  size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
691  bool result = promotion_estimate < old_gen->free_in_bytes();
692
693  log_trace(ergo)("%s scavenge: average_promoted " SIZE_FORMAT " padded_average_promoted " SIZE_FORMAT " free in old gen " SIZE_FORMAT,
694                result ? "Do" : "Skip", (size_t) policy->average_promoted_in_bytes(),
695                (size_t) policy->padded_average_promoted_in_bytes(),
696                old_gen->free_in_bytes());
697  if (young_gen->used_in_bytes() < (size_t) policy->padded_average_promoted_in_bytes()) {
698    log_trace(ergo)(" padded_promoted_average is greater than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
699  }
700
701  if (result) {
702    _consecutive_skipped_scavenges = 0;
703  } else {
704    _consecutive_skipped_scavenges++;
705    if (UsePerfData) {
706      counters->update_scavenge_skipped(promoted_too_large);
707    }
708  }
709  return result;
710}
711
712  // Used to add tasks
713GCTaskManager* const PSScavenge::gc_task_manager() {
714  assert(ParallelScavengeHeap::gc_task_manager() != NULL,
715   "shouldn't return NULL");
716  return ParallelScavengeHeap::gc_task_manager();
717}
718
719// Adaptive size policy support.  When the young generation/old generation
720// boundary moves, _young_generation_boundary must be reset
721void PSScavenge::set_young_generation_boundary(HeapWord* v) {
722  _young_generation_boundary = v;
723  if (UseCompressedOops) {
724    _young_generation_boundary_compressed = (uintptr_t)oopDesc::encode_heap_oop((oop)v);
725  }
726}
727
728void PSScavenge::initialize() {
729  // Arguments must have been parsed
730
731  if (AlwaysTenure || NeverTenure) {
732    assert(MaxTenuringThreshold == 0 || MaxTenuringThreshold == markOopDesc::max_age + 1,
733           "MaxTenuringThreshold should be 0 or markOopDesc::max_age + 1, but is %d", (int) MaxTenuringThreshold);
734    _tenuring_threshold = MaxTenuringThreshold;
735  } else {
736    // We want to smooth out our startup times for the AdaptiveSizePolicy
737    _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
738                                                    MaxTenuringThreshold;
739  }
740
741  ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
742  PSYoungGen* young_gen = heap->young_gen();
743  PSOldGen* old_gen = heap->old_gen();
744
745  // Set boundary between young_gen and old_gen
746  assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
747         "old above young");
748  set_young_generation_boundary(young_gen->eden_space()->bottom());
749
750  // Initialize ref handling object for scavenging.
751  MemRegion mr = young_gen->reserved();
752
753  _ref_processor =
754    new ReferenceProcessor(mr,                         // span
755                           ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
756                           ParallelGCThreads,          // mt processing degree
757                           true,                       // mt discovery
758                           ParallelGCThreads,          // mt discovery degree
759                           true,                       // atomic_discovery
760                           NULL);                      // header provides liveness info
761
762  // Cache the cardtable
763  _card_table = barrier_set_cast<CardTableExtension>(heap->barrier_set());
764
765  _counters = new CollectorCounters("PSScavenge", 0);
766}
767