1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "code/nmethod.hpp"
27#include "gc/g1/g1BlockOffsetTable.inline.hpp"
28#include "gc/g1/g1CollectedHeap.inline.hpp"
29#include "gc/g1/g1HeapRegionTraceType.hpp"
30#include "gc/g1/g1OopClosures.inline.hpp"
31#include "gc/g1/heapRegion.inline.hpp"
32#include "gc/g1/heapRegionBounds.inline.hpp"
33#include "gc/g1/heapRegionManager.inline.hpp"
34#include "gc/g1/heapRegionRemSet.hpp"
35#include "gc/g1/heapRegionTracer.hpp"
36#include "gc/shared/genOopClosures.inline.hpp"
37#include "gc/shared/space.inline.hpp"
38#include "logging/log.hpp"
39#include "memory/iterator.hpp"
40#include "memory/resourceArea.hpp"
41#include "oops/oop.inline.hpp"
42#include "runtime/atomic.hpp"
43#include "runtime/orderAccess.inline.hpp"
44
45int    HeapRegion::LogOfHRGrainBytes = 0;
46int    HeapRegion::LogOfHRGrainWords = 0;
47size_t HeapRegion::GrainBytes        = 0;
48size_t HeapRegion::GrainWords        = 0;
49size_t HeapRegion::CardsPerRegion    = 0;
50
51HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
52                                 HeapRegion* hr,
53                                 G1ParPushHeapRSClosure* cl,
54                                 CardTableModRefBS::PrecisionStyle precision) :
55  DirtyCardToOopClosure(hr, cl, precision, NULL),
56  _hr(hr), _rs_scan(cl), _g1(g1) { }
57
58FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
59                                                   OopClosure* oc) :
60  _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
61
62void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
63                                      HeapWord* bottom,
64                                      HeapWord* top) {
65  G1CollectedHeap* g1h = _g1;
66  size_t oop_size;
67  HeapWord* cur = bottom;
68
69  // Start filtering what we add to the remembered set. If the object is
70  // not considered dead, either because it is marked (in the mark bitmap)
71  // or it was allocated after marking finished, then we add it. Otherwise
72  // we can safely ignore the object.
73  if (!g1h->is_obj_dead(oop(cur))) {
74    oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr);
75  } else {
76    oop_size = _hr->block_size(cur);
77  }
78
79  cur += oop_size;
80
81  if (cur < top) {
82    oop cur_oop = oop(cur);
83    oop_size = _hr->block_size(cur);
84    HeapWord* next_obj = cur + oop_size;
85    while (next_obj < top) {
86      // Keep filtering the remembered set.
87      if (!g1h->is_obj_dead(cur_oop)) {
88        // Bottom lies entirely below top, so we can call the
89        // non-memRegion version of oop_iterate below.
90        cur_oop->oop_iterate(_rs_scan);
91      }
92      cur = next_obj;
93      cur_oop = oop(cur);
94      oop_size = _hr->block_size(cur);
95      next_obj = cur + oop_size;
96    }
97
98    // Last object. Need to do dead-obj filtering here too.
99    if (!g1h->is_obj_dead(oop(cur))) {
100      oop(cur)->oop_iterate(_rs_scan, mr);
101    }
102  }
103}
104
105size_t HeapRegion::max_region_size() {
106  return HeapRegionBounds::max_size();
107}
108
109size_t HeapRegion::min_region_size_in_words() {
110  return HeapRegionBounds::min_size() >> LogHeapWordSize;
111}
112
113void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
114  size_t region_size = G1HeapRegionSize;
115  if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
116    size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
117    region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
118                       HeapRegionBounds::min_size());
119  }
120
121  int region_size_log = log2_long((jlong) region_size);
122  // Recalculate the region size to make sure it's a power of
123  // 2. This means that region_size is the largest power of 2 that's
124  // <= what we've calculated so far.
125  region_size = ((size_t)1 << region_size_log);
126
127  // Now make sure that we don't go over or under our limits.
128  if (region_size < HeapRegionBounds::min_size()) {
129    region_size = HeapRegionBounds::min_size();
130  } else if (region_size > HeapRegionBounds::max_size()) {
131    region_size = HeapRegionBounds::max_size();
132  }
133
134  // And recalculate the log.
135  region_size_log = log2_long((jlong) region_size);
136
137  // Now, set up the globals.
138  guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
139  LogOfHRGrainBytes = region_size_log;
140
141  guarantee(LogOfHRGrainWords == 0, "we should only set it once");
142  LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
143
144  guarantee(GrainBytes == 0, "we should only set it once");
145  // The cast to int is safe, given that we've bounded region_size by
146  // MIN_REGION_SIZE and MAX_REGION_SIZE.
147  GrainBytes = region_size;
148  log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M);
149
150  guarantee(GrainWords == 0, "we should only set it once");
151  GrainWords = GrainBytes >> LogHeapWordSize;
152  guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
153
154  guarantee(CardsPerRegion == 0, "we should only set it once");
155  CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
156
157  if (G1HeapRegionSize != GrainBytes) {
158    FLAG_SET_ERGO(size_t, G1HeapRegionSize, GrainBytes);
159  }
160}
161
162void HeapRegion::reset_after_compaction() {
163  G1ContiguousSpace::reset_after_compaction();
164  // After a compaction the mark bitmap is invalid, so we must
165  // treat all objects as being inside the unmarked area.
166  zero_marked_bytes();
167  init_top_at_mark_start();
168}
169
170void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) {
171  assert(_humongous_start_region == NULL,
172         "we should have already filtered out humongous regions");
173  assert(!in_collection_set(),
174         "Should not clear heap region %u in the collection set", hrm_index());
175
176  set_allocation_context(AllocationContext::system());
177  set_young_index_in_cset(-1);
178  uninstall_surv_rate_group();
179  set_free();
180  reset_pre_dummy_top();
181
182  if (!keep_remset) {
183    if (locked) {
184      rem_set()->clear_locked();
185    } else {
186      rem_set()->clear();
187    }
188  }
189
190  zero_marked_bytes();
191
192  init_top_at_mark_start();
193  _gc_time_stamp = G1CollectedHeap::heap()->get_gc_time_stamp();
194  if (clear_space) clear(SpaceDecorator::Mangle);
195}
196
197void HeapRegion::par_clear() {
198  assert(used() == 0, "the region should have been already cleared");
199  assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
200  HeapRegionRemSet* hrrs = rem_set();
201  hrrs->clear();
202  CardTableModRefBS* ct_bs =
203    barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
204  ct_bs->clear(MemRegion(bottom(), end()));
205}
206
207void HeapRegion::calc_gc_efficiency() {
208  // GC efficiency is the ratio of how much space would be
209  // reclaimed over how long we predict it would take to reclaim it.
210  G1CollectedHeap* g1h = G1CollectedHeap::heap();
211  G1Policy* g1p = g1h->g1_policy();
212
213  // Retrieve a prediction of the elapsed time for this region for
214  // a mixed gc because the region will only be evacuated during a
215  // mixed gc.
216  double region_elapsed_time_ms =
217    g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
218  _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
219}
220
221void HeapRegion::set_free() {
222  report_region_type_change(G1HeapRegionTraceType::Free);
223  _type.set_free();
224}
225
226void HeapRegion::set_eden() {
227  report_region_type_change(G1HeapRegionTraceType::Eden);
228  _type.set_eden();
229}
230
231void HeapRegion::set_eden_pre_gc() {
232  report_region_type_change(G1HeapRegionTraceType::Eden);
233  _type.set_eden_pre_gc();
234}
235
236void HeapRegion::set_survivor() {
237  report_region_type_change(G1HeapRegionTraceType::Survivor);
238  _type.set_survivor();
239}
240
241void HeapRegion::set_old() {
242  report_region_type_change(G1HeapRegionTraceType::Old);
243  _type.set_old();
244}
245
246void HeapRegion::set_archive() {
247  report_region_type_change(G1HeapRegionTraceType::Archive);
248  _type.set_archive();
249}
250
251void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
252  assert(!is_humongous(), "sanity / pre-condition");
253  assert(top() == bottom(), "should be empty");
254
255  report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
256  _type.set_starts_humongous();
257  _humongous_start_region = this;
258
259  _bot_part.set_for_starts_humongous(obj_top, fill_size);
260}
261
262void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
263  assert(!is_humongous(), "sanity / pre-condition");
264  assert(top() == bottom(), "should be empty");
265  assert(first_hr->is_starts_humongous(), "pre-condition");
266
267  report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
268  _type.set_continues_humongous();
269  _humongous_start_region = first_hr;
270}
271
272void HeapRegion::clear_humongous() {
273  assert(is_humongous(), "pre-condition");
274
275  assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
276  _humongous_start_region = NULL;
277}
278
279HeapRegion::HeapRegion(uint hrm_index,
280                       G1BlockOffsetTable* bot,
281                       MemRegion mr) :
282    G1ContiguousSpace(bot),
283    _hrm_index(hrm_index),
284    _allocation_context(AllocationContext::system()),
285    _humongous_start_region(NULL),
286    _evacuation_failed(false),
287    _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
288    _next(NULL), _prev(NULL),
289#ifdef ASSERT
290    _containing_set(NULL),
291#endif // ASSERT
292     _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
293    _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
294    _predicted_bytes_to_copy(0)
295{
296  _rem_set = new HeapRegionRemSet(bot, this);
297
298  initialize(mr);
299}
300
301void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
302  assert(_rem_set->is_empty(), "Remembered set must be empty");
303
304  G1ContiguousSpace::initialize(mr, clear_space, mangle_space);
305
306  hr_clear(false /*par*/, false /*clear_space*/);
307  set_top(bottom());
308  record_timestamp();
309}
310
311void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
312  HeapRegionTracer::send_region_type_change(_hrm_index,
313                                            get_trace_type(),
314                                            to,
315                                            (uintptr_t)bottom(),
316                                            used(),
317                                            (uint)allocation_context());
318}
319
320CompactibleSpace* HeapRegion::next_compaction_space() const {
321  return G1CollectedHeap::heap()->next_compaction_region(this);
322}
323
324void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
325                                                    bool during_conc_mark) {
326  // We always recreate the prev marking info and we'll explicitly
327  // mark all objects we find to be self-forwarded on the prev
328  // bitmap. So all objects need to be below PTAMS.
329  _prev_marked_bytes = 0;
330
331  if (during_initial_mark) {
332    // During initial-mark, we'll also explicitly mark all objects
333    // we find to be self-forwarded on the next bitmap. So all
334    // objects need to be below NTAMS.
335    _next_top_at_mark_start = top();
336    _next_marked_bytes = 0;
337  } else if (during_conc_mark) {
338    // During concurrent mark, all objects in the CSet (including
339    // the ones we find to be self-forwarded) are implicitly live.
340    // So all objects need to be above NTAMS.
341    _next_top_at_mark_start = bottom();
342    _next_marked_bytes = 0;
343  }
344}
345
346void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
347                                                  bool during_conc_mark,
348                                                  size_t marked_bytes) {
349  assert(marked_bytes <= used(),
350         "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
351  _prev_top_at_mark_start = top();
352  _prev_marked_bytes = marked_bytes;
353}
354
355// Humongous objects are allocated directly in the old-gen.  Need
356// special handling for concurrent processing encountering an
357// in-progress allocation.
358static bool do_oops_on_card_in_humongous(MemRegion mr,
359                                         FilterOutOfRegionClosure* cl,
360                                         HeapRegion* hr,
361                                         G1CollectedHeap* g1h) {
362  assert(hr->is_humongous(), "precondition");
363  HeapRegion* sr = hr->humongous_start_region();
364  oop obj = oop(sr->bottom());
365
366  // If concurrent and klass_or_null is NULL, then space has been
367  // allocated but the object has not yet been published by setting
368  // the klass.  That can only happen if the card is stale.  However,
369  // we've already set the card clean, so we must return failure,
370  // since the allocating thread could have performed a write to the
371  // card that might be missed otherwise.
372  if (!g1h->is_gc_active() && (obj->klass_or_null_acquire() == NULL)) {
373    return false;
374  }
375
376  // We have a well-formed humongous object at the start of sr.
377  // Only filler objects follow a humongous object in the containing
378  // regions, and we can ignore those.  So only process the one
379  // humongous object.
380  if (!g1h->is_obj_dead(obj, sr)) {
381    if (obj->is_objArray() || (sr->bottom() < mr.start())) {
382      // objArrays are always marked precisely, so limit processing
383      // with mr.  Non-objArrays might be precisely marked, and since
384      // it's humongous it's worthwhile avoiding full processing.
385      // However, the card could be stale and only cover filler
386      // objects.  That should be rare, so not worth checking for;
387      // instead let it fall out from the bounded iteration.
388      obj->oop_iterate(cl, mr);
389    } else {
390      // If obj is not an objArray and mr contains the start of the
391      // obj, then this could be an imprecise mark, and we need to
392      // process the entire object.
393      obj->oop_iterate(cl);
394    }
395  }
396  return true;
397}
398
399bool HeapRegion::oops_on_card_seq_iterate_careful(MemRegion mr,
400                                                  FilterOutOfRegionClosure* cl) {
401  assert(MemRegion(bottom(), end()).contains(mr), "Card region not in heap region");
402  G1CollectedHeap* g1h = G1CollectedHeap::heap();
403
404  // Special handling for humongous regions.
405  if (is_humongous()) {
406    return do_oops_on_card_in_humongous(mr, cl, this, g1h);
407  }
408  assert(is_old(), "precondition");
409
410  // Because mr has been trimmed to what's been allocated in this
411  // region, the parts of the heap that are examined here are always
412  // parsable; there's no need to use klass_or_null to detect
413  // in-progress allocation.
414
415  // Cache the boundaries of the memory region in some const locals
416  HeapWord* const start = mr.start();
417  HeapWord* const end = mr.end();
418
419  // Find the obj that extends onto mr.start().
420  // Update BOT as needed while finding start of (possibly dead)
421  // object containing the start of the region.
422  HeapWord* cur = block_start(start);
423
424#ifdef ASSERT
425  {
426    assert(cur <= start,
427           "cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start));
428    HeapWord* next = cur + block_size(cur);
429    assert(start < next,
430           "start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next));
431  }
432#endif
433
434  do {
435    oop obj = oop(cur);
436    assert(obj->is_oop(true), "Not an oop at " PTR_FORMAT, p2i(cur));
437    assert(obj->klass_or_null() != NULL,
438           "Unparsable heap at " PTR_FORMAT, p2i(cur));
439
440    if (g1h->is_obj_dead(obj, this)) {
441      // Carefully step over dead object.
442      cur += block_size(cur);
443    } else {
444      // Step over live object, and process its references.
445      cur += obj->size();
446      // Non-objArrays are usually marked imprecise at the object
447      // start, in which case we need to iterate over them in full.
448      // objArrays are precisely marked, but can still be iterated
449      // over in full if completely covered.
450      if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
451        obj->oop_iterate(cl);
452      } else {
453        obj->oop_iterate(cl, mr);
454      }
455    }
456  } while (cur < end);
457
458  return true;
459}
460
461// Code roots support
462
463void HeapRegion::add_strong_code_root(nmethod* nm) {
464  HeapRegionRemSet* hrrs = rem_set();
465  hrrs->add_strong_code_root(nm);
466}
467
468void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
469  assert_locked_or_safepoint(CodeCache_lock);
470  HeapRegionRemSet* hrrs = rem_set();
471  hrrs->add_strong_code_root_locked(nm);
472}
473
474void HeapRegion::remove_strong_code_root(nmethod* nm) {
475  HeapRegionRemSet* hrrs = rem_set();
476  hrrs->remove_strong_code_root(nm);
477}
478
479void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
480  HeapRegionRemSet* hrrs = rem_set();
481  hrrs->strong_code_roots_do(blk);
482}
483
484class VerifyStrongCodeRootOopClosure: public OopClosure {
485  const HeapRegion* _hr;
486  nmethod* _nm;
487  bool _failures;
488  bool _has_oops_in_region;
489
490  template <class T> void do_oop_work(T* p) {
491    T heap_oop = oopDesc::load_heap_oop(p);
492    if (!oopDesc::is_null(heap_oop)) {
493      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
494
495      // Note: not all the oops embedded in the nmethod are in the
496      // current region. We only look at those which are.
497      if (_hr->is_in(obj)) {
498        // Object is in the region. Check that its less than top
499        if (_hr->top() <= (HeapWord*)obj) {
500          // Object is above top
501          log_error(gc, verify)("Object " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ") is above top " PTR_FORMAT,
502                               p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
503          _failures = true;
504          return;
505        }
506        // Nmethod has at least one oop in the current region
507        _has_oops_in_region = true;
508      }
509    }
510  }
511
512public:
513  VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
514    _hr(hr), _failures(false), _has_oops_in_region(false) {}
515
516  void do_oop(narrowOop* p) { do_oop_work(p); }
517  void do_oop(oop* p)       { do_oop_work(p); }
518
519  bool failures()           { return _failures; }
520  bool has_oops_in_region() { return _has_oops_in_region; }
521};
522
523class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
524  const HeapRegion* _hr;
525  bool _failures;
526public:
527  VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
528    _hr(hr), _failures(false) {}
529
530  void do_code_blob(CodeBlob* cb) {
531    nmethod* nm = (cb == NULL) ? NULL : cb->as_compiled_method()->as_nmethod_or_null();
532    if (nm != NULL) {
533      // Verify that the nemthod is live
534      if (!nm->is_alive()) {
535        log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
536                              p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
537        _failures = true;
538      } else {
539        VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
540        nm->oops_do(&oop_cl);
541        if (!oop_cl.has_oops_in_region()) {
542          log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
543                                p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
544          _failures = true;
545        } else if (oop_cl.failures()) {
546          log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
547                                p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
548          _failures = true;
549        }
550      }
551    }
552  }
553
554  bool failures()       { return _failures; }
555};
556
557void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
558  if (!G1VerifyHeapRegionCodeRoots) {
559    // We're not verifying code roots.
560    return;
561  }
562  if (vo == VerifyOption_G1UseMarkWord) {
563    // Marking verification during a full GC is performed after class
564    // unloading, code cache unloading, etc so the strong code roots
565    // attached to each heap region are in an inconsistent state. They won't
566    // be consistent until the strong code roots are rebuilt after the
567    // actual GC. Skip verifying the strong code roots in this particular
568    // time.
569    assert(VerifyDuringGC, "only way to get here");
570    return;
571  }
572
573  HeapRegionRemSet* hrrs = rem_set();
574  size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
575
576  // if this region is empty then there should be no entries
577  // on its strong code root list
578  if (is_empty()) {
579    if (strong_code_roots_length > 0) {
580      log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is empty but has " SIZE_FORMAT " code root entries",
581                            p2i(bottom()), p2i(end()), strong_code_roots_length);
582      *failures = true;
583    }
584    return;
585  }
586
587  if (is_continues_humongous()) {
588    if (strong_code_roots_length > 0) {
589      log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
590                            HR_FORMAT_PARAMS(this), strong_code_roots_length);
591      *failures = true;
592    }
593    return;
594  }
595
596  VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
597  strong_code_roots_do(&cb_cl);
598
599  if (cb_cl.failures()) {
600    *failures = true;
601  }
602}
603
604void HeapRegion::print() const { print_on(tty); }
605void HeapRegion::print_on(outputStream* st) const {
606  st->print("|%4u", this->_hrm_index);
607  st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT,
608            p2i(bottom()), p2i(top()), p2i(end()));
609  st->print("|%3d%%", (int) ((double) used() * 100 / capacity()));
610  st->print("|%2s", get_short_type_str());
611  if (in_collection_set()) {
612    st->print("|CS");
613  } else {
614    st->print("|  ");
615  }
616  st->print("|TS%3u", _gc_time_stamp);
617  st->print("|AC%3u", allocation_context());
618  st->print_cr("|TAMS " PTR_FORMAT ", " PTR_FORMAT "|",
619               p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
620}
621
622class G1VerificationClosure : public OopClosure {
623protected:
624  G1CollectedHeap* _g1h;
625  CardTableModRefBS* _bs;
626  oop _containing_obj;
627  bool _failures;
628  int _n_failures;
629  VerifyOption _vo;
630public:
631  // _vo == UsePrevMarking -> use "prev" marking information,
632  // _vo == UseNextMarking -> use "next" marking information,
633  // _vo == UseMarkWord    -> use mark word from object header.
634  G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
635    _g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
636    _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) {
637  }
638
639  void set_containing_obj(oop obj) {
640    _containing_obj = obj;
641  }
642
643  bool failures() { return _failures; }
644  int n_failures() { return _n_failures; }
645
646  void print_object(outputStream* out, oop obj) {
647#ifdef PRODUCT
648    Klass* k = obj->klass();
649    const char* class_name = k->external_name();
650    out->print_cr("class name %s", class_name);
651#else // PRODUCT
652    obj->print_on(out);
653#endif // PRODUCT
654  }
655};
656
657class VerifyLiveClosure : public G1VerificationClosure {
658public:
659  VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
660  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
661  virtual void do_oop(oop* p) { do_oop_work(p); }
662
663  template <class T>
664  void do_oop_work(T* p) {
665    assert(_containing_obj != NULL, "Precondition");
666    assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
667      "Precondition");
668    verify_liveness(p);
669  }
670
671  template <class T>
672  void verify_liveness(T* p) {
673    T heap_oop = oopDesc::load_heap_oop(p);
674    Log(gc, verify) log;
675    if (!oopDesc::is_null(heap_oop)) {
676      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
677      bool failed = false;
678      if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
679        MutexLockerEx x(ParGCRareEvent_lock,
680          Mutex::_no_safepoint_check_flag);
681
682        if (!_failures) {
683          log.error("----------");
684        }
685        ResourceMark rm;
686        if (!_g1h->is_in_closed_subset(obj)) {
687          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
688          log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
689            p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
690          print_object(log.error_stream(), _containing_obj);
691          log.error("points to obj " PTR_FORMAT " not in the heap", p2i(obj));
692        } else {
693          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
694          HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
695          log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
696            p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
697          print_object(log.error_stream(), _containing_obj);
698          log.error("points to dead obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
699            p2i(obj), p2i(to->bottom()), p2i(to->end()));
700          print_object(log.error_stream(), obj);
701        }
702        log.error("----------");
703        _failures = true;
704        failed = true;
705        _n_failures++;
706      }
707    }
708  }
709};
710
711class VerifyRemSetClosure : public G1VerificationClosure {
712public:
713  VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
714  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
715  virtual void do_oop(oop* p) { do_oop_work(p); }
716
717  template <class T>
718  void do_oop_work(T* p) {
719    assert(_containing_obj != NULL, "Precondition");
720    assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
721      "Precondition");
722    verify_remembered_set(p);
723  }
724
725  template <class T>
726  void verify_remembered_set(T* p) {
727    T heap_oop = oopDesc::load_heap_oop(p);
728    Log(gc, verify) log;
729    if (!oopDesc::is_null(heap_oop)) {
730      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
731      bool failed = false;
732      HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
733      HeapRegion* to = _g1h->heap_region_containing(obj);
734      if (from != NULL && to != NULL &&
735        from != to &&
736        !to->is_pinned()) {
737        jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
738        jbyte cv_field = *_bs->byte_for_const(p);
739        const jbyte dirty = CardTableModRefBS::dirty_card_val();
740
741        bool is_bad = !(from->is_young()
742          || to->rem_set()->contains_reference(p)
743          || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
744          (_containing_obj->is_objArray() ?
745          cv_field == dirty
746          : cv_obj == dirty || cv_field == dirty));
747        if (is_bad) {
748          MutexLockerEx x(ParGCRareEvent_lock,
749            Mutex::_no_safepoint_check_flag);
750
751          if (!_failures) {
752            log.error("----------");
753          }
754          log.error("Missing rem set entry:");
755          log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT ", in region " HR_FORMAT,
756            p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
757          ResourceMark rm;
758          _containing_obj->print_on(log.error_stream());
759          log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT, p2i(obj), HR_FORMAT_PARAMS(to));
760          if (obj->is_oop()) {
761            obj->print_on(log.error_stream());
762          }
763          log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
764          log.error("----------");
765          _failures = true;
766          if (!failed) _n_failures++;
767        }
768      }
769    }
770  }
771};
772
773// This really ought to be commoned up into OffsetTableContigSpace somehow.
774// We would need a mechanism to make that code skip dead objects.
775
776void HeapRegion::verify(VerifyOption vo,
777                        bool* failures) const {
778  G1CollectedHeap* g1 = G1CollectedHeap::heap();
779  *failures = false;
780  HeapWord* p = bottom();
781  HeapWord* prev_p = NULL;
782  VerifyLiveClosure vl_cl(g1, vo);
783  VerifyRemSetClosure vr_cl(g1, vo);
784  bool is_region_humongous = is_humongous();
785  size_t object_num = 0;
786  while (p < top()) {
787    oop obj = oop(p);
788    size_t obj_size = block_size(p);
789    object_num += 1;
790
791    if (!g1->is_obj_dead_cond(obj, this, vo)) {
792      if (obj->is_oop()) {
793        Klass* klass = obj->klass();
794        bool is_metaspace_object = Metaspace::contains(klass) ||
795                                   (vo == VerifyOption_G1UsePrevMarking &&
796                                   ClassLoaderDataGraph::unload_list_contains(klass));
797        if (!is_metaspace_object) {
798          log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
799                                "not metadata", p2i(klass), p2i(obj));
800          *failures = true;
801          return;
802        } else if (!klass->is_klass()) {
803          log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
804                                "not a klass", p2i(klass), p2i(obj));
805          *failures = true;
806          return;
807        } else {
808          vl_cl.set_containing_obj(obj);
809          if (!g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
810            // verify liveness and rem_set
811            vr_cl.set_containing_obj(obj);
812            G1Mux2Closure mux(&vl_cl, &vr_cl);
813            obj->oop_iterate_no_header(&mux);
814
815            if (vr_cl.failures()) {
816              *failures = true;
817            }
818            if (G1MaxVerifyFailures >= 0 &&
819              vr_cl.n_failures() >= G1MaxVerifyFailures) {
820              return;
821            }
822          } else {
823            // verify only liveness
824            obj->oop_iterate_no_header(&vl_cl);
825          }
826          if (vl_cl.failures()) {
827            *failures = true;
828          }
829          if (G1MaxVerifyFailures >= 0 &&
830              vl_cl.n_failures() >= G1MaxVerifyFailures) {
831            return;
832          }
833        }
834      } else {
835        log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
836        *failures = true;
837        return;
838      }
839    }
840    prev_p = p;
841    p += obj_size;
842  }
843
844  if (!is_young() && !is_empty()) {
845    _bot_part.verify();
846  }
847
848  if (is_region_humongous) {
849    oop obj = oop(this->humongous_start_region()->bottom());
850    if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
851      log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
852      *failures = true;
853      return;
854    }
855  }
856
857  if (!is_region_humongous && p != top()) {
858    log_error(gc, verify)("end of last object " PTR_FORMAT " "
859                          "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
860    *failures = true;
861    return;
862  }
863
864  HeapWord* the_end = end();
865  // Do some extra BOT consistency checking for addresses in the
866  // range [top, end). BOT look-ups in this range should yield
867  // top. No point in doing that if top == end (there's nothing there).
868  if (p < the_end) {
869    // Look up top
870    HeapWord* addr_1 = p;
871    HeapWord* b_start_1 = _bot_part.block_start_const(addr_1);
872    if (b_start_1 != p) {
873      log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " "
874                            " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
875                            p2i(addr_1), p2i(b_start_1), p2i(p));
876      *failures = true;
877      return;
878    }
879
880    // Look up top + 1
881    HeapWord* addr_2 = p + 1;
882    if (addr_2 < the_end) {
883      HeapWord* b_start_2 = _bot_part.block_start_const(addr_2);
884      if (b_start_2 != p) {
885        log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
886                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
887                              p2i(addr_2), p2i(b_start_2), p2i(p));
888        *failures = true;
889        return;
890      }
891    }
892
893    // Look up an address between top and end
894    size_t diff = pointer_delta(the_end, p) / 2;
895    HeapWord* addr_3 = p + diff;
896    if (addr_3 < the_end) {
897      HeapWord* b_start_3 = _bot_part.block_start_const(addr_3);
898      if (b_start_3 != p) {
899        log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
900                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
901                              p2i(addr_3), p2i(b_start_3), p2i(p));
902        *failures = true;
903        return;
904      }
905    }
906
907    // Look up end - 1
908    HeapWord* addr_4 = the_end - 1;
909    HeapWord* b_start_4 = _bot_part.block_start_const(addr_4);
910    if (b_start_4 != p) {
911      log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
912                            " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
913                            p2i(addr_4), p2i(b_start_4), p2i(p));
914      *failures = true;
915      return;
916    }
917  }
918
919  verify_strong_code_roots(vo, failures);
920}
921
922void HeapRegion::verify() const {
923  bool dummy = false;
924  verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
925}
926
927void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
928  G1CollectedHeap* g1 = G1CollectedHeap::heap();
929  *failures = false;
930  HeapWord* p = bottom();
931  HeapWord* prev_p = NULL;
932  VerifyRemSetClosure vr_cl(g1, vo);
933  while (p < top()) {
934    oop obj = oop(p);
935    size_t obj_size = block_size(p);
936
937    if (!g1->is_obj_dead_cond(obj, this, vo)) {
938      if (obj->is_oop()) {
939        vr_cl.set_containing_obj(obj);
940        obj->oop_iterate_no_header(&vr_cl);
941
942        if (vr_cl.failures()) {
943          *failures = true;
944        }
945        if (G1MaxVerifyFailures >= 0 &&
946          vr_cl.n_failures() >= G1MaxVerifyFailures) {
947          return;
948        }
949      } else {
950        log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
951        *failures = true;
952        return;
953      }
954    }
955
956    prev_p = p;
957    p += obj_size;
958  }
959}
960
961void HeapRegion::verify_rem_set() const {
962  bool failures = false;
963  verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
964  guarantee(!failures, "HeapRegion RemSet verification failed");
965}
966
967void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
968  scan_and_forward(this, cp);
969}
970
971// G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
972// away eventually.
973
974void G1ContiguousSpace::clear(bool mangle_space) {
975  set_top(bottom());
976  _scan_top = bottom();
977  CompactibleSpace::clear(mangle_space);
978  reset_bot();
979}
980
981#ifndef PRODUCT
982void G1ContiguousSpace::mangle_unused_area() {
983  mangle_unused_area_complete();
984}
985
986void G1ContiguousSpace::mangle_unused_area_complete() {
987  SpaceMangler::mangle_region(MemRegion(top(), end()));
988}
989#endif
990
991void G1ContiguousSpace::print() const {
992  print_short();
993  tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
994                INTPTR_FORMAT ", " INTPTR_FORMAT ")",
995                p2i(bottom()), p2i(top()), p2i(_bot_part.threshold()), p2i(end()));
996}
997
998HeapWord* G1ContiguousSpace::initialize_threshold() {
999  return _bot_part.initialize_threshold();
1000}
1001
1002HeapWord* G1ContiguousSpace::cross_threshold(HeapWord* start,
1003                                                    HeapWord* end) {
1004  _bot_part.alloc_block(start, end);
1005  return _bot_part.threshold();
1006}
1007
1008HeapWord* G1ContiguousSpace::scan_top() const {
1009  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1010  HeapWord* local_top = top();
1011  OrderAccess::loadload();
1012  const unsigned local_time_stamp = _gc_time_stamp;
1013  assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
1014  if (local_time_stamp < g1h->get_gc_time_stamp()) {
1015    return local_top;
1016  } else {
1017    return _scan_top;
1018  }
1019}
1020
1021void G1ContiguousSpace::record_timestamp() {
1022  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1023  uint curr_gc_time_stamp = g1h->get_gc_time_stamp();
1024
1025  if (_gc_time_stamp < curr_gc_time_stamp) {
1026    // Setting the time stamp here tells concurrent readers to look at
1027    // scan_top to know the maximum allowed address to look at.
1028
1029    // scan_top should be bottom for all regions except for the
1030    // retained old alloc region which should have scan_top == top
1031    HeapWord* st = _scan_top;
1032    guarantee(st == _bottom || st == _top, "invariant");
1033
1034    _gc_time_stamp = curr_gc_time_stamp;
1035  }
1036}
1037
1038void G1ContiguousSpace::record_retained_region() {
1039  // scan_top is the maximum address where it's safe for the next gc to
1040  // scan this region.
1041  _scan_top = top();
1042}
1043
1044void G1ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
1045  object_iterate(blk);
1046}
1047
1048void G1ContiguousSpace::object_iterate(ObjectClosure* blk) {
1049  HeapWord* p = bottom();
1050  while (p < top()) {
1051    if (block_is_obj(p)) {
1052      blk->do_object(oop(p));
1053    }
1054    p += block_size(p);
1055  }
1056}
1057
1058G1ContiguousSpace::G1ContiguousSpace(G1BlockOffsetTable* bot) :
1059  _bot_part(bot, this),
1060  _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1061  _gc_time_stamp(0)
1062{
1063}
1064
1065void G1ContiguousSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1066  CompactibleSpace::initialize(mr, clear_space, mangle_space);
1067  _top = bottom();
1068  _scan_top = bottom();
1069  set_saved_mark_word(NULL);
1070  reset_bot();
1071}
1072
1073